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ABSTRACT
This paper proposes a canonical ordering of arguments within
abstract argumentation labellings and two new types of efficient
representations of these labellings for use in applications involving
the computation of argumentation semantics. The space require-
ments of the representations are analysed, benchmarked on a class
of hard enumeration problems taken from the International Compe-
tition on Computational Models of Argumentation (ICCMA), and
compared for efficiency. We found that they both offer significant
reductions of the memory representation requirements of large
labellings, sometimes of up to 75%. We argue that the new way
of looking at labellings provided by one of the representations,
i.e., by considering repetitions of segment assignments within la-
bellings, paves the way for investigations of new applications in
argumentation theory.
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1 INTRODUCTION
Representing large sequences of “tokens” efficiently is critical in any
computer science application that needs to store and reason with
the sequences in a computer’s physical memory simultaneously. In
artificial intelligence and argumentation theory, large sequences
can appear as the result of the computation done for reasoning
problems in the so-called abstract argumentation frameworks (AFs),
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which are presented as a tuple ⟨𝐴, 𝑅⟩, where𝐴 is a set of arguments
and 𝑅 is an attack relation on 𝐴 ×𝐴.

Generically speaking, given an AF ⟨𝐴, 𝑅⟩, an enumeration prob-
lem can be viewed as the computation of all subsets of 𝐴, whose
arguments can all be jointly “accepted” according to some condi-
tions. Those subsets of acceptable arguments are called extensions.
Obviously, each extension is an element of the power set of 𝐴
and hence for a given argumentation framework, there could be
exponentially many such extensions. During the computation of
extensions, we often need to reason with the status of all arguments,
and hence enumeration problems involve dealing with finite, but
potentially very large sequences of “labels” – tokens that indicate
whether arguments are accepted, defeated, or undecided [2, 9]. The
assignment of labels to arguments is called a labelling [7].

In the specific case of argumentation theory, we would argue
that in applications where arguments are mined or generated au-
tomatically, resulting in complex or large AFs, large labellings are
inevitable and therefore the investigation of efficient internal rep-
resentations is worthwhile.

In this paper, we propose a canonical ordering of arguments
within labellings and two new types of compact representations
which still allow direct access to the arguments’ labels. The first rep-
resentation mimics the topological structure of the AF whereas the
other packs as many labels as possible per unit of memory. The first
representation takes advantage of repetitions of segments naturally
occurring within labelling enumerations. By storing just one copy
of each repetition and keeping track of the correct segment order,
a full labelling can be reconstructed for easy reference. We would
argue that the division of the labellings into these types of segments
paves the way for new applications in argumentation theory, e.g.,
the analysis of the repetitions associated with the segments, the
investigation of implicit dependencies that may exist between AF’s
components, and potential simplifications of the AF’s themselves.

The second representation is the densest possible whilst still
allowing a direct association of labels to arguments. If used in
conjunction with the canonical ordering of the first representation,
it offers all the benefits with few shortcomings.

We evaluated the memory requirements of both representations
on a class of problems taken from ICCMA’17 known to generate
a very large number of labellings, compared them against a base-
line approach, and then discussed the results of the analysis in
detail. Our analysis show that both representation offer significant
reductions of the memory requirements, sometimes of up to 75%.

The rest of the paper is structured as follows. In Section 2, we give
a brief overview of concepts of argumentation theory needed for
the understanding of the representations. In Section 3, we propose
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a canonical way of ordering arguments within labellings, which we
use in our novel representation. In Section 4, we present our baseline
representation and the first novel representation, followed by the
second proposed representation in Section 5. We then conclude
with an experimental analysis and some final remarks in sections 6
and 7, respectively.

2 BACKGROUND
Abstract argumentation frameworks (AFs) were proposed by Dung
[8] as a system for reasoning about the acceptability of arguments.
Formally, an AF is a directed graph ⟨𝐴, 𝑅⟩, where 𝐴 is a finite non-
empty set of arguments and 𝑅 is a binary relation on 𝐴, called the
attack relation. When (𝑥,𝑦) ∈ 𝑅, we say that 𝑥 attacks 𝑦 and depict
it with an arrow→ from 𝑥 to 𝑦. Figure 1 shows the sample AF A
which we will use as our running example.

Based on the relation 𝑅, the immediate neighbourhood of an
argument identifies the arguments attacking it and the arguments
that it attacks. These two concepts are of particular interest.

Definition 2.1. Let ⟨𝐴, 𝑅⟩ be an AF and 𝑥 ∈ 𝐴. The set of 𝑥 ’s
attackers 𝑥− is defined as 𝑥− = {𝑦 ∈ 𝐴 | (𝑦, 𝑥) ∈ 𝑅}. The set of
arguments that 𝑥 attacks 𝑥+ is defined as 𝑥+ = {𝑦 ∈ 𝐴 | (𝑥,𝑦) ∈ 𝑅}.

If 𝑥− = ∅, then we say that 𝑥 is an initial argument [5]. If 𝑥 ∈ 𝑥− ,
then we say that 𝑥 self-attacks. We extend the notion of attackers
and attacked arguments to an arbitrary set 𝑋 ⊆ 𝐴, as follows:
𝑋 − =

⋃
𝑥∈𝐴 𝑥− and 𝑋+ =

⋃
𝑥∈𝐴 𝑥+.

𝑥 𝑤 𝑎 𝑏

𝑦 𝑧 𝑘

𝑑 𝑐 𝑙 𝑒 𝑓

𝑔 ℎ 𝑖 𝑗

Figure 1: The sample argumentation framework A.

In deciding whether an argument is “accepted” or “defeated”,
one needs to analyse whether any of the argument’s attackers
is accepted. If this is the case, the argument is defeated and it is
accepted otherwise. Hence, initial arguments (having no attackers)
are always accepted. For example, 𝑥 and𝑦 inA, are always accepted.
An attacked argument can still persist, as long as all of its attackers
are defeated. An example of this in A is when 𝑔 is defeated by 𝑐 ,
allowing ℎ to be accepted. Arguments in cycles are treated similarly,
but this sometimes requires an element of choice. In the case of the
argument 𝑘 of A, we have no option because the argument cannot
be accepted and defeated at the same time. In such cases we say
that the argument’s status is undecided. However, in the case of
the arguments 𝑎 and 𝑏, which are also involved in a cycle, we can
either leave them both undecided, or accept one and the reject the
other. This results in three potential outcomes for the arguments
in this particular cycle.

The discussion above hints that arguments can be determined
recursively following the reverse direction of attack, dealing with

cycles as a special case. In Dung’s original formulation, the concept
of an extension is associated with a subset of the set of arguments
having some desired special properties. Before we can describe the
properties, we need to introduce some underlying concepts.

Let ⟨𝐴, 𝑅⟩ be an AF. A set 𝐸 ⊆ 𝐴 is said to be conflict-free if for all
elements 𝑥,𝑦 ∈ 𝐸, we have that (𝑥,𝑦) ∉ 𝑅. Moreover, an argument
𝑥 ∈ 𝐴 is said to be acceptable with respect to 𝐸, if 𝐸 “protects” it, i.e.,
for all 𝑦 ∈ 𝑥− , 𝐸 ∩𝑦− ≠ ∅. A set 𝐸 is then said to be admissible if it
is conflict-free and all of its elements are acceptable with respect to
itself. Extensions are special types of admissible sets.

Definition 2.2 (Complete extensions). An admissible set 𝐸 ⊆ 𝐴 is
a complete extension if and only if 𝐸 contains all arguments which
are acceptable with respect to itself.

The ⊆-minimal complete extension is called the grounded exten-
sion. A complete extension 𝐸 is called a preferred extension iff 𝐸 is a
⊆-maximal complete extension; and a preferred extension 𝐸 is also
stable if 𝐸 ∪ 𝐸+ = 𝐴.

Every AF has at least one complete extension, exactly one
grounded extension, one or more preferred extensions, and zero
or more stable extensions. In this paper we will concentrate on
the enumeration of complete extensions because it is the problem
whose associated labellings generate the largest amount of data.
Our concern is how to represent all such labellings efficiently in
memory. Even smaller argumentation frameworks can generate a
surprisingly large number of complete extensions [16]. The AF of
Figure 1 has 21 complete extensions (see Table 1).

During the computation of extensions, we will use the special
labels in, out, or und to represent the status of arguments. in
means the argument is “accepted” (belongs to the extension), out
means it is “defeated” (it is attacked by an argument belonging to
the extension), and und means it is “undecided” (neither accepted
nor rejected). The association of labels to arguments can be formally
captured by a labelling function.

Definition 2.3 (Labelling function). A labelling function 𝑓 is a
function of the form 𝑓 : 𝐴 −→ {in, out,und}.

Let dom denote the domain of a function and define 𝑖𝑛(𝑓 ) =
{𝑥 ∈ dom 𝑓 |𝑓 (𝑥) = in}; 𝑢𝑛𝑑 (𝑓 ) = {𝑥 ∈ dom 𝑓 |𝑓 (𝑥) = und}; and
𝑜𝑢𝑡 (𝑓 ) = {𝑥 ∈ dom 𝑓 |𝑓 (𝑥) = out}. We say that an argument 𝑥
is illegally labelled in by 𝑓 , if 𝑥− ⊈ 𝑜𝑢𝑡 (𝑓 ); 𝑥 is illegally labelled
out by 𝑓 , if 𝑥− ∩ 𝑖𝑛(𝑓 ) = ∅; and 𝑥 is illegally labelled und by 𝑓 ,
if either 𝑥− ⊆ 𝑜𝑢𝑡 (𝑓 ) or 𝑥− ∩ 𝑖𝑛(𝑓 ) ≠ ∅. A labelling function
is legal if it does not have any arguments illegally labelled. Legal
labelling functions and extensions can be defined in terms of each
other. Any complete extension 𝐸 can be recovered from a legal
labelling function 𝑓 by setting 𝐸 = 𝑖𝑛(𝑓 ). Conversely, a labelling
function 𝑓 can be defined from an extension 𝐸 by setting 𝑖𝑛(𝑓 ) = 𝐸;
𝑜𝑢𝑡 (𝑓 ) = 𝐸+; and 𝑢𝑛𝑑 (𝑓 ) = 𝐴\(𝐸 ∪ 𝐸+) [6, 7, 17].

In implementations that compute complete extensions, one usu-
ally works with labelling functions, henceforth just labellings, in-
stead of extensions, since sometimes we need to check the statuses
of all attackers of an argument and obtaining these from the ex-
tension being constructed is inefficient. Since there are 3 possible
labels, we need at least two bits of information to represent the
label of each argument, but in most architectures the smallest data
type occupies one full byte. A straighforward implementation of a
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labelling representation assigns a unique index to every argument
and records the labelling as a vector of single bytes, e.g., using the
data type unsigned char in C++.

We now turn to a few graph theoretical concepts which will also
prove useful in the discussion of the representations.

Definition 2.4 (Path equivalence relation). Let ⟨𝐴, 𝑅⟩ be an AF.
The path equivalence relation ∼ ⊆ 𝐴 × 𝐴 is the relation defined
as follows: i) For every 𝑥 ∈ 𝐴, 𝑥 ∼ 𝑥 ; and ii) For every 𝑥,𝑦 ∈ 𝐴, if
𝑥 ≠ 𝑦 and there is a path from 𝑥 to 𝑦 (via→) and a path from 𝑦 to
𝑥 in 𝑅, then 𝑥 ∼ 𝑦.

Notice that ∼ is indeed an equivalence relation, as it is reflexive,
symmetric and transitive. ∼ induces a partition of the elements of
𝐴, dividing it into equivalence classes of significant importance:

Definition 2.5 (Strongly connected component (SCC)). Let B =

⟨𝐴, 𝑅⟩ be an AF. A strongly connected component of B is an element
of the partition of B under the path equivalence relation ∼. We will
denote the set of SCCs of B by 𝑠𝑐𝑐𝑠 (B).

An SCC 𝑆 is called trivial if and only if it is a singleton set {𝑥},
for some 𝑥 ∈ 𝐴, and 𝑥 does not self-attack. All other SCCs are said
to be non-trivial.

Figure 2 (L) shows AF A’s SCCs, where the trivial SCCs are
enclosed by dotted lines, and the non-trivial SCCs are enclosed by
dashed lines. It should be easy to see that every argument belongs
to a unique SCC (its equivalence class under the path equivalence
relation). It will prove useful to have a symbol for this SCC.

Definition 2.6 (SCC of an argument). Given an AF ⟨𝐴, 𝑅⟩, the SCC
to which the argument 𝑥 ∈ 𝐴 belongs will be denoted by the symbol↠
[𝑥]. Formally,

↠
[𝑥] = {𝑦 ∈ 𝐴 |𝑦 ∼ 𝑥}.

Since all elements of a partition are pairwise disjoint, given an
AF B, we can construct a directed acyclic graph from its attack
relation and 𝑠𝑐𝑐𝑠 (B), called B’s condensation graph.

Definition 2.7 (Condensation graph of an AF). Let B = ⟨𝐴, 𝑅⟩ be
an AF and 𝑋,𝑌 ∈ 𝑠𝑐𝑐𝑠 (B). Define the relation ↠ ⊆ 𝑠𝑐𝑐𝑠 (B)2 as
𝑋 ↠ 𝑌 if and only if 𝑋 ≠ 𝑌 and there exist 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 such
that (𝑥,𝑦) ∈ 𝑅.

Figure 2 (L) showsA’s condensation graph. If𝑋 ∈ 𝑠𝑐𝑐𝑠 (B), then
we will use the notation [𝑋 ]− to denote the set {𝑌 ∈ 𝑠𝑐𝑐𝑠 (B) | 𝑌 ↠
𝑋 }. Note that 𝑋 − is a set of arguments, whereas [𝑋 ]− is a set of
SCCs.

(L) (R)

𝑥 𝑤 𝑎 𝑏

𝑦 𝑧 𝑘

𝑑 𝑐 𝑙 𝑒 𝑓

𝑔 ℎ 𝑖 𝑗

𝑥 𝑤 𝑎 𝑏

𝑦 𝑧 𝑘

𝑑 𝑐 𝑙 𝑒 𝑓

𝑔 ℎ 𝑖 𝑗

𝑠0

𝑠2

𝑠1

𝑠3𝑠4 𝑠5

𝑠6 𝑠7

layer 0

layer 1

layer 2 layer 3

Figure 2: The condensation graph of the AF A of Figure 1
and its stratification into layers.

Definition 2.8 (Levels of SCCs and arguments). The term 𝑙𝑒𝑣𝑒𝑙 (𝑆)
denotes the level of an SCC 𝑆 , which is defined as follows.
For a non-trivial SCC 𝑆 : If [𝑆]− = ∅, then 𝑙𝑒𝑣𝑒𝑙 (𝑆) = 0. Otherwise,
𝑙𝑒𝑣𝑒𝑙 (𝑆) = max𝑋 ∈[𝑆 ]− {𝑙𝑒𝑣𝑒𝑙 (𝑋 )} + 1.
For a trivial SCC 𝑆 : If [𝑆]− = ∅, then 𝑙𝑒𝑣𝑒𝑙 (𝑆) = 0. Otherwise, let
𝑁𝑇𝐴(𝑆) = {𝑌 ∈ [𝑆]− | 𝑌 is a non-trivial SCC } and𝑇𝐴(𝑆) = {𝑍 ∈
[𝑆]− | 𝑍 is a trivial SCC }, then

𝑙𝑒𝑣𝑒𝑙 (𝑆) = max
𝑌 ∈𝑁𝑇𝐴(𝑆 ) ;𝑍 ∈𝑇𝐴(𝑆 )

{𝑙𝑒𝑣𝑒𝑙 (𝑌 ) + 1, 𝑙𝑒𝑣𝑒𝑙 (𝑍 )}.

The level of an argument 𝑥 is the level of the SCC to which it
belongs. We denote the level of an argument 𝑥 and the level of an
SCC 𝑆 using the same symbol.

Intuitively speaking, Definition 2.8 arranges trivial and non-
trivial SCCs into layers identifying all non-trivial SCCs that can
be processed simultaneously, provided the SCCs of previous levels
have already been processed. You can think of each non-trivial SCC
as a “block”. We can also group all trivial SCCs of a layer into a
single block which can also be processed following the topological
order.

Definition 2.9 (Stratification of an AF into layers). Let B = ⟨𝐴, 𝑅⟩
be an AF and 𝑠𝑐𝑐𝑠 (B) its set of strongly connected components. A
layer of B is constituted by the collection of trivial and non-trivial
SCCs assigned the same level according to Definition 2.8.

Figure 2 (R) gives the levels of each SCC in A, and also shows
A’s stratification into layers. It should be easy to see that the AF
has been divided into the 8 blocks 𝑠0, 𝑠1, . . . , 𝑠7.

The significance of the stratification is that, provided layers are
processed in topological order, the solutions for each block within
a layer can be computed independently and are conditioned by the
labellings of the predecessors of the block. Given a fixed assignment
of labels to the nodes in previous layers attacking the nodes of
a given block, the trivial SCC block will produce a single label
assignment for the block, whereas a non-trivial SCC will produce
one or more. We will sometimes call these blocks segments of the
AF. Notice that each label assignment for a given block is also a
segment of a complete labelling for the entire AF.

Further details of the process of computation of extensions in
this way are beyond the scope of this paper, but are discussed
in [5, 10]. A new algorithm for computation of extensions taking
advantage of the decomposition of AFs into SCCs was proposed
in [13], and subsequently the algorithm was implemented in the
solver EqArgSolver [12]. [1, 3] made further independent advances
for dynamic argumentation frameworks.

3 CANONICAL ORDERING OF LABELLINGS
In the previous section, we saw that an AF can be decomposed
into an acyclic condensation graph and that we can partition the
components of the condensation graph into layers, which can be
further divided into self-contained independent blocks.

One of the contributions of this paper is to stress that labellings
can benefit from the inherent topological structure of the AF them-
selves because entire segments repeat themselves multiple times
across complete labellings. Understanding how this happens allows
not only for benefits in the computation and representation of large
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labellings, but also paves the way for potential analyses of the re-
lationships between the blocks. In order to do this systematically,
we propose to arrange labellings in a canonical order satisfying the
following conditions.

Definition 3.1 (Canonical ordering of arguments). Let B=⟨𝐴,𝑇 ⟩
be an AF, and 𝑂 = [𝑜1, 𝑜2, . . . , 𝑜𝑛] a topological ordering of the
arguments in 𝐴, such that for all 𝑖 , 𝑜𝑖 = 𝑥 for some 𝑥 ∈ 𝐴, and
𝑜𝑖 = 𝑥 and 𝑜 𝑗 = 𝑥 imply 𝑖 = 𝑗 . Let 𝑂 (𝑥) = 𝑖 , be the unique index in
𝑂 , such that 𝑜𝑖 = 𝑥 .

For all 𝑥,𝑦 ∈ 𝐴:
(C1) 𝑙𝑒𝑣𝑒𝑙 (𝑥) < 𝑙𝑒𝑣𝑒𝑙 (𝑦) implies 𝑂 (𝑥) < 𝑂 (𝑦)
(C2) if 𝑙𝑒𝑣𝑒𝑙 (𝑥) = 𝑙𝑒𝑣𝑒𝑙 (𝑦) and

↠
[𝑥] ≠

↠
[𝑦], then for all 𝑤 ∈

↠
[𝑥],

either𝑂 (𝑤) < 𝑂 (𝑧), for all 𝑧 ∈
↠
[𝑦] or for all 𝑧 ∈

↠
[𝑦],𝑂 (𝑧) <

𝑂 (𝑤), for all𝑤 ∈
↠
[𝑥].

(C3) if 𝑙𝑒𝑣𝑒𝑙 (𝑥) = 𝑙𝑒𝑣𝑒𝑙 (𝑦), 𝑥 belongs to a trivial SCC, and 𝑦 be-
longs to a non-trivial SCC, then 𝑂 (𝑥) < 𝑂 (𝑦)

Notice that Definition 3.1 does not require any specific ordering
between elements of the same SCC, between SCCs in the same
layer, or between elements of a trivial SCC block of the same layer.
(C1) requires the canonical order to respect the topological order.
The motivation for this is that solutions for predecessors are needed
before the label of an argument can be decided, so it makes sense
to present these first. (C2) requires elements of the same block
to be grouped together (so we can take advantage of repetitions
of solution segments). (C3) is not strictly required, but helps to
arrange the solutions in such a way that the segments for the trivial
block arguments are always presented first. (C1)–(C3) allow for
flexibility. For example, in the arrangement of solutions to the AFA
of Figure 1, we can choose to present the elements of block 𝑠0 in any
order, or choose to list the elements of block 𝑠2 before the elements
of block 𝑠1, but we are not allowed to interleave the elements of
different blocks, and the elements of lower levels must be presented
before the elements of higher levels. One potential advantage of
respecting the topological ordering is that we can save space in
applications where not all layers of the AF need to be considered.

Example 3.2. Consider the arguments of the AF of Figure 1
again. The ordering𝑂 = [𝑥,𝑤,𝑦, 𝑧, 𝑎, 𝑏, 𝑘, 𝑙, 𝑐, 𝑑, 𝑒, 𝑓 , 𝑔, ℎ, 𝑖, 𝑗], where
𝑂 (𝑥) = 1,𝑂 (𝑦) = 2, . . . satisfies conditions (C1)–(C3). Notice that
A’s segments are ordered in the sequence [𝑠0, 𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5, 𝑠6, 𝑠7]
according to 𝑂 . Given segment solutions 𝑠𝑙0, 𝑠𝑙1, . . . , 𝑠𝑙7 for each 𝑠𝑖 ,
a complete labelling forA can be obtained by simple concatenation.

As we shall see, if we arrange the labels given to arguments in
pre-defined blocks, wewill notice that within the set of all labellings,
certain sequences of labels repeat themselves (in proportion to the
level in which the block appears within the AF). This means we may
represent a collection of labellings by storing its unique segment
variations only once, as long as we keep track of the combinations
of segment variations making up the original labellings.

Let us illustrate the idea with an example. Table 1 lists all com-
plete labellings of the AF A of Figure 1, using i for in, o for out,
and u for und, and one possible canonical arrangement of the ar-
guments. It should be easy to see the repetitions in the labellings.
Segment 𝑠0 contains one unique solution that is repeated across
all 21 complete labellings. Similarly, there are only three possible

Level 0 1 2 3
Lab/Arg 𝑥 𝑤 𝑦 𝑧 𝑎 𝑏 𝑘 𝑙 𝑐 𝑑 𝑒 𝑓 𝑔 ℎ 𝑖 𝑗

𝑙1 i o i o u u u u u u u u u u u u
𝑙2 i o i o u u u u u u i o u u u o
𝑙3 i o i o u u u u i o i o o i u o
𝑙4 i o i o u u u u i o u u o i u u
𝑙5 i o i o u u u u o i i o i o u o
𝑙6 i o i o u u u u o i u u i o u u
𝑙7 i o i o i o u u u u u u u u u u
𝑙8 i o i o i o u u u u o i u u u u
𝑙9 i o i o i o u u u u i o u u u o
𝑙10 i o i o i o u u u u o i u u o i
𝑙11 i o i o i o u u i o u u o i u u
𝑙12 i o i o i o u u i o o i o i u u
𝑙13 i o i o i o u u i o o i o i o i
𝑙14 i o i o i o u u i o i o o i u o
𝑙15 i o i o i o u u o i u u i o u u
𝑙16 i o i o i o u u o i o i i o u u
𝑙17 i o i o i o u u o i o i i o o i
𝑙18 i o i o i o u u o i i o i o u o
𝑙19 i o i o o i u u u u i o u u u o
𝑙20 i o i o o i u u o i i o i o u o
𝑙21 i o i o o i u u i o i o o i u o
Block 𝑠0 𝑠1 𝑠2 𝑠3 𝑠4 𝑠5 𝑠6 𝑠7

Table 1: All complete labellings of the AF A of Figure 1.

𝑠0 𝑥 𝑤 𝑦 𝑧

𝑠𝑙00 i o i o
𝑠2 𝑘

𝑠𝑙20 u
𝑠3 𝑙

𝑠𝑙30 u

𝑠1 𝑎 𝑏

𝑠𝑙10 u u
𝑠𝑙11 i o
𝑠𝑙12 o i

𝑠4 𝑐 𝑑

𝑠𝑙40 u u
𝑠𝑙41 i o
𝑠𝑙42 o i

𝑠5 𝑒 𝑓

𝑠𝑙50 u u
𝑠𝑙51 i o
𝑠𝑙52 o i

𝑠6 𝑔 ℎ

𝑠𝑙60 u u
𝑠𝑙61 i o
𝑠𝑙62 o i

𝑠7 𝑖 𝑗

𝑠𝑙70 u u
𝑠𝑙70 u o
𝑠𝑙70 o i

Figure 3: Unique segment solution variations for 𝒔0, . . . , 𝒔7.

variations in solutions to segment 𝑠1, and so forth. Incidentally, this
segmentation makes it easier to answer questions about mode of
acceptance. For example, the argument 𝑥 is skeptically accepted,
since its segment contains only one solution, 𝑥 is labelled in in
that solution, and hence all solutions will have the same label for 𝑥 .
We can also easily see that 𝑎 is accepted in the “majority” of solu-
tions, whereas 𝑗 has the lowest level of acceptance of all credulously
accepted arguments (1/7 of the solutions).

In terms of representation, in reality all we need to store is the
information in the tables of Figure 3. We can then represent any
complete labelling by keeping track of the desired segment solution
order. For example, 𝑙21 can be represented as the sequence of seg-
ment labellings [𝑠𝑙00, 𝑠𝑙12, 𝑠𝑙20, 𝑠𝑙30, 𝑠𝑙41, 𝑠𝑙51, 𝑠𝑙62, 𝑠𝑙70]. Despite the
potential benefits in the analyses of the interdependencies between
segment solutions, there is a non-insignificant overhead in keep-
ing track of the sequences themselves. However, large problems
can have millions of labellings, involving a lot of repetitions. For
example, the problem massachusetts_srta_2014-11-13.gml.50 (see
idx 41 in Table 3) has 34307712 unique complete labellings and
benefits greatly from segmented storage. We discuss the relative
costs of various representations in Section 6.
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4 REPRESENTATIONS USING SEQUENCE
CONTAINERS

In this section we consider two alternative representations using
sequences of containers. The first one, which we use as the base-
line, is a continuous representation in which for an AF ⟨𝐴,𝑇 ⟩, we
represent each labelling with a sequence container with 𝑛 = |𝐴|
cells, each large enough to hold an individual label, and a further
container to hold all labelling containers.

Let 𝑐𝑣 be the number of bytes required to store the infrastructure
of a sequence container in the local computer architecture and 𝑐𝑙
the number of bytes required to store one label.

In our experiments, we used the vector C++ container in a 64-bit
testing machine. In this case, 𝑐𝑣 = 24 (16 bytes for two pointers
to the beginning and end of the vector, plus 8 bytes to store the
capacity allocated to the vector), and 𝑐𝑙 = 1 byte (unsigned char,
the smallest native data type we can use to represent a label).1

Figure 4 illustrates how this representation is used.

𝑙2

.

.

.

𝑙20

𝑙21

𝑙1

Main container

Labelling containers

i o i o u u u u u · · ·

i o i o u u u u u · · ·

i o i o o i u u o · · ·

i o i o o i u u i · · ·

Figure 4: Using continuous sequence containers.

Memory requirement of the representation using
continuous sequence containers
Assuming that each labelling has 𝑛 arguments, and each label needs
𝑐𝑙 bytes of memory, a solution will require the following amount
of bytes:

𝑐𝑠𝑜𝑙 (𝑛) = 𝑐𝑣 + 𝑛 ∗ 𝑐𝑙 (1)
Let 𝑡 be number of unique labellings. The cost in bytes to represent
𝑡 labellings of size 𝑛 will be

𝑐𝑎𝑙𝑙𝑠𝑜𝑙𝑠 (𝑡, 𝑛) = 𝑐𝑣 + (𝑡 ∗ 𝑐𝑠𝑜𝑙 (𝑛))
= 𝑐𝑣 + 𝑡 ∗ (𝑐𝑣 + 𝑛 ∗ 𝑐𝑙 )

(2)
Example 4.1 shows the calculation for graph 19 (BA_60_80_1),

which was part of the “A/3” series in ICCMA’17. This graph has
𝑛 = 61 arguments and 𝑡 = 2480058 unique complete labellings.

Example 4.1 (Graph BA_60_80_1). Each labelling needs to store
one label (= 1 byte) per argument. As each labelling is stored as a
vector, the cost per labelling is 𝑐𝑠𝑜𝑙 (61) = 24 + 61 ∗ 1 = 85. Now to
store all 𝑡 = 2480058 labellings, we need

𝑐𝑎𝑙𝑙𝑠𝑜𝑙𝑠 (2480058, 61) = 24 + (2480058 ∗ 85) = 210804954 bytes.

The continuous sequence representation potentially wastes a lot
of space by storing multiple times segments that repeat themselves
across labellings. To avoid this, we can store only the unique seg-
ment solutions, and then re-construct the labellings by pointing to
the right vector for the right segment in the right order.2

1Although we can actually pack 4 labels in one byte, we cannot address it directly,
unless we use a special technique. This is explored in Section 5.
2The solver EqArgSolver basically uses this representation, except that smart pointers
are used for some of the book-keeping. Although smart points are access-efficient,
their use can be costly, because of their intrinsic memory requirements.

Memory requirement of the representation using
segmented sequence containers
To start here, we need to see that each segment is a “mini-AF”,
i.e., the labellings for a segment 𝑠𝑖 will need as many bytes as the
labellings of an AF with as many arguments as the segment, so
we can use (1) and (2) again, where 𝑛 is replaced by |𝐴(𝑠𝑖 ) | — the
number of arguments in the segment 𝑠𝑖 .

Now let 𝑢 (𝑠𝑖 ) be the number of unique labellings of the seg-
ment 𝑠𝑖 , then all such labellings can be stored in a vector using
𝑐𝑜𝑛𝑒𝑠𝑒𝑔 (𝑠𝑖 ) = 𝑐𝑎𝑙𝑙𝑠𝑜𝑙𝑠 (𝑢 (𝑠𝑖 ), |𝑠𝑖 |) bytes. So for example, for 𝑠4, we
need a vector with three vectors, one for each solution 𝑠𝑙40, 𝑠𝑙41
and 𝑠𝑙42 to the segment.

Let 𝑠𝑒𝑔𝑠 be the set of all segments. To store all segments 𝑠𝑖 ∈ 𝑠𝑒𝑔𝑠 ,
we will need a vector with one position for each segment, where
each position stores the vector of vectors above. When using this
to “assemble” a complete labelling, we need to address the correct
vector for the segment and solution. Equation (3) below gives the
cost of storing all segment solutions:

𝑠𝑐𝑎𝑙𝑙𝑠𝑒𝑔𝑠 = 𝑐𝑣 +
∑
𝑠𝑖 ∈𝑠𝑒𝑔𝑠 𝑐𝑜𝑛𝑒𝑠𝑒𝑔 (𝑠𝑖 ) (3)

However, we still need a way to “assemble” the solutions to the
AF as a whole. Each solution can be re-constructed via the sequence
of indices indicating the appropriate solution for each segment. This
can be represented as a vector of an appropriate unsigned integer
type, large enough to address all segment solutions.

So our next problem is to determine the maximum number of
solutions for any given segment. Out of the solutions we analysed
in ICCMA’17,3 the largest number of unique solutions of any single
segment was 826686, again in problem 19 (BA_60_80_1) chosen as
our running example for this reason. This means that we need
at least 24 bits (3 bytes) to address a particular solution for each
segment. In C++ the shortest integer containing at least 24 bits is
the 4-byte long unsigned int (32 bits).

Our conclusion is that each solution using a segmented repre-
sentation can be safely represented as a vector of elements of the
type unsigned int. For a solution with 𝑛 segments, this will cost
𝑐𝑜𝑛𝑒𝑠𝑒𝑔𝑠𝑜𝑙 (𝑛) = 𝑐𝑣 + 𝑛 ∗ 4 bytes. In order to store all solutions, we
will need another vector containing all such vectors, giving the
following cost of assembling all solutions:

𝑐𝑎𝑙𝑙𝑠𝑒𝑔𝑠𝑜𝑙𝑠 = 𝑐𝑣 + (𝑡 ∗ 𝑐𝑜𝑛𝑒𝑠𝑒𝑔𝑠𝑜𝑙 (𝑛)) (4)

The total cost will be the sum of (3) and (4): 𝑐𝑎𝑙𝑙𝑠𝑒𝑔𝑠𝑜𝑙𝑠 + 𝑠𝑐𝑎𝑙𝑙𝑠𝑒𝑔𝑠 .

Example 4.2 (Graph BA_60_80_1). The graph can be partitioned
into five segments whose details are given in Table 2. “uls” stands
for the number of unique labellings for a segment.

Now contrast Example 4.2 with Example 4.1. The segmented
sequence representation requires only 79.61% of the space require-
ment of the continuous sequence representation for this graph.

5 USING INTEGERS OF ARBITRARY
PRECISION

In Section 4, we saw that the segmented sequence representation is a
lot more efficient in a number of cases (especially when the number
of unique segment solutions is relatively small). The crucial factor
3The hard instances identified in [14].
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seg id len uls 𝑐𝑜𝑛𝑒𝑠𝑒𝑔 (𝑖𝑑 )
0 7 1 24 + 1 ∗ (24 + 7 ∗ 1) = 55
1 4 3 24 + 3 ∗ (24 + 4 ∗ 1) = 108
2 1 2 24 + 2 ∗ (24 + 1 ∗ 1) = 74
3 47 826686 24 + 826686 ∗ (24 + 47 ∗ 1) = 58694730
4 2 2 24 + 2 ∗ (24 + 2 ∗ 1) = 76

Total 58695043
(A) 𝑐𝑎𝑙𝑙𝑠𝑒𝑔𝑠𝑜𝑙𝑠 24 + 58695043 = 58695067

𝑐𝑜𝑛𝑒𝑠𝑒𝑔𝑠𝑜𝑙𝑠 24 + (5 ∗ 4) = 44
(B) 𝑐𝑎𝑙𝑙𝑠𝑒𝑔𝑠𝑜𝑙𝑠 24 + 2480058 ∗ 44 = 109122576
Total (A+B) 167817643
Table 2: Segmented sequence representation of graph 19.

with the representation is how to efficiently address the solutions
for the segments. In some cases, we saw that the addressing requires
at least 24 bits, but in practice 32 bits are needed because of the
limitations in the size of the basic data types at our disposal. The
addressing issue is potentially problematic because we may end up
spending more space storing the addresses of the segment solutions
than the whole AF solutions themselves.4

Tackling both the storage of the addresses and the storage of the
unique labellings themselves can be achieved if we use a represen-
tation in which the addresses can be embedded in the data structure
itself. The basic idea is to represent labellings as long sequences
of bits, packing as many labels as possible into the sequence. In
“traditional” AFs, we only have the labels in, out and und, and
therefore we only need 2 bits per label. Therefore we can pack 4
labels into a single byte, potentially saving of up to 75% of space.
We say potentially because we need some extra control information
to manage the allocation of space for the long sequences of bits.

Fortunately, there are ready-made solutions to do all the man-
agement efficiently and we chose as a case study, GNU’s Multiple
Precision Arithmetic Library (GMP, https://gmplib.org). For space
reasons, we cannot go into the details of its implementation, but
for the purposes of the presentation below, it suffices to know that
in GMP integers of arbitrary precision are stored as sequences of
so-called limbs, which are usually the length of a word in the un-
derlying system architecture. In a 64-bit machine, a limb is 64 bits
(8 bytes) long. This means that memory is allocated in multiples
of 8 bytes and a little overhead is also needed to keep track of the
allocation of limbs. For all purposes, we can think of an integer as
an aribitrarily long sequence of bits, which we can access indepen-
dently and hence use as a proxy for labellings, employing two bits
per argument. More details about these are discussed next.

Memory cost of the integer representation
As we mentioned, each solution can be encoded as an integer of
arbitrary precision and to represent |𝐴| labels, we need 2 ∗ |𝐴| bits.
We can record the label for a particular argument by setting the
appropriate bits in the (long) integer and retrieve the labels of indi-
vidual argument efficiently by performing bitwise “and” operations
with an appropriate mask. The details are beyond the scope of this

4In our analysis this only happened in 19% of the cases and in all but one of the cases
the effect was not significant. Table 3 has full details.

paper, but the idea was first demonstrated in [14]. In our test ma-
chine, we found that each integer object takes 16 bytes, plus the
limb allocation, which of course depends on the size of the solution.

With all this in mind, each labelling for a graph with𝑛 arguments
can be stored as an arbitrary precision integer object requiring the
following number of bytes: 𝑐𝑚𝑝𝑧𝑠𝑜𝑙 (𝑛) = 16 + ⌈(𝑛 ∗ 2)/64⌉ ∗ 8.
We can then use a vector to store all such objects, and define the
total cost to represent 𝑡 labellings of an AF with 𝑛 arguments as
𝑐𝑎𝑙𝑙𝑚𝑝𝑧𝑠𝑜𝑙𝑠 (𝑡, 𝑛) = 24 + (𝑡 ∗ 𝑐𝑚𝑝𝑧𝑠𝑜𝑙 (𝑛)).

Example 5.1 (Graph BA_60_80_1). Recall that this graph has
2480058 unique labellings and 𝑛 = 61 arguments. Each labelling
will need at least 122 bits, i.e., two 8-byte segments. The cost per
labelling is 𝑐𝑚𝑝𝑧𝑠𝑜𝑙 (61) = 16 + ⌈(2 ∗ 61)/64⌉ ∗ 8 = 32 bytes. Now to
store all 𝑡 = 2480058 labellings, we need 𝑐𝑎𝑙𝑙𝑚𝑝𝑧𝑠𝑜𝑙𝑠 (61, 2480058) =
24 + (2480058 ∗ 32) = 79361880 bytes.

Now contrast Examples 4.1, 4.2 and 5.1. The segmented sequence
representation requires 79.61% of the space requirement of the
continuous sequence representation for this graph, whereas the
integer representation requires only 37.65% of this space.

6 EXPERIMENTAL RESULTS
For comparative evaluation we used the 42 AFs identified in [14],
which are amongst the most memory intensive problems in all
ICCMA instances. For each graph, we generated all complete la-
bellings and verified the results from at least two solvers. We then
decomposed each graph into SCCs, grouped the SCCs into the
segments and canonical order described in Section 3, counted the
number of unique solutions for each segment, and computed the
memory requirements of each representation. A summary of the re-
sults can be found in Table 3. The contents of the first four columns
are self-descriptive. The column “max” gives the maximum num-
ber of unique solution in any segment of the graph; the columns
“con”, “seg” and “int” give the memory requirements (in MBs) of
each of the continuous, segmented and integer representations,
respectively. The columns “seg/con” and “int/con” give the ratio
between the segmented and integer representations, respectively,
with respect to the continuous one. Here a value below 1 indicates
saving.

The segmented representationwas strictlymore economical than
the continuous one in 32/42 problems (76%) and required roughly
the same in two other problems. In some of the 32 cases, it was
signficantly better than the continuous representation, reducing the
space requirements by as much as 47.84% (problem 39, BA_60_90_4).
In problem 41 (massachusetts_srta_2014-11-13.gml.50), with the
largest number of complete labellings (34307712), the segmented
representation saved over 1.5 billion bytes (> 1439MB). Taking into
account that the continuous representation needed nearly 4000MB,
the difference may be significant enough to cause difficulties to
some solvers due to memory limitations or because of the time it
takes to manage the memory itself.

In problem 6 (sembuster_60), the segmented representation us-
age was over twice as high as the continuous one. The structure of
graphs in the “Sembuster” domain contains a large number of layers
with very small SCCs and hence it is problematic for the segmented
version which needs to address all segments to compose each la-
belling. In any case, graphs in this domain can only be solved for a

https://gmplib.org
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small number of arguments, because of the combinatorial nature
of the solutions they generate (see [15] for a full discussion).

The memory requirements of the integer representation were
uniformly better than the other two representations’, ranging from
25% to 51% of the requirements of the continuous representation.
Although we did not implement this representation fully, we did
implement dummy containers, allocated space to represent solu-
tions in all graphs, and recorded the actual memory usage of those
containers in all problems. The results are given in Table 3. Further
work is required to measure the performance of the representation
in terms of reading and setting of labels, but these initial results are
very promising, given that the GMP library has been used before to
efficiently compare large solutions of enumeration problems [14].

The 2019 version of the solver EqArgSolver [12] used a rudimen-
tary implementation of the segmented representation presented in
this paper and the solver was adapted to report on the segments and
their number of unique solutions. In the complete extensions enu-
meration track of ICCMA’19 (http://argumentationcompetition.org/
2019/results/results-main.html), the solver `-toksia [11] came out
in first place, and the solvers pyglaf [4] and EqArgSolver came up in
third and fifth places, respectively. During our analysis, we bench-
marked the performance of the solvers in the 42 graphs, giving each
of them 30 mins to complete each enumeration of the solutions.
EqArgSolver managed to compute all solutions correctly, taking
no longer than 101 secs in any graph. pyglaf took considerably
longer in most cases, being faster than EqArgSolver only in two in-
stances. Perhaps somewhat surprisingly, `-toksia struggled, being
unable to complete 25 instances. In the case of massachusetts_-
srta_2014-11-13.gml.50 (the problem with the largest number of
solutions), neither pyglaf nor `-toksia managed to complete in
under 30 mins. The execution times of all solvers in the 42 problems
can be found in Table 3.

These results show that performance results can vary greatly,
depending on how much time a solver is given to solve a problem
and the types of graphs given to it. We speculate that memory
management may be causing difficulties to pyglaf and `-toksia in
problems with very large solutions.

7 CONCLUSIONS AND FUTUREWORK
In this paper we proposed a canonical ordering of arguments of
AFs, which can be used not only in the optimisation of the rep-
resentation of argument labellings but also in further analyses of
properties of the labellings themselves and towards a standard pre-
sentation of extensions. Using our canonical ordering, we presented
two novel internal representations of labellings. We compared the
memory requirements of the new representations with a baseline
representation in 42 hard enumeration problems from ICCMA’17,
and they were found to offer substantial advantages in problems
generating large sets of solutions.

We found that for a large proportion of the graphs analysed (76%),
the segmented representation offered savings of up to 47.84% in
comparison with the baseline approach. Finally, the representation
using integers of arbitrary precision proved the most economical
with savings of up to 75% in memory requirements. Taking into
account that some problems will inevitably generate large solu-
tions, the analysis shows that our proposals go some way towards
supporting the construction of more resilient solvers.

The segmented representation of labellings also opens interest-
ing directions for the investigation of hidden dependencies between
AF components and can be used in the solution of some well known
problems in argumentation, such as in the decision problems of
argument acceptance. Here skeptical and credulous considerations
can be performed more directly – and sometimes more efficiently –
by simply analysing the unique segment variations.

Further optimisations to the segmented sequence representa-
tion are possible. Firstly, instead of storing segment solutions as
independent vectors, we can simply store them in a single con-
tinuous vector and then compose a complete labelling by making
appropriate references to a specific offset within the solutions of
the segment. Secondly, we can of course also pack the segment
solution representation using the integer representation, reducing
the memory requirements even further.

Finally, we found some interesting performance variations in the
solvers used in our benchmarks: the solver EqArgSolver, which does
not rely on a translation of the AF into a problem to be solved by
another solver; and the solvers pyglaf (circumscription+GLUCOSE)
and `-toksia (CryptoMiniSat). The use of a “pure” solver allowed
us to fine-tune all details of the implementation, including memory
management using a variation of one of the newly proposed repre-
sentations. In our analysis, EqArgSolver outperformed both pyglaf

and `-toksia significantly in 40/42 of the problems investigated.
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idx graph name # sols # segs max con seg int seg/con int/con EqArg pyglaf `-toksia
0 admbuster_2000000 1 1 1 1.91 1.91 0.48 1.0000 0.2500 18.11 53.95 2.53
1 BA_160_20_3 91854 30 12 16.21 12.62 5.61 0.7786 0.3459 0.93 1.12 20.45
2 ferry2.pfile-L2-C3-01.pddl.1.cnf 151146 48 36 30.85 31.14 9.23 1.0095 0.2991 3.15 2.23 32.59
3 BA_80_50_1 406782 14 54 40.73 31.04 15.52 0.7620 0.3810 1.51 7.31 237.87
4 kanawha-valley-regional-transportation-
authority-krt_20150126_1340.gml.20

373248 19 12 45.56 35.6 17.09 0.7813 0.3750 1.09 6.96 155.01

5 BA_60_60_3 927261 13 126 75.17 67.21 28.30 0.8942 0.3765 2.60 30.75 1253.92
6 sembuster_60 1048596 40 3 84.00 184.01 32.00 2.1905 0.3810 14.01 130.41 TO
7 BA_160_30_2 505197 29 9 89.13 67.45 30.83 0.7568 0.3459 3.26 13.52 438.11
8 BA_140_30_4 570807 25 8 89.82 67.5 30.48 0.7515 0.3394 3.69 16.07 466.51
9 ferry2.pfile-L2-C1-04.pddl.4.cnf 540207 58 32 102.52 131.89 32.97 1.2865 0.3216 20.13 15.04 171.46
10 thecomet_20131025_1906.gml.20 612360 32 6 112.13 88.77 37.38 0.7917 0.3333 4.41 17.25 621.95
11 go-taps_20150524_1019.gml.20 708588 32 12 125.02 102.72 43.25 0.8216 0.3459 8.64 21.03 753.54
12 bw2.pfile-3-02.pddl.2.cnf 743510 38 45 131.18 124.8 45.38 0.9514 0.3459 12.61 35.21 932.00
13 bw2.pfile-3-08.pddl.2.cnf 743510 38 45 131.18 124.8 45.38 0.9514 0.3459 12.57 29.03 994.47
14 commute.org_20140813_1738.gml.20 991440 22 18 132.37 105.9 45.38 0.8000 0.3429 4.25 46.44 1508.26
15 BA_100_40_5 1220346 22 36 145.48 130.35 55.86 0.8960 0.3840 6.95 54.91 TO
16 BA_120_50_4 1062882 16 243 146.98 89.22 48.65 0.6070 0.3310 3.89 45.01 TO
17 BA_140_30_3 1062882 29 3 167.25 141.91 56.76 0.8485 0.3394 5.72 42.00 TO
18 irvine-shuttle_20091229_1547.gml.80 3000618 12 23 191.73 206.04 91.57 1.0746 0.4776 15.76 468.36 TO
19 BA_60_80_1 2480058 5 826686 201.04 160.04 75.69 0.7961 0.3765 11.87 209.15 TO
20 south-metro-area-regional-

transit_20151216_1704.gml.20
1071630 25 378 205.42 126.75 65.41 0.6170 0.3184 2.90 54.21 1725.85

21 BA_180_30_4 1062882 22 18 207.80 113.53 64.87 0.5464 0.3122 2.48 45.95 TO
22 BA_180_30_5 1062882 30 10 207.80 145.97 64.87 0.7025 0.3122 7.72 46.25 TO
23 el-dorado-transit_20151217_1024.gml.20 1497852 20 138 232.84 148.57 79.99 0.6381 0.3436 13.85 170.76 TO
24 yamhill-or-us.gml.20 1358127 22 324 234.43 145.09 72.53 0.6189 0.3094 23.22 61.96 TO
25 ferry2.pfile-L3-C1-07.pddl.1.cnf 1414107 46 20 253.54 280.51 86.31 1.1064 0.3404 32.99 101.93 TO
26 fresno-county-rural-transit-

agency_20151216_1934.gml.50
2716254 20 26 261.63 269.41 103.62 1.0297 0.3960 13.98 353.47 TO

27 ferry2.pfile-L2-C1-04.pddl.6.cnf 1192716 39 32 276.40 204.75 81.90 0.7408 0.2963 22.45 50.67 1296.97
28 ferry2.pfile-L2-C1-09.pddl.6.cnf 1192716 39 32 276.40 204.75 81.90 0.7408 0.2963 22.67 52.73 1254.30
29 BA_80_70_5 2918202 11 98 292.22 189.25 111.32 0.6476 0.3810 11.02 251.53 TO
30 BA_180_30_2 1594323 34 3 311.70 243.28 97.31 0.7805 0.3122 10.85 97.53 TO
31 massachusetts_nrta_2014-12-03.gml.20 2125764 27 162 312.20 267.61 113.53 0.8572 0.3636 14.68 156.60 TO
32 ferry2.pfile-L2-C1-03.pddl.1.cnf 2268636 36 64 318.04 363.48 103.85 1.1429 0.3265 47.71 183.31 TO
33 ferry2.pfile-L2-C1-05.pddl.1.cnf 2268636 36 64 318.04 363.48 103.85 1.1429 0.3265 47.42 186.93 TO
34 ferry2.pfile-L2-C4-05.pddl.1.cnf 1255338 57 68 329.23 301.7 95.77 0.9164 0.2909 27.18 68.48 TO
35 carroll-transit-

system_20151202_1957.gml.50
5004804 8 129250 381.84 274.81 152.73 0.7197 0.4000 22.57 912.90 TO

36 aircoach_20130716_1324.gml.50 4587840 17 141 393.78 402.54 175.01 1.0222 0.4444 19.55 535.18 TO
37 metro-bilbao_20110407_1059.gml.80 8111740 5 1279 487.37 340.43 247.55 0.6985 0.5079 31.02 1535.28 TO
38 anaheim-resort-

transportation_20151217_1213.gml.50
5349240 14 201978 535.65 421.98 204.06 0.7878 0.3810 52.37 1015.93 TO

39 BA_60_90_4 7788996 5 38088 631.39 329.31 237.70 0.5216 0.3765 7.42 1599.96 TO
40 bw3.pfile-3-04.pddl.2.cnf 2558258 69 148 1254.03 731.94 351.32 0.5837 0.2802 72.71 556.14 TO
41 massachusetts_srta_2014-11-13.gml.50 34307712 13 2256 3926.21 2486.74 1308.74 0.6334 0.3333 100.81 TO TO

Table 3: Structural and solution information; memory usage (MBs) using continuous sequence, segmented sequence, and integer
representations; and execution time (secs) for solvers EqArgSolver, `-toksia, and pyglaf’19. ‘TO’ indicates timeout at 1800 secs.
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