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Abstract. Given an argumentation network with initial values to the arguments,
we look for a numerical algorithm yielding extensions compatible with such initial
values. We offer an iteration schema that takes the initial values of the nodes and
follows the attack relation producing a sequence of intermediate values that even-
tually becomes stable leading to an extension in the limit. The schema can be used
in abstract as well as in abstract dialectical frameworks (ADFs).
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1. Orientation and Background

Orientation. The equational approach to abstract argumentation frameworks views the
network 〈S,R〉 of an argumentation framework as a generator of equations Eq for func-
tions f : S 7−→ U (where U is the unit interval [0,1]). Any function f which is a so-
lution to the equations is considered a complete numerical Eq extension for the origi-
nal network and for every argument X ∈ S, we can give the interpretation: if f (X) = 1,
then X is definitely “in” (in); if f (X) = 0, then X is definitely “out” (out); and a value
f (X) ∈ (0,1) indicates a certain degree of undecidedness about X’s acceptance (und).
We call the values in {0,1} crisp and the values in (0,1) undecided. For a particular
choice of equations, namely those of the type Eqmax (to be presented later), the solutions
to the equations would exactly correspond to all the complete extensions of the network
in Dung’s sense. The details of this have been previously worked out in a series of papers
[1,9,10,11,12,13].

Using the above as a starting point, we address in this paper the following question.
Suppose we have a standard way of writing equations Eq defining the values of nodes
according to some intended behaviour of the node interactions in a network N = 〈S,R〉.
We are then given an initial numerical function V0 : S 7−→U with values for the nodes
in N . V0 may originate as the result of merging networks, voting on the arguments,
estimates on the values of arguments, initial guesses in the search for a solution to the
equations, etc. Whatever V0’s origins, it may not satisfy the equations, meaning that the
original choices for argument acceptance, rejection and undecidedness embedded in it
do not correspond to an Eq extension and in the case of Eqmax, do not correspond to a
complete extension in Dung’s sense. We would like to find an extension that closely re-
sembles those choices and for that we need methods for finding the “closest” compatible
solution satisfying the equations given the initial values V0.
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The reader should note that the same problem arises in traditional three-valued ar-
gumentation systems. Caminada and Pigozzi put forward the the concepts of down-
admissibility and up-completion in [6]. The down-admissible set of a set of arguments is
its largest admissible subset. A down-admissible set can be turned into a proper extension
by “up-completing” it. This is the minimum complete extension that contains it.

In this paper, we propose an iterative procedure that corrects initial values yielding a
refinement of Caminada and Pigozzi’s results to the more general numerical context (i.e.,
with varying degrees of undecidedness). We stress the need for this framework because
in a wide range of applications, numerical initial values from U will appear at least in an
intermediate stage as the result of more complex reasoning about the interactions in the
network, or of aggregating multiple networks, etc. It is therefore of practical importance
that we know how to deal with such initial values.

The rest of this section will provide the background of our approach. In Section 2
we present the Gabbay-Rodrigues Iteration Schema and show how it can be used to cal-
culate extensions given any assignment of initial values to the nodes of an argumenta-
tion network. We follow this with a discussion and compare our results with the work
of Caminada-Pigozzi in Section 3. Section 4 concludes the paper with a summary of the
main results and some future work.

Background. An abstract argumentation framework is a system for reasoning about argu-
ments proposed by Dung [8] and defined in terms of a network 〈S,R〉, where S is a finite
non-empty set of arguments and R is a binary relation on S, called the attack relation. If
(X ,Y ) ∈ R, we say that the argument X attacks the argument Y and in a directed graph
this is depicted with an edge from X to Y . In what follows, Att(X) = {Y ∈ S | (Y,X)∈ R},
i.e., the set of arguments attacking X . If Att(X) =∅, then we say that X is a source node.
For E ⊆ S, we write E→ X as a shorthand for ∃Y ∈ E, such that (Y,X) ∈ R.

Given an argumentation framework, one usually wants to reason about the status
of its arguments, i.e., whether an argument persists or is defeated by other arguments.
Source arguments, having no attacks on them, always persist. However, an attack from
X to Y may not in itself be sufficient to defeat Y , because X may itself be defeated, and
thus the statuses of arguments need to be determined systematically. In Dung’s original
formulation, this is usually done through acceptability conditions for the arguments. A
semantics is then defined in terms of extensions — subsets of S with special properties.
Some important concepts now follow.

A set E ⊆ S is said to be conflict-free if for all elements X ,Y ∈ E, we have that
(X ,Y ) 6∈ R. Although a conflict-free set only contains elements that do not attack each
other, this does not necessarily mean that all arguments in the set are properly supported.
Well-supported sets satisfy special admissibility criteria. We say that an argument X ∈ S
is acceptable with respect to E, if for all Y ∈ S s.t. (Y,X) ∈ R, there exists an element
Z ∈ E s.t. (Z,Y ) ∈ R. A set E is admissible if it is conflict-free and all of its elements
are acceptable with respect to itself. An admissible set E is a complete extension if and
only if E contains all arguments which are acceptable with respect to itself. E is called a
preferred extension of S, if and only if E is maximal with respect to set inclusion amongst
all complete extensions of S.

Besides Dung’s acceptability semantics, it is also possible to give meaning to the
argumentation networks through Caminada’s labelling semantics [4,5,15]. It uses a la-
belling function λ : S −→ {in,out,und} satisfying certain conditions. The condi-
tions can be tailored so as to obtain a complete correspondence with Dung’s seman-



tics and there is a direct association between extensions and the sets containing the
arguments that are labelled in. Let dom denote the domain of a function. To facili-
tate the explanations in the rest of the paper, for a labelling function λ , we define the
sets in(λ ) = {X ∈ dom λ | λ (X) = in} and out(λ ) = {X ∈ dom λ | λ (X) = out} and,
analougously, for an assignment v : S 7−→U define in(v) = {X ∈ dom v | v(X) = 1} and
out(v) = {X ∈ dom v | v(X) = 0}.

We say that an argument X is illegally labelled in by λ , if for some Y ∈ Att(X),
we have that Y 6∈ out(λ ); X is illegally labelled out by λ , if for all Y ∈ Att(X), we
have that Y 6∈ in(λ ); and X is illegally labelled und by λ , if either Att(X) ⊆ out(λ ) or
Att(X)∩ in(λ ) 6=∅. Because of the direct correpondence between the labelling semantics
and Dung’s, we can say that a function λ is admissible if λ does not illegally label in or
out any argument in S; and an admissible function λ is complete if λ does not illegally
label und any argument in S. If a labelling function is not admissible, one can recover its
maximum “admissible” part by successively turning arguments that are illegally labelled
in or out into und. This idea was introduced in [6]:

Definition 1.1 ([6]) The down-admissible labelling of a labelling function λ is the
biggest element λ ′ of the set of all admissible labellings s.t. in(λ ′)⊆ in(λ ) and out(λ ′)⊆
out(λ ).

The down-admissible set can now form the basis of a complete extension. The small-
est of such extensions is obtained by “up-completing” the set.

Definition 1.2 ([6]) Let λ be an admissible labelling. The up-complete labelling of λ is
a complete labelling λ ′ s.t. in(λ ′)⊇ in(λ ) and out(λ ′)⊇ out(λ ) and in(λ ′) and out(λ ′)
are the smallest sets satisfying these conditions.

A third approach to the argumentation semantics is Gabbay’s equational approach,
which views an argumentation system 〈S,R〉 as a mathematical graph generating equa-
tions for functions in U [9,10]. Any solution S to these equations conceptually corre-
sponds to an extension. One equation we can possibly generate is Eqmax, where for any
node X ∈ S, it numerical value V (X) is defined as V (X) = 1−maxY∈Att(X){V (Y )}.

Gabbay has shown that in the case of Eqmax the totality of solutions to the system
of equations corresponds to the totality of complete extensions in Dung’s sense [10].
The equational approach has several advantages, one of which is the possibility of using
existing numerical methods to find solutions, and hence extensions.

2. The Gabbay-Rodrigues Iteration Schema

Suppose we are given initial numerical values which do not correspond to any extension
using the correspondence between values and labellings presented at the beginning of
Section 1. We seek a mechanism that would allow us to find the “best” possible exten-
sion corresponding to these initial values in a manner similar to that of Caminada and
Pigozzi’s. For this we introduce what we call the Gabbay-Rodrigues Iteration Schema
(for Eqmax) which, when applied to a set of initial values, successively corrects these
values to produce a complete extension.



Definition 2.1 Let N = 〈S,R〉 be a graph and V0 assign initial values to the nodes in S.
The Gabbay-Rodrigues Iteration Schema is defined by the following system of equations
TGR, where for each node X ∈ S, iteration i+1 is defined in terms of iteration i as follows:

Vi+1(X) = (1−Vi(X)) ·min{1/2,1− max
Y∈Att(X)

Vi(Y )}+Vi(X) ·max{1/2,1− max
Y∈Att(X)

Vi(Y )}

We call the system of equations for N using the schema its GR system of equations.
As for Caminada and Pigozzi, the schema iteratively corrects illegal crisp values.

When all become correct, we say that the values have become “stable” in the sense that
from then on crisp values remain unchanged and undecided values remain undecided
(although not necessarily the same).

Definition 2.2 We say that the sequence of value assignments V0, V1, . . . , becomes stable
at iteration k, if for all nodes X: 1) If Vk(X) ∈ (0,1), then Vk+1(X) ∈ (0,1); 2) If Vk(X) ∈
{0,1}, then Vk+1(X) =Vk(X); and 3) k is the smallest value for which 1. and 2. hold.

As it turns out, if v is an assigment of initial values to S and the set in(v) corre-
sponds to a complete extension then the sequence of values V0 = v, V1, V2,. . . is stable
at the outset (i.e., at iteration 0). If in(v) does not correspond to a complete extension,
then at the iteration k where the sequence becomes stable, Vk is the function giving the
maximal possible admissible crisp part (i.e., in(Vk) and out(Vk)) agreeing with v. This is
our numerical counterpart to down-admissibility. However, at iteration k, the undecided
values will be the closest possible to the initial values allowing admissibility.

Definition 2.3 (Caminada-Pigozzi Correspondence) For any labelling function λ de-
fine the function Vλ : S 7−→ {0,1/2,1} as Vλ (X) = 1 iff λ (X) = in; Vλ (X) = 0 iff
λ (X) = out and Vλ (X) = 1

2 iff λ (X) = und. For any function V : S 7−→ U define the
labelling function λV : S 7−→ {in,out,und} as λV = in iff V (X) = 1; λV (X) = out iff
V (X) = 0 and λV (X) = und iff 0 <V (X)< 1.

Proposition 2.1 Let λ be a labelling function and Vλ its corresponding Caminada-
Pigozzi translation. If the Gabbay-Rodrigues Iteration Schema is employed using Vλ as
V0, then for some value k ≥ 0, the sequence of values V0, V1, . . . will become stable and
the sets in(Vk) and out(Vk) will correspond to the down-admissible labelling of λ .

At the limit of the sequence V0, V1, . . . , we reach what we call the equilibrium values
of the nodes. It can be proved that this limit exists.

Definition 2.4 Let N = 〈S,R〉 be an argumentation network, T its GR system of equa-
tions, and V0 an assignment of initial values to the nodes in S. The equilibrium value of
a node X ∈ S is defined as Ve(X) = limi→∞ Vi(X).

The nodes with equilibrium value 1 correspond to the up-completion of the set con-
taining the nodes with value 1 at the point the sequence becomes stable.

Theorem 2.1 Let N = 〈S,R〉 be an argumentation network, T its GR system of equa-
tions, and V0 an assignment of initial values to S. If in(V0) forms a complete exten-
sion, then in(Ve) = in(V0), otherwise in(Ve) is the minimal complete extension containing
in(Vk), where k is the point at which the sequence V0, V1,. . . becomes stable.



3. Discussion and Comparisons with Other Work
Suppose we are given a network such as the one in Figure 1 with some initial values to
its nodes. The values may or may not correspond to a complete extension. We can write
equations for the network, apply the Gabbay-Rodrigues Iteration Schema and obtain
extensions for the network. For the sake of illustration, the table in Figure 1 contains

X Y W Z

X Y W Z
(V0,Vk,Ve) (V0,Vk,Ve) (V0,Vk,Ve) (V0,Vk,Ve)

1. (0,3/4,1) (0,1/2,0) (0,0,0) (1,1,1)

2. (0,7/8,1) (1,3/8,0) (1,1/2,1/2) (0,5/8,1/2)

3. (1,1,1) (0,0,0) (1,1,1) (0,0,0)

Figure 1. Network used in Section 3.

three sets of values 1., 2. and 3. Each set contains initial (V0), stable (Vk) and equilibirum
values (Ve), calculated using our schema. The corresponding down-admissible labellings
and their resulting up-completion according to Caminada-Pigozzi’s procedure can be
obtained simply by replacing 0 with out, 1 with in and values in (0,1) with und.

Scenario 1. represents the situation in which the initial values in the cycle W ↔ Z
form an extension and hence the crisp values are preserved by the calculations. We end
up with the complete extension E1 = {X ,Z}. Constrast this with case 2., in which the
initial values of W and Z are 1 and 0, resp. The extension E = {X ,W} is also complete but
is obtained neither by our procedure nor by Caminada-Pigozzi’s down-admissible/up-
complete construction. This can be explained as follows. The initial illegal value of Y
invalidates the initial acceptance of W , turning it into undecided in the calculation of the
down-admissible subset. From that point on, the original legal assignments for W and
Z can no longer be restored and they both end up as undecided. As a result, we obtain
the complete (but not preferred) extension E2 = {X}. This interference pattern does not
occur in case 1., because there the undecided value of Y is dominated by Z’s stronger
value (1/in). Since we use max, W ’s initial value of 0 is retained and hence so is Z’s.

If however we start at the outset with a preferred extension, which is also complete
by definition, we get as a result unchanged initial values (cf. Theorem 2.1). Caminada-
Pigozzi also give the same result because the down-admissible labelling of a labelling
yielding a preferred extension is the labelling itself and since that labelling is also com-
plete, then the up-completion does not change anything (case 3. in the table of Figure 1).

We can suggest an enhanced procedure to improve on the results obtained in case
2., which is outlined below. Obviously, the procedure can be adapated to three-valued
scenarios and used to obtain a larger complete extension replacing the down-admissible/
up-completion steps for the iteration schema. The procedure starts with a set of initial
values to the nodes and an empty set of crisp values (Crisp).

1. Calculate the equilibrium values of all nodes using the iteration schema.
2. If {X ∈ S |Ve(X) ∈ {0,1}} ⊆Crisp, stop. The extension is defined as the set in(Ve). Oth-

erwise, set Crisp =Crisp∪{X ∈ S |Ve(X) ∈ {0,1}} and proceed to step 3.
3. For every X such that Ve(X) ∈ {0,1}, set V0 = Ve(X) and leave V0(X) as before for the

remaining nodes.
4. Repeat from 1.

The above procedure is sound, since at each run the equilibrium values computed
yield a complete extension. Note that re-using some of the original values in step 3. does



not affect soundness. If they cannot be used to generate a larger extension, they will just
converge to 1/2. The procedure also terminates as long as the original graph S is finite,
since a new re-calculation of equilibrium values is invoked only when new crisp values
are generated and this is bound by |S|.

If we apply the procedure to Case 2. above, in the first run we will get Ve(X) = 1,
Ve(Y ) = 0, Ve(W ) =Ve(Z) = 1/2. Hence, Crisp = {X ,Y}. We then run it once more, this
time with initial value 1 for X and W and 0 for Y and Z. This will stabilise immediately at
these values with Crisp = {X ,Y,W,Z}. No further crisp values can be generated, so we
stop with extension {X ,W}, which is a preferred extension (see case 3. above). This re-
sult is closer to the original intention, because the acceptance of W (over Z) is preserved.

Comparisons with other work. [6] were the first to look at the problem of finding an
extension given an initial labelling of a set of arguments in the way we described it here.
The down-admissible labelling is computed by a contraction sequence which at each
step, turns an illegally labelled argument from in or out into und until no illegal crisp
values remain. Our iteration schema produces an equivalent result at the stable point, ex-
cept that at each iteration it may turn more than one node illegally labelled in or out into
und simultaneously and the undecided values we get are more fine-grained (i.e., a value
in (0,1)). In addition, the application of contractions in [6] is non-deterministic: one
needs to select an illegally labelled node first and hence there is an implicit cost involved
in finding it in the first place. Now given an admissible labelling, the up-completion is
done via an expansion sequence in [6] which turns illegally undecided nodes into in or
out as appropriate. Our counterpart to the expansion sequence is the calculation of the
equilibrium values. Obviously, in a computer implementation we can only approximate
these values. In our examples, we stop iterating at the point after which we can no longer
guarantee the accuracy of the calculation without introducing rounding errors. This is
done in linear time too (see Figure 2). In practice, the limit values can be guessed much
earlier as they can be seen to converge to one of the three values 0, 1/2 and 1. Here one
can use the undecided value obtained at the stable point instead of 1/2.

We stress that neither are we limited to the discrete values out, in and und, nor to
the Eqmax equation used in the iteration schema and this allows the application of the
schema in the calculation of extensions giving different semantics (see Section 4).

Worked Examples with Cycles. The table in Figure 2 displays initial, stable and equi-
librium values (V0,Vk,Ve) for all nodes in the networks (L) and (R). The last column of
the table indicates the iterations at which the stable and equilibrium values were reached
(S,E). We set our tolerance as 10−19, the upper bound of the relative error due to round-
ing in the calculations in our 64-bit machine. Nodes without attackers, such as Z in the
graphs and all nodes whose values of all attackers converge to 0 always converge to 1
independently of their initial values. Cases (L) and (R) explore symmetrical scenarios
involving cycles. In (L) the odd cycle attacks the even one and in (R) the even cycle
attacks the odd one. We start with (L), whose values in the odd cycle will converge to 1/2

independently of their initial values. The attack of B on X only has an effect on X’s value
if Y ’s initial value is not 1. Y ’s initial value of 1 dominates the effect of the undecidedness
of B on X and its value persists as 0. However, if X’s initial value is 1 and Y ’s is 0 (legal
values within this cycle), the undecidedness of B will force X to become undecided as
well, which in turn also makes Y undecided. As a result, all of the values in the cycles
converge to 1/2. Now let us look at (R) in which the even cycle attacks the odd one. (R1)



(L) (R)

A

C
B X Y

Z
A

C
B X Y

Z

X Y A B C Z
(V0,Vk,Ve) (V0,Vk,Ve) (V0,Vk,Ve) (V0,Vk,Ve) (V0,Vk,Ve) (V0,Vk,Ve) (S,E)

L1. (0,0,0) (1,1,1) (0,1/2,1/2) (1,0.266,1/2) (0,0.562,1/2) (0,0.938,1) (3,58)
L2. (1,0.430,1/2) (0,0.516,1/2) (1,0.516,1/2) (0,1/2,1/2) (0,0.430,1/2) (1/2,0.992,1) (5,58)
R1. (1,1,1) (0,0,0) (1,0.438,0) (1,0.062,0) (0,0.734,1) (0,0.938,1) (3,76)
R2. (0,0,0) (1,1,1) (0,0.562,1/2) (0,1/2,1/2) (1,0.266,1/2) (1/2,0.969,1) (3,58)

Figure 2. Equilibrium and stable values of nodes involved in cycles.

and (R2) contain different initial valid configurations for the even cycle. This time the
nodes in the even cycle are independent of external attacks and their original values re-
main. If the initial value of X is 1, it remains 1 and this in turn breaks the odd cycle. The
attacked node B is forced to converge to 0, forcing C to converge to 1 and A to converge
to 0 (independently of their initial values). An initial value of 0 for X cannot break the
odd cycle and the values of the nodes in that cycle will converge to 1/2 independently of
their initial values (R2).

4. Conclusions and Future Work
This paper investigated aspects concerned with argumentation networks where the argu-
ments are provided with initial values in the unit interval U . We are aware that assigning
values to nodes and propagating values through the network has been independently in-
vestigated before (e.g., in [2,7]). However, our approach is different because we see a net-
work as a generator for equations whose solutions generalise the concept of extensions
of the network.

There are advantages to using equations to calculate extensions in this way as numer-
ical values arise naturally in many applications where argumentation systems are used
and the behaviour of the node interactions can be described using equations. In addition,
there are many mathematical tools to help find solutions to equations.

Even considering a more restricted three-valued scenario where und is any value
in (0,1), the values that we obtain at the stable point provide a richer indication of the
degree of undecidedness of points in the network.

The equational approach is general enough to be adapted to particular applications.
For instance, the arguments themselves may be expressed as some proof in a fuzzy logic
and then the initial values can represent the values of the conclusions of the proofs, in
the spirit of Prakken’s work [14]; or they can be obtained as the result of the merging of
several networks, as proposed in [12,13].

The Gabbay-Rodrigues Iteration Schema takes the following generalised form:
Vi+1(X) = (1−Vi(X)) ·min{1/2,g(N (X))}+Vi(X) ·max{1/2,g(N (X))}

In this paper, we considered the special case where g is min and N (X) is the set of
complemented values of the nodes in the “neighbourhood” of X (i.e., the attackers of
X).2 Other operations can be used for argumentation systems, whose relationship with

2Note that 1−maxY∈Att(X){V (Y )}= minY∈Att(X){1−V (Y )}.



the schema is being further investigated. One such operation is product, which unlike
min combines the strength of the attacks on a node. Another interesting possibility is
to use the schema for abstract dialectical frameworks (ADFs) [3]. ADFs require the
specification of a possibly unique type of equation for each node. Consider the ADF with
nodes a, b, c and d with R = {(a,b),(b,c),(c,c)} and equations Ca = >, Cb = a, Cc =
c∧b and Cd =¬d. The complete models for this ADF are m1 = (t, t,u,u), m2 = (t, t, t,u)
and m3 = (t, t, f ,u). Our schema converges to m1 given initial values (1,1,1/2,1/2); to m2
given initial values (1,1,1,1); and to m3 given initial values (0,0,0,0).

For the case of min, the values generated at each iteration in the schema eventually
“stabilise” by changing illegal crisp values into undecided. This process generalises the
notion of down-admissibility proposed in [6], in the sense that undecided values are
more fine-grained, and this process can be calculated in time t ≤ |S|. In the limit of the
sequence, some of the undecided values at the stable point will become crisp yielding the
up-completion of the down-admissible set and although the remaining undecided values
will converge to 1/2 in the limit, their true degree of undecidedness can be read from their
values at the stable point. In practice, only a few iterations are sufficient to indicate what
the values will converge to in the limit. If the whole process is iterated it can yield larger
and larger complete extensions. These extensions will be as “compatible” as possible
with the initial values.
Acknowledgements. We thank M. Caminada and S. Modgil for comments and discus-
sions on the topic of this paper.
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