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Abstract.
Knowledge Graphs are repositories of information that gather data from a multitude of domains and sources in the form

of semantic triples, serving as a source of structured data for various crucial applications in the modern web landscape, from
Wikipedia infoboxes to search engines. Such graphs mainly serve as secondary sources of information and depend on well-
documented and verifiable provenance to ensure their trustworthiness and usability. However, their ability to systematically assess
and assure the quality of this provenance, most crucially whether it properly supports the graph’s information, relies mainly on
manual processes that do not scale with size. ProVe aims at remedying this, consisting of a pipelined approach that automatically
verifies whether a Knowledge Graph triple is supported by text extracted from its documented provenance. ProVe is intended
to assist information curators and consists of four main steps involving rule-based methods and machine learning models: text
extraction, triple verbalisation, sentence selection, and claim verification. ProVe is evaluated on a Wikidata dataset, achieving
promising results overall and excellent performance on the binary classification task of detecting support from provenance, with
87.5% accuracy and 82.9% F1-macro on text-rich sources. The evaluation data and scripts used in this paper are available in
GitHub and Figshare.

Keywords: Fact Verification, Data Verbalisation, Knowledge Graphs

1. Introduction

A Knowledge Graph (KG) is a large network of interconnected entities, representing their semantic types, prop-
erties, and relationships to one another [1–3]. The information stored in most KGs can be seen as a set of semantic
triples, formed by a subject, a predicate, and an object [3, 4]. They represent both concrete and abstract entities
internally as labelled and uniquely identifiable entities, such as The Moon or Happiness, and can amass information
from a multitude of domains and sources by connecting such entities amongst themselves or to literals through
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relationships, coded via uniquely identified predicates [2, 4, 5]. KGs serve as sources of both human and machine-
readable semantically structured data for various crucial applications in the modern web landscape. This includes
Wikipedia infoboxes, search engine results, voice-activated assistants, and information gathering projects [5, 6].

Developed and maintained by ontology experts, data curators, and even anonymous volunteers, KGs have mas-
sively grown in size and adoption in the last decade [2, 3, 7], including as secondary sources of information [8].
This means not storing new information, but taking it from authoritative and reliable sources which are explicitly
referenced. As such, KGs depend on well-documented and verifiable provenance to ensure they are regarded as
trustworthy and usable [9].

Processes to assess and assure the quality of information provenance are thus crucial to KGs, especially measuring
and maintaining verifiability, i.e. the degree to which consumers of KG triples can attest these are truly supported by
their sources [9–11]. However, such processes are currently performed mostly manually [12], with little automation
options, and do not scale with size. Manually ensuring high verifiability on vital KGs such as Wikidata and DBpedia
is prohibitive due to their sheer size [10]. On Wikidata, for instance, the creation of a provenance verification frame-
work is highly desired by its product management, contributors, and users, and is actively tracked in its Phabricator
page.1 Wikidata recognizes their editors do not have the time, resources, or motivation to manually check the over
1 billion claims with documented provenance [13] that exist in the platform.

ProVe (Provenance Verification) is proposed to assist data curators and editors in handling the upkeep of KG
verifiability. It consists of an automated approach that leverages state of the art Natural Language Processing (NLP)
models, public datasets on data verbalisation and fact verification, as well as rule-based methods. ProVe consists of
a pipeline that aims at automatically verifying whether a KG triple is supported by a web page that is documented
as its provenance. ProVe first extracts text passages from the triple’s reference. Then, it verbalises the KG triple and
ranks the extracted passages according to their relevance to the triple. The most relevant passages have their stances
towards the KG triple determined (i.e. supporting, refuting, neither) and finally ProVe estimates whether the whole
reference supports the triple.

This task of KG provenance verification is a specific application of Automated Fact Checking (AFC). AFC is a
currently well-explored topic of research with several published papers, surveys, and datasets [14–26]. It is generally
defined as the verification of a natural language claim by collecting and reasoning over evidence extracted from text
documents or structured data sources. Both the verification verdict and the collected evidence are its main outputs.
We define AFC on KGs as AFC where verified claims are KG triples. While AFC in general, and also AFC on KGs,
mostly take a claim and a searchable evidence base as inputs [27–31], KG provenance verification is further defined
by us as AFC on KGs where the evidence source is the triple’s documented textual provenance.

Approaches tackling AFC on KGs through textual evidence are very few. The only works of note in a similar
direction, as far we know, are DeFacto [27, 32] and its successors FactCheck [29] and HybridFC [31]. Different
to ProVe, however, they all rely on a searchable document base instead of a given reference and judge triples on a
true-false spectrum instead of verifiability. ProVe is also amongst the first approaches to tackle AFC on KG triples
with large pre-trained Language Models (LMs), which can be expanded to work in languages other than English
and can benefit from Active Learning scenarios.

ProVe is evaluated on an annotated dataset of Wikidata triples and their references, combining multiple types
of properties and web domains. ProVe achieves promising results overall (79.4% accuracy, 57.4% F1-macro, 0.753
AUC) on classifying references as either supporting their triples or not, with an excellent performance on explicit and
naturally written references (87.5% accuracy, 82.9% F1-macro, 0.908 AUC). Additionally, ProVe assesses passage
relevance with a strong positive correlation (0.5058 Pearson’s r) to human judgements.

In summary, this paper’s main contributions are:

1. A novel pipelined approach to evidence-based Automated Provenance Verification on KGs based on large
LMs. This is our main contribution, as the usage of LMs to tackle AFC on KGs as provenance verification, as
well as fine-tuning with adjacent datasets and tasks, is novel despite relying on existing models.

2. A benchmarking dataset of Wikidata triples and references for AFC on KGs, covering a variety of information
domains as well as a balanced sample of diverse web domains.

1https://phabricator.wikimedia.org/T90881

https://phabricator.wikimedia.org/T90881
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3. Novel crowdsourcing task designs that facilitate repeatable, quick, and large-scale collection of human anno-
tations on passage relevance and textual entailment at good agreement levels.

These contributions directly aid KG curators, editors, and researchers in improving KG provenance. Properly
deployed, ProVe can do so in multiple ways. Firstly, by assisting in the detection of verifiability issues in existing
references, bringing them to the attention of humans. Secondly, given a triple and its reference, it can promote
re-usability of the reference by verifying it against neighbouring triples. Finally, given a new KG triple entered
by editors or suggested by KG completion processes, it can analyse and suggest references. In this paper, ProVe’s
applicability to the first use case is tested, with the remaining two tackled in future work.

The remainder of this paper is structured as follows. Section 2 explores related work on KG data quality, mainly
verifiability, as well as related approaches to AFC. Section 3 presents ProVe’s formulation and covers each of its
modules in detail. Section 4 presents an evaluation dataset consisting of triple-reference pairs, including its gen-
eration and its annotation. Section 5 details the results of ProVe’s evaluation. Finally, Section 6 delivers discus-
sions around this work and final conclusions. All code and data used in this paper are available on Figshare2 and
GitHub.3,4

2. Related Work

ProVe attempts to solve the task of AFC on KGs, more specifically KG provenance verification, with the purpose
of assisting data curators in improving the verifiability of KGs. Thus, to understand how ProVe approaches this task,
it is important to first understand how the data quality dimension of verifiability is currently defined and measured
in KGs. We will then explore how state of the art approaches to AFC in general and AFC on KGs tackle these tasks
and how ProVe learns or differs from them.

2.1. Verifiability in KGs

In order to properly evaluate the degree to which ProVe adequately predicts verifiability, this dimension first needs
to be well defined and a strategy needs to be established to measure it given an evaluation dataset. Verifiability in the
context of KGs, whose information is mainly secondary, is defined as the degree to which consumers of KG triples
can attest these are truly supported by their sources [9]. It is an essential aspect of trustworthiness [4, 9, 33], yet is
amongst the least explored quality dimensions [9, 33], with most measures carried superficially, unlike correctness
or consistency [33–37].

For instance, Farber et al. [4] measure verifiability only by considering whether any provenance is provided at all.
Flouris et al. [38] look deeper into sources’ contents, but only verify specific and handcrafted irrationalities, such
as a city being founded before it had citizens. Algorithmic indicators are not suited to directly measure verifiability,
as sources are varied and natural language understanding is needed. As such, recent works [10, 13] measure KG
verifiability through crowdsourced manual verification, giving crowdworkers direct access to triples and references.
Crowdsourcing allows for more subjective and nuanced metrics to be implemented, as well as for natural text
comprehension [39, 40].

Thus, this paper employs crowdsourcing in order to measure verifiability metrics of individual triple-reference
pairs. By comparing a pair’s metrics with ProVe’s outputs given said pair as input, ProVe and its components can
be evaluated. Like similar crowdsourcing studies [10, 13], multiple quality assurance techniques are implemented
to ensure collected annotations are trustworthy [41]. To the best of our knowledge, this is the first work to use
crowdsourcing as a tool to measure the relevance and stance of references in regard to KG triples at levels varying
from whole references to individual text passages.

2https://figshare.com/s/df0ec1c233ebd50817f4
3https://github.com/gabrielmaia7/RSP
4https://github.com/gabrielmaia7/ClaimVerificationHIT

https://figshare.com/s/df0ec1c233ebd50817f4
https://github.com/gabrielmaia7/RSP
https://github.com/gabrielmaia7/ClaimVerificationHIT
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2.2. Automated Fact Checking on Knowledge Graphs

2.2.1. AFC in General
AFC is a topic of several works of research, datasets, and surveys [14–26]. AFC is commonly defined in the NLP

domain as a broader category of tasks and subtasks [14–16] whose goal is to, given a claim, verify its veracity or
support by automatically collecting and reasoning over pieces of evidence. Such claims are often textual, but can
also be subject-predicate-object triples [14, 16] while evidence is extracted from the searchable document or data
corpora, such as collections of web pages or KGs. The collected evidence constitutes AFC’s output alongside the
claim’s verdict [14–16]. While a detailed exploration of individual AFC state of the art approaches is out of this
paper’s scope, it is crucial to define their general framework in order to properly cover ProVe’s architecture.

A general framework for AFC has been identified by recent surveys [15, 16], and can be seen in Figure 1. Zeng et
al. [15] define it as a multi-step process where each step can be tackled as a subtask. Firstly, a claim detection step
identifies which claims need to be verified. Based on such claims, a document retrieval step gathers documents that
might contain information relevant to verifying the claim. A sentence selection step (also referred to as evidence
selection) then identifies and extracts from retrieved documents a set of few individual text passages that are deemed
the most relevant. Such passages will serve as evidence. In the case of KGs as evidence sources, paths or embeddings
are retrieved instead. Based on this evidence, a claim verification step provides the final verdict. Guo et al. [16] add
that a final justification production step is crucial for explainability. Given the framework’s nature, it is no wonder
pipelined approaches are extremely popular and compose the current state of the art.

Claim 
Detection

Document 
Retrieval

Claim Evidence
Selection

Claim
Verification

Statements Final Verdict

Document 
Corpora

Relevant 
Evidence

Justification 
Production

Justification

Fig. 1. Overview of a general AFC pipeline. White diamond blocks are documents and objects, and grey square blocks are AFC subtasks. Specific
formulations and implementation of course might differ.

2.2.2. AFC on KGs
AFC mostly deals with text, both as claims to be verified and as evidence documents, due to recent advances

in this direction being greatly facilitated by textual resources like the FEVER shared task [24] and its associated
large-scale benchmark FEVER dataset [25]. Still, some works in AFC take semantic triples as verifiable claims,
either from KGs [42, 43] or by extracting them from text. Some also utilise KGs as reasoning structures from where
to draw evidence [16, 44–47]. For instance, Thorne and Vlachos [45] directly map claims found in text to triples in
a KG to verify numerical values. Both Ciampaglia et al. [46] and Shiralkar et al. [47] use entity paths in DBpedia
to verify triples extracted from text. Other approaches based on KG embeddings associate the likelihood of a claim
being true to that of it belonging as a new triple to a KG [48, 49].

KGCleaner [28] uses string matching and manual mappings to retrieve sentences relevant to a KG triple from
a document, using embeddings and handcrafted features to predict the triple’s credibility. Leopard [30] validates
KG triples for three specific organisation properties, using specifically designed extractions from HTML content.
Both approaches require manual work, cover a limited amount of predicates, and do not provide human-readable
evidence.

DeFacto [27] and its successors FactCheck [29] and HybridFC [31] represent the current lineage of state of the art
systems on AFC on KG given a wide searchable textual evidence base. They verbalise KG triples using text patterns
and use it to retrieve web pages with related content. HybridFC converts retrieved evidence sentences into numeric
vectors using a sentence embedding model. It additionally relies on graph embeddings and paths. These approaches
score sentences based on relevance to the claim and use a supervised classifier to classify the entire web page as
evidence. Despite their good performance, the first two approaches depend on string matching, which might miss
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verbalisations that are more nuanced and also entail considerable overhead for unseen predicates. Additionally, all
three depend on large searchable document bases from where to retrieve evidence and rely on training on the KG
predicates the user wants them to verify. ProVe, on the other hand, covers any non-ontological predicate by using
pre-trained LMs that leverage context and meaning to infer verbalisations. We define ontological predicates as those
whose meaning serves to structure or describe the ontology itself, such as subclass of and main category of.

Due to its specific application scenario, approaches tackling AFC on KGs differ from the general AFC frame-
work [15, 16] seen in Figure 1. A claim detection step is not deemed necessary, as triples are trivial to extract and
it is commonly assumed they all need verifying. Alternatively, one can easily select only triples with particular
predicates or properties. The existence of a document retrieval step depends on whether explicit provenance exists
or needs to be searched from a repository, with the former scenario dismissing the need for the step. This is the case
for ProVe, but not for the DeFacto line, which searches for web documents.

Additionally, KG triples are often not understood by the components’ main labels alone. Descriptions, alterna-
tive labels, editor conventions, and discussion boards help define their proper usage and interpretation, rendering
their meaning not trivial. As such, approaches tackling AFC on KGs rely on transforming KG triples into natural
sentences [27, 29, 32] through an additional claim verbalisation step. While both DeFacto [27] and FactCheck [29]
rely on sentence patterns that are completed with the components’ labels, and HybridFC assumes sentences will be
retrieved by either of those systems, ProVe relies on state of the art LMs for data-to-text conversion.

Lastly, evidence document corpora normally used in general AFC tend to have a standard structure or come
from a specific source. Both FEVER [25] and VitaminC [50] take their evidence sets from Wikipedia, which has
a text-centered and text-rich layout, with FEVER’s even coming pre-segmented as clean individual sentences. Vo
and Lee [51] use web articles from snopes.com and politifact.com only. KGs, however, accept provenance from
potentially any website domains. As such, unlike general AFC approaches, ProVe employs a text extraction step
in order to retrieve and segment text from triples’ references. While previous approaches simply remove HTML
markup, ProVe employs a rule-based approach that allows for more flexibility.

2.2.3. Large Pre-trained Language Models on AFC
Advances towards textual evidence-based AFC, particularly the sentence selection and claim verification sub-

tasks, have been facilitated by resources like the FEVER [24, 25] shared task and its benchmarking dataset. The
FEVER dataset consists of a large set of claims annotated with one of three classes: supported, refuted, and not
enough information to determine. The dataset also provides pre-extracted and segmented passages from Wikipedia
as evidence for each claim.

Tackling FEVER through pre-trained LMs [17–19] and graph networks [21–23] represents the current state of
the art. While approaches using graph networks (such as KGAT [22], GEAR [23], and DREAM [21]) for claim
verification slightly outperform those based mainly on sequence-to-sequence LMs, they still massively depend on
the latter for sentence selection. Additionally, explainability for task-specific graph architectures, like those of KGAT
and DREAM, is harder to tackle [52, 53] than for generalist textual sequence-to-sequence LM architectures which
are shared across the research community [54–56]. Slightly decreasing potential performance in favour of a simpler
and more explainable pipeline, ProVe employs LMs for both sentence selection and claim verification.

On sentence selection, the common strategy is to assign relevance scores to text passages based on their contextual
proximity to a verifiable claim. GEAR [23] does so with LSTMs, but use a BERT model to acquire text encodings.
Soleimani et al. [17], KGAT [22], and current state of the art DREAM [21] outperform GEAR by directly using
BERT for the rankings, an approach ProVe also follows. Graph networks are employed at the claim verification
subtask [21–23]. Soleimani et al. [17] are among the few to achieve near state of the art results using an LM and
a rule-based aggregation instead of graph networks. While ProVe handles the subtask similarly, it uses a weak
classifier as its final aggregation.

As a subtask in AFC on KGs, claim verbalisation is normally done through text patterns [27, 29] and by filling
templates [28], both of which are either distantly learned or manually crafted to address specific predicates. ProVe
is the first approach to utilise an LM for this subtask in the AFC context. Amaral et al. [57] show that a T5 model
fine-tuned on WebNLG achieves very good results when verbalising triples from Wikidata across many domains,
covering more than just the learned predicates. ProVe follows suit by also using a T5.

snopes.com
politifact.com
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Table 1 shows a comparison of ProVe to other AFC approaches mentioned in this section grouped by specific
tasks. It showcases the particular subtasks each approach targets, as well as the datasets used as a basis for their
evaluation. AFC on KGs through textual evidence is amongst the least researched topics within AFC, and this
paper is the first to do so through a KG provenance verification approach. ProVe tackles it through fine-tuned LMs
that adapt to unseen KG predicates and is evaluated on a dataset consisting of Wikidata triples with multiple non-
ontological predicates.

Description
Input
Type

Evidence
Source

Evidence
Returned

Subtasks
Evaluation
Dataset

Approaches

AFC on text through text
Textual
claims

Text Yes
DR,
SS,
CV

FEVER [17, 18, 21–23],

AFC on text claims through KGs
Textual
claims

KG Yes
SS,
CV

Freebase [44, 45]

AFC on KGs through KGs
KG
triples

KG
paths

Yes
PS,
CV

DBpedia,
SemMedDB,
Wikipedia

[42, 43, 46, 47],

KGE No
RE,
EL,
CV

Kaggle,
news articles
DBpedia,
Freebase

[48, 49]

AFC on KGs through text
KG
triples

Text
Yes

CVb,
DR,
TA,
CV

DBpedia,
FactBench

[27, 29, 31, 32]

No
SS,
CV

Wikidata
(48 predicates),
SWC 2017

[28, 30]

Yes

CVb,
TR,
SS,
CV

Wikidata
(any non-ontological
predicate)

ProVe

Table 1
Comparison between ProVe and others within AFC. KGE = KG Embeddings, DR = Document Retrieval, SS = Sentence Selection, PS = Path
Selection, CV = Claim Verification, RE = Relation Extraction, EL = Embedding Learning, CVb = Claim Verbalisation, TA = Trustworthiness
Analysis, TR = Text Retrieval.

3. Approach

ProVe consists of a pipeline for AFC on KGs. It takes as inputs a KG triple that is non-ontological in nature and
its documented provenance in the form of a web page or text document. It then automatically verifies whether the
provenance textually supports the triple, retrieving from it relevant text passages that can be used as evidence. This
section presents an overview of ProVe and its task, as well as detailed descriptions of its modules and the subtasks
they target.

3.1. Overview

From a KG’s set of non-ontological triples T , consider a KG triple t ∈ T , where t is composed by a subject, a
predicate, and an object, i.e. t = (s, p, o). Consider also a reference r to a web page or text document, acting as the
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documented provenance of t. ProVe assesses whether r textually supports t through a pipeline of rule-based methods
and LMs.

Figure 2 shows a KG triple (taken from Wikidata), its reference to a web page, and ProVe’s processing according
to the definitions provided in this section. ProVe extracts the text from r and divides it into a set of passages P.
Each passage pi ∈ P, with i in the closed integer interval [0..|P| − 1], receives a relevance score ρi ∈ [−1, 1]
indicating how relevant they are to the triple t. The five highest-ranking passages from P are selected as evidence and
assembled into the evidence set E. Each evidence ei ∈ E receives three stance probabilities (σS UPP

i , σREF
i , σNEI

i ),
with i in the integer interval [0..4], such that each probability σk

i ∈ [0, 1] for k ∈ K, and
∑

k∈K σ
k
i = 1 with

K = {S UPP,REF,NEI}. These probabilities denote the individual stance of evidence ei towards the triple t, which
can either support the triple (S UPP), refute it (REF), or not have enough information to do either (NEI). Finally,
ProVe uses the relevance scores ρi and the stance probabilities σk

i ∀ k ∈ K of each ei ∈ E to define a final stance
z ∈ K, as well as to calculate a support probability y ∈ [0, 1] indicating how much the triple t is supported by its
reference r.

Relevance score

KG Triple

Librarian of 
Congress

position holder James H. 
Billington

Q6542448 P1308 Q137576

Q6542448$7cdc5c7c-466d-ae3b-f176-b4af6c74dc05

Components

Preferred labels

James H Billington was the Librarian of Congress
Verbalisation

"H is successor as Librarian of Congress, Carla H ayden, said Dr. 
Billington has left an indelible legacy on the institution he led 
passionately for 28 years. With his vigor for philanthropy and 

tireless efforts to expand the reach and impact of the Library, he 
achieved so much to advance the Library of Congress as an 

enduring place for scholars and learners."

"James H adley Billington was sworn in as the Librarian of 
Congress on September 14, 1987. He is the 13th person to hold 

the position since the Library was established in 1800."

"In October 2004, Billington headed a Library of Congress 
delegation to Tehran, Iran, that significantly expanded 

exchanges between the Library of Congress and the N ational 
Library of Iran."

"He also established the Library Collections Security Oversight 
Committee in 1992 to improve protection of collections, and 
also the Library of Congress Congressional Caucus in 2008 to 

draw attention to the Library's curators and collections."
"He is the founding chairman of the Board of Trustees 
(1999-2011) of the Open World Leadership Center, a 
nonpartisan initiative of the U.S. Congress, which has 

administered 24,000 professional exchanges for emerging 
post-Soviet leaders in Russia, U kraine, and seven other 

successor states of the former USSR to visit counterparts in the 
United States. Open World began as a Library of Congress 

project, and later became an independent agency in the 
legislative branch."

0.999

0.983

0.003

0.013
0.999

0.990

0.004

0.005

0.561

0.979

0.003

0.017

0.634

0.980

0.004

0.015

0.549

0.710

0.026

0.262

"Supports" probability

"Refutes" probability

"NEI" probability

0.98 Final source 
support score

https://www.loc.gov/item/n80020417/james-h-billington-1929/

Evidence
Set

Reference

"James H adley Billington 
was sworn in as the 

Librarian of Congress on 
September 14, 1987.

"He is the 13th person to 
hold the position since the 
Library was established in 

1800."

"Billington was 
nominated by 

President Ronald 
Reagan, and his ..."

"During his 28-year 
tenure at the Library of 
Congress, Billington 
doubled  the size of..." ...

Passages

SUPP Final source 
stance

Fig. 2. An example of the inputs and outputs of ProVe when applied to a Wikidata triple and its provenance. A triple’s (t) subject, predicate, and
object elements (s, p, o) have their labels extracted and verbalised (v). Reference r has its passages extracted (P). The 5 most relevant passages
are compiled as the evidence set (E), with their respective relevance scores (ρi) and stance probabilities (σk

i ) used to calculate a final class (z)
and a support probability (y). Note that i indices between passages in P and evidence in E are different, i.e. the 27th extracted passage is the 4th

evidence.

A modular view of ProVe’s pipeline can be seen in Figure 3. Its inputs, as previously stated, are a KG triple (t) and
a referenced web page or text document (r), while its outputs are a final stance class (z), a support probability (y), and
a set of textual evidence used to calculate it (E). ProVe takes any non-ontological KG triple as long as its components
are accompanied by labels in natural language. The claim verbalisation module takes the preferred labels of each of
the triple’s components (i.e. subject, predicate, and object) as its inputs and produces a natural language sentence (v)
that expresses the same information. As KG entities and predicates might contain multiple labels, multiple possible
verbalisations can be generated. Users might choose those labels that best portray the triple’s meaning, which we
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define as preferred labels, and rules within the KG can help determine them. The reference (r) can consist of any
HTML page containing natural language text, but also plain text documents. As ProVe makes no assumptions as to
the page’s layout in order to optimise recall, its text retrieval module extracts all identified passages (P) from the
page, even if they contain boilerplate text or have poor syntax due to layout-dependant contents, e.g. tables, headers,
etc.

Reference

Claim 
Verbalisation

Text Retrieval 

documented provenance

Verbalised Claim Sentence Selection

Textual Entailment 
Recognition

KG triple Evidence 
Considered

Final Class 
and Support 
ProbabilitySet of 

Passages

<Claimi,Sentencej><Claimi,Sentencej>(Claim,Passage)
pairs Stance 

Aggregation

Claim Verification

3.2

3.3

3.5

3.4

Fig. 3. Overview of ProVe’s pipeline. The white blocks are artefacts while the green are modules, further detailed in the subsections indicated in
the circles.

Pairs consisting of the verbalised claim (v) alongside each extracted passage (pi) are given to the sentence selec-
tion and the claim verification modules. At the former, extracted passages are given a relevance score from -1 to 1,
indicating how contextually relevant to the claim they are, regardless of stance. The five highest scoring passages
are selected as evidence (E). The claim verification module has two steps. First, a Recognizing Textual Entailment
(RTE) step assigns each extracted passage with probabilities of having each of the three evidence stances. Finally, a
stance aggregation step takes the relevance scores plus stance probabilities for the five passages in the evidence set
and outputs the final class (z) and support probability (y), indicating how supportive of the triple is the reference.

ProVe’s workflow differs from the AFC framework seen in Figure 1. This is due to the particular task ProVe
tackles, i.e. the verification of KG triples using text from documented provenance, where triples can have any non-
ontological predicate and such provenance can come from varied sources. As detailed in Section 2 and evidenced
in Table 1, this is currently a little studied task compared to others in AFC, posing distinct problems and requiring
specific subtasks to be solved. For instance, ProVe does not need to perform either claim detection or document
retrieval, as both the claims and the sources are given to it as inputs.

On the other hand, ProVe handles both KG triples and unstructured text with the same model architectures and
does not make use of KG paths for evidence. Thus, it needs to convert the triples into text through a claim verbali-
sation module, akin to most other approaches in this task [27–29, 32]. As its input references can lead to web pages
having any HTML layout and their text does not come pre-segmented (such as with FEVER [25]), ProVe needs a
non-trivial text retrieval module so that it can identify informative passages. Finally, such KGs are often secondary
sources of information and triples should not include conclusions or interpretations from editors. Hence, ProVe
needs to consider pieces of evidence in isolation; this is to lower ProVe’s reliance on multi-sentence reasoning, as
concluding a triple from multiple text passages should not configure support in this task. Thus, ProVe first identifies
stances of retrieved evidence individually, aggregating them into a final verdict afterwards. Each of ProVe’s modules
is further detailed in the remainder of this section.

3.2. Claim Verbalisation

KG entities and properties have natural language labels that help clarify their meanings, with KGs like Wikidata
and Yago also containing multiple aliases and alternative names. However, these entities and predicates are often
not created by prioritising human understanding, but rather data organisation, and thus rely heavily on descriptions
in order to set out proper usage rules. Many serve as abstract concepts that unite other related but not identical
concepts, using a very broad main label and more specific aliases. One example of such is Wikidata’s inception
property (P571), which indicates the date on which something was founded, written, formed, painted, or created, and
applies to any entity with a beginning. Its description even clearly points out that for dates of official opening, P1619
should be used instead. Many also depend heavily on context (e.g. subject and object types) or editor conventions
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to have a clear meaning. One example of such is the child property (P40), which follows the convention that the
subject has the object as its child, but should not be used for stepchildren. However, the triple (John, child, Paul)
alone makes it unclear which is the parent. As such, merely concatenating labels does not convey the full meaning
of the triple [27, 29, 32]. Thus, ProVe relies on a claim verbalisation component that, based on similar triples and
their verbalisations, is able to fill format and meaning gaps.

ProVe’s claim verbalisation module takes as input a KG triple t, made by its subject, predicate, and object com-
ponents such that t = (s, p, o). A component’s preferred label is assumed to be its main (and often only) label,
but alternative labels or aliases can be manually chosen by editors and curators employing ProVe. Denoting by the
function l(·) the process of defining a component’s preferred label, ProVe’s claim verbalisation module outputs a
natural language formulation v, called the verbalisation, as defined by Equation 1.

v = ϕ(l(s), l(p), l(o)) (1)

The function ϕ(·) represents the generation of a fluent and adequate verbalisation from the components’ preferred
labels. A fluent verbalisation is defined as one written in good grammar, resembling natural text, and an adequate
verbalisation as one that carries the same meaning as the original triple intended. Like recent works in data verbali-
sation [57, 58], a pre-trained transformer is used for this subtask. The function ϕ(·) is carried out by a T5-base [59]
model fine-tuned on the WebNLG 2017 dataset [60]. The WebNLG 2017 dataset consists of DBpedia triples be-
longing to 15 categories and their corresponding verbalisations in English; 10 categories (the SEEN partition) were
used for training, validation, and testing, and the remaining 5 (the UNSEEN partition) for testing only. Fine-tuning
was carried out with a constant 3e-5 learning rate, an Adam optimiser, and a cross-entropy loss for 100 epochs with
early stopping patience of 15 epochs. Its text generation is done via beam search with 3 beams.

Amaral et al. [57] use this exact same model to produce the WDV dataset, which consists of verbalised Wikidata
triples. They then evaluate its quality with human annotations on both fluency and adequacy. Such evaluations are
covered in more detail in Section 5. In WDV, main labels are used as preferred labels for all triple components,
despite aliases often representing better choices. ProVe allows editors to manually define the behaviour of l(·) to
replace contextually-dependent and vague main labels with alternate labels in order to address some of the fluency
and adequacy issues observed in WDV. While this entails the extra effort by ProVe’s users of choosing proper labels,
it is still a much more scalable alternative to manually generating verbalisations.

3.3. Text Retrieval

In KGs, provenance is documented per individual triples and is often presented as URLs to web pages or text
documents. Such references form the basis of KG verifiability and should point to sources of evidence that support
their associated KG triples. Additionally, they can come from a huge variety of domains as long as they adhere to
verifiability criteria, that is, humans can understand the information they contain. As humans are excellent in making
sense of structured and unstructured data combined, KG editors do not need to worry much about how references
express their information. Images, charts, tables, headers, infoboxes, and unstructured text, can all serve as evidence
to the information contained in a KG triple. However, this complicates the automated extraction of such evidence in
a standard format so that LMs can understand it.

Rather than only free-flowing text, referenced web pages can have multiple sections, layouts, and elements,
making it non-trivial to automatically segment its textual contents into passages. Thus, ProVe employs a combination
of rule-based methods and pre-trained sentence segmenters to extract passages. Figure 4 details this process. The
module takes as input a reference r, which can either be a URL to a web page or a text document. If an URL, the
module extracts all HTML contents via a web scrapper, assuring that all contents accessible by users are rendered
and processed. The module then removes scripts and code from the HTML, leaving only markup and text. A list
of rule-based cleaning steps are then applied. Whitespaces in continuous text elements are corrected by ensuring
text within tags such as <p> do not have separations that could be breaking sentences. Tags that are sure to be
boilerplate are removed, such as tables of contents and navigation bars. Text that is broken across sequential similar
tags is joined. Lastly, spacing and punctuation (full stops) are corrected. Following this process addresses the most
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severe cases of improper sentence segmentation. Leftover HTML markup is removed and the text is fed into spaCy’s
sentence segmenter using the en_core_web_lg model [61], producing a set of text segments S . If r is a text document,
it is fed directly into sentence segmentation.

Reference ChromeDriver
Scrapper

Decompose
Scripts

Apply Rules

Correct 
Paragraph 
Whitespace

Decompose 
Bad tags 

(warningbox, 
toc, etc)

Joining 
Continuing 

Text

Correct 
Spacing

Insert Full 
Stops

Sentece Segmentation
(spaCy's en_core_web_lg)

Sliding 
Window 
Concat

SentenceSentenceSentence

N = 1
SentenceSentencePassage

SentenceSentencePassage

N = 2

...

Is a web
page

Is a text document

Fig. 4. Illustration of the text extraction module’s workflow, taking a reference r as input, dividing its text into a set of segments S , and concate-
nating them into a set of extracted passages P.

As a last step, multiple n-sized sliding window concatenations are used to create the final set of passages P. Given
a positive integer n ∈ N , where N is the set of window sizes to be applied, an n-sized window slides through the
sequential set S of text segments produced by the sentence segmentation step. Let S i, j = [si, . . . , s j], for j ⩾ i, be
the window including all segments from si to s j and ⊙(·) the function that concatenates a sequence of segments
interleaving them with a blank space as a separator. Equations 2 and 3 define the set of all passages Pn produced by
an n-sized sliding window and the union P of all such passages, respectively.

Pn = {⊙(S i,i+n−1) | 0 ⩽ i ⩽ |S | − n} (2)

P =
⋃

n∈N
Pn (3)

ProVe concatenates text segments in this fashion for two reasons. Firstly, meaning can often be spread between
sequential segments, e.g. in the case of anaphora. Secondly, HTML layouts might separate text in ways ProVe’s
general rules were not able to join, e.g. a paragraph describing an entity in the header. For a trade-off between
coverage and sentence length, ProVe defines N = {1, 2}, i.e. it concatenates all segments by themselves (P1) and
all sequential pairs (P2).

Current best approaches to extracting textual content from web pages, often called boilerplate removal, are based
on supervised classification [62, 63]. As no classification is perfect, these might miss relevant text. ProVe’s text
retrieval module aims at maximizing recall by retrieving all reachable text from the web page and arranging it into
separate passages by following a set of rules based on the HTML structure. The sentence selection module is later
responsible for performing relevance-based filtering. ProVe’s rule-based method can easily be updated with ad hoc
cleaning techniques to help treat difficult cases, such as linearisation or summarisation of tables, automated image
and chart descriptions, converting hierarchical header-paragraph structures and infoboxes into linear text, etc.

3.4. Sentence Selection

As ProVe’s text extraction module extracts all the text in a web page in the form of passages P, it needs a way
to filter those based on their relevance to the triple t. Sentence selection consists of, given a claim, rank a set of
sentences based on how relevant each is to the claim. We define relevance as contextual proximity e.g. similar
entities or overlapping information. Sentence selection is an integral part of most recent AFC approaches [15, 16],
incuding AFC on KGs [27, 29], as discussed in Section 2.2. It is a subtask of the FEVER fact-checking shared
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task [24], directly supported as a supervised task by the FEVER dataset [25], and is explored by a large body of
work [17, 18, 21–23] to excellent results.

Following on KGAT’s [22] and DREAM’s [21] approach to FEVER’s sentence selection subtask, ProVe employs
a large pre-trained BERT transformer. ProVe’s sentence selection BERT is fine-tuned on the FEVER dataset by
adding to it a dropout and a linear layer, as well as a final hyperbolic tangent activation, making outputted scores
range from −1 to 1. The loss is a pairwise margin ranking loss with the margin set to 1. Fine-tuning is achieved by
feeding the model pairs of inputs. Each pair’s first element is a concatenation of a claim and a relevant sentence. The
second element is the same claim, but with an irrelevant sentence instead. The model is trained assign higher scores
to the first element, such that the difference in scores is 1 (the margin). FEVER is used for training and validation. For
each FEVER claim in the training and validation partition, relevant sentences are provided as annotations. Irrelevant
sentences were retrieved by applying the same document retrieval process used by other works [17, 22, 23] to define
relevant Wikipedia articles, which FEVER breaks into pre-segmented sentences. All sentences from such retrieved
documents that were not already annotated as relevant were taken as irrelevant.

This fine-tuned module is thus used to assign scores ranging from −1 to 1 to passages from P, expressing how
relevant they are to the given triple t. Taking the triple t’s verbalisation v as the claim, and a passage pi as the sen-
tence, the BERT model takes the concatenation of v and pi as input and outputs a relevance score ρi ∈ [−1, 1]. This
is defined in Equation 4, where ψ(·) represents the execution of the sentence selection BERT on the concatenated
input.

ProVe ranks all passages pi ∈ P based on their relevance scores ρi. As passages are generated with sliding
windows of different sizes by the text extraction module, they might have overlapping content. To avoid unnecessary
repetition of information, a passage pi is removed from P whenever there is another passage p j that overlaps with
it and is more relevant (i.e, ρ j > ρi), yielding the set of passages P∗, whose five highest scoring passages constitute
the evidence set E (see Equation 5).

ρi = ψ(v,pi) (4)

E = argmax
P′⊆P∗,|P′|=5

∑
pi∈P′

ρi (5)

3.5. Claim Verification

As discussed in Section 2.2, claim verification is a crucial subtask in AFC, central to various approaches [14, 16],
and consists on assigning a final verdict to a claim, be it on its veracity or support, given retrieved relevant evidence.
ProVe’s claim verification relies on two steps: first, a pre-trained BERT model fine-tuned on data from FEVER [25]
performs RTE to detect stances of individual pieces of evidence, and then an aggregation considers the stances and
relevance scores from all evidence to define a final verdict. As ProVe also uses a BERT model for sentence selection,
its approach is similar to that of Soleimani et al. [17]: two fine-tuned BERT models, one for sentence selection,
another for claim verification. Although task-specific graph-based approaches [21, 22] outperform Soleimani, it
is by less than a percentage point (on FEVER score), while explainability for such generalist pre-trained LMs is
increasingly researched [54–56] by the NLP community.

3.5.1. Recognizing Textual Entailment
Like sentence selection, claim verification is a well defined subtask of AFC, supported by both the FEVER shared

task and the FEVER dataset. FEVER annotates claims as belonging to one of three RTE classes: those supported
by their associated evidence (‘SUPPORTS’), those refuted by it (‘REFUTES’), and those wherein the evidence is
not enough to reach a conclusion (‘NEI’). As previously mentioned, ProVe is meant to handle KGs as secondary
sources of information. Thus, it assesses evidence first in isolation, aggregating assessments afterwards in a similar
fashion to other works [17, 18].
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ProVe’s RTE step is a BERT model fine-tuned on a multiclass classification RTE task. It consists of identifying a
piece of evidence’s stance towards a claim using the three classes from FEVER. To fine-tune such model, a labelled
training dataset of claims-evidence pairs is built out of FEVER. For each claim in FEVER labeled as ‘SUPPORTS’,
all sentences annotated as relevant to it are paired with the claim; such pairs are labelled as ‘SUPPORTS’. The same
is done for all claims in FEVER labeled as ‘REFUTES’, generating pairs classified as ‘REFUTES’. For claims
labeled as NEI’, FEVER does not annotate any sentence as relevant to them. Thus, ProVe’s sentence selection
module is applied to documents deemed relevant to such claims (retrieved in a similar fashion to KGAT [22]) and
each claim is paired with all sentences that have relevance scores greater than 0 in regards to them. All such pairings
are labelled ‘NEI’. Fine-tuning was carried for 2 epochs with an AdamW [64] optimizer with 0.01 weight decay.
Population Based Training was used to tune learning rate (1.25e-05), batch size (14), and warmup ratio (0.1).

Thus, for a verbalisation v obtained from a triple t and a piece of evidence ei ∈ E, retrieved as a passage from
the t’s reference r, ProVe’s RTE step returns a probability array σi that describes ei’s stance towards v. Given that v
is fluent and adequate, σi also describes ei’s stance towards t. Equation 6 formulates this, where τ(·) is the function
representing ProVe’s RTE BERT model, which takes the concatenation of v and ei as input (truncated to fit the
model’s maximum token length by cutting at the end of ei) and outputs σi, an array that is normalised through a
softmax layer. The array σi consists of the probabilities of each FEVER class k ∈ K = {S UPP,REF,NEI}. Notice
that

∑
k∈K σ

k
i = 1.

σi = (σS UPP
i , σREF

i , σNEI
i ) = τ(v, ei) (6)

3.5.2. Stance Aggregation
After classifying the stance and relevance of each individual piece of evidence ei ∈ E towards the triple t, ProVe

aggregates these scores (ρi and σi) into a final stance class z ∈ K and a probability y denoting the level of support
shown by the triple-reference pair (t, r). Multiple aggregation strategies can be adopted, with ProVe proposing three:

1. A weighted sum µ of the RTE probability arrays σi using the relevance scores ρi as weights, where negative
relevance scores are dismissed (Equation 7). A final RTE class z is defined as the class k ∈ K with the highest
weighted sum (Equation 8). The support probability y is then defined as the weighted summed probabilities of
the ‘SUPPORTS’ class (Equation 9).

µk =
∑

0⩽i⩽|E|

max(ρi, 0) ∗ σk
i (7)

z = argmax
k∈K

µk
(8)

y = µS UPP (9)

2. The rule-based strategy adopted by Malon et al. [18] and Soleimani et al. [17]. A triple-reference pair (t, r) is
assigned a final RTE class z (Equation 10) of ‘SUPPORTS‘ if any individual evidence ei ∈ E is most likely to
support the triple. If that is not the case, z is set as ‘REFUTES’ if any individual evidence ei ∈ E is most likely
to refute the triple. If that is also not the case, z is set to ‘NEI’. The final probability y is 1 if the triple-reference
pair is classified as ‘SUPPORTS’ and 0 otherwise (Equation 11). This strategy does not allow editors to vary
the classification threshold.

z =


S UPP, if there exists ei ∈ E s.t. argmaxk∈K σ

k
i = S UPP

REF, else if there exists ei ∈ E s.t. argmaxk∈K σ
k
i = REF

NEI, otherwise
(10)
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y =

{
1, if z = S UPP
0, otherwise

(11)

3. A classifier, trained on an annotated set of triple-reference pairs (t, r). The classifier takes as features all
relevance scores ρi and all RTE probability arrays σi calculated from every piece of evidence ei ∈ E, as well
as their sizes in characters. It is trained on a multiclass classification task to predict the annotated final RTE
class z of the pair (t, r) by outputting a probability array θ, as defined by Equation 12, where ω(·) represents
the classifier. Thus, z is defined as the class with the highest probability (Equation 13), and y as the probability
θS UPP assigned to the ‘SUPPORTS’ class (Equation 14).

θ = (θS UPP, θREF , θNEI) = ω({(ρi, σi, |ei|) | ei ∈ E}) (12)

z = argmax
k∈K

θk
(13)

y = θS UPP (14)

4. Reference Evaluation Dataset

This section presents and describes the dataset used to evaluate ProVe: Wikidata Textual References (WTR). WTR
is mined from Wikidata, a large scale multilingual and collaborative KG, produced by voluntary anonymous editors
and bots, and maintained by the Wikimedia Foundation [65]. In Wikidata, triples should, except for rare exceptions,
have one or more references to their provenance [65]. Over 70% of Wikidata triples satisfy this requirement [13].
This is crucial as Wikidata does not care for truthfulness of information, but rather supportive provenance. There
are no false triples, but Wikidata suffers from unsupported information due to erroneous provenance, both intention-
ally provided or not. WTR consists of a series of detailed and annotated triple-reference pairs, each consisting of a
non-ontological Wikidata triple paired with a reference to a web page, documented as its provenance. Unlike other
benchmarking datasets used in AFC, WTR contains no artificial data and reflects only naturally occurring infor-
mation. WTR’s triples are detailed with all three main components (subject, predicate, and object), as well as their
unique Wikidata identifiers, main labels, aliases (alternative labels), and textual descriptions. WTR’s references are
detailed with the URLs they resolve to, as well as the HTML contents within. WTR is balanced in terms of web
domains contemplated, meaning the web domains represented by its references have mostly an equal number of
triple-reference pairs.

Each triple-reference pairing in WTR is annotated both at evidence-level and at reference-level. Evidence-level
annotations are provided by crowd-workers and describe the stance that specific text passages from the reference
display towards the triple. Reference-level annotations are provided by the authors and describe the stance the whole
referenced web page displays towards the triple. Evaluation, described in Section 5, consists of comparing ProVe’s
final class (z) and support probability (y) outputs to such annotations. Section 4.1 covers WTR’s construction, while
Section 4.2 details its annotation process.

4.1. Dataset Construction

Wikidata has been chosen as the source for ProVe’s evaluation dataset, as it contains over a billion triples that
explicitly state their provenance, pertain to various domains, and are accompanied by aliases and descriptions that
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greatly aid annotators. Since many references in Wikidata can be automatically verified through API calls, as show-
cased by Amaral et al. [13], WTR is built focusing on those that can not. Furthermore, to prevent biases towards
frequently used web domains, such as Wikipedia and The Peerage, WTR is built to represent a variety of web
domains with equal amounts of samples from each.

4.1.1. Selecting References
WTR is constructed from the Wikidata dumps from March 2022. First, all nearly 90M reference identifiers are

extracted. Those associated to at least one triple and which lead to a web page by either an external URL (through the
reference URL (P854) property), or by an external identifier property that has formattable URLs, e.g. VIAF
ID (P214), are kept. These two types of references constitute 91.52% of all references. The remaining portion
consists of references to Wikidata items, inferred from other specific Wikidata claims, imported from Wikipedia
(but no page specified), and those without any provenance property. These types of references are avoided due to
potential issues with circular or vague provenance. Close to 20M unique references are randomly sampled from the
resulting set due to storage size. Based on previous research [13], this maps to an estimated 220M claims.

Next, each extracted reference has its initial web URL defined. For references with direct URLs (reference
URL (P854)), such URLs are used. For references with external ID properties, the property’s formatter
URL (P1630) is combined with the linked external ID to establish the URL. For instance, a reference might
use the IMDb ID (P345) property, which has the formatter URL "https://wikidata-externalid-url.toolforge.org/
?p=345&url_prefix=https://www\.imdb.com/&id=$1". By replacing the ‘$1’ with the ID linked by the property, one
establishes the IMDB URL represented by the reference.

The extracted set of references and their respective initial URLs is then filtered. References that are inadequate to
the scenario in which ProVe will be used are removed. Three criteria were used:

1. References with URLs to domains that have APIs or content available as structured data (e.g. JSON or XML),
as these can be automatically checked through APIs, e.g. PubMed, VIAF, UniProt, etc.

2. References with URLs linking to files such as CSV, ZIP, PDF, etc., as parsing these file formats is outside of
ProVe’s scope.

3. References with URLs to pages that have very little to no information in textual format, such as images,
document scans, slides, and those consisting only of infoboxes, e.g. nga.gov, expasy.org, Wikimedia commons,
etc.

As shown by Amaral et al. [13], a substantial number of references fall in the first criteria, with an estimated over
70% of English references being automatically verifiable through API calls. Additionally, references with URLs to
websites not in English (according to FastText’s language identification models [66, 67]), posing security risks, or
unavailable (e.g. 404 and 502 HTML response codes) are removed.

Close to 7M references are left after these removals, wherein English Wikipedia alone represents over 40% of
URLs. To avoid biasing evaluation towards populous web domains, a stratified sampling is carried out using web
domains as strata. The 30 most populous web domains are defined as 30 separate groups, with two additional groups
formed from the remaining web domains: RARE, for web domains that appear only once, and OTHER, for all others.

4.1.2. Pairing References with Triples
Given the total number of references contemplated (7M), a sample size of 385 represents a 95% confidence

interval and a 5% margin of error on capturing the population’s proportion of supportive references. An equal
amount of references from each of the 32 groups is sampled, totalling over 400 references. Samples for a group
are retrieved one by one through the following method. A reference is randomly sampled without replacement and
checked as to whether it is associated to at least one triple fitting to be used for evaluation; if so, it is kept. A
triple fitting for evaluation is defined as one which carries non-ontological and reliable meaning, and which can be
expressed concisely through natural language. They are identified by the following criteria:

– Is not deprecated by Wikidata;
– Has an object that is not the “novalue” or “somevalue” special nodes;
– Has an object that is not of an unverbalisable type, i.e. URLs, globe coordinates, external IDs, and images.
– Has a predicate that is not ontological, e.g. instance of (P31), merged into (P7888), entry
in abbreviations table (P8703), etc.

"https://wikidata-externalid-url.toolforge.org/?p=345&url_prefix=https://www\.imdb.com/&id=$1"
"https://wikidata-externalid-url.toolforge.org/?p=345&url_prefix=https://www\.imdb.com/&id=$1"
nga.gov
expasy.org
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These steps produce a stratified representative sample of references, including their unique identifiers, resolved
URLs, web domains, and HTTP response attributes. Finally, for each sampled reference, a triple-reference pair is
formed by extracting from Wikidata a random triple associated to that reference and fitting for evaluation. The
triple’s unique identifiers, object data types, main labels, aliases, and descriptions are all kept. This construction
process creates WTR, ensuring it is composed of triples carrying non-ontological meaning and verifiable through
their associated references, thus useful for evaluating ProVe. It also ensures meaning and context understanding are
evaluated, rather than merely string matching, e.g. in the case of URLs, globe coordinates, and IDs. As for image
data, tackling such multimodal scenarios is outside ProVe’s scope.

4.2. Dataset Annotation

As described in Section 3 (see Figure 2), ProVe tackles its AFC task as a sequence of text extraction, ranking,
classification, and aggregation subtasks. Given a triple-reference pair, ProVe extracts text passages from the ref-
erence, ranks them according to relevance to the triple, and individually classifies them according to their stance
towards the triple. Then, triple-reference pairs are classified according to the overall stance of the reference towards
the triple.

To allow for a fine-grained evaluation of ProVe’s subtasks, WTR receives three sets of annotations: (1) on the
stance of individual pieces of evidence towards the triple, (2) on the collective stance of all evidence, and (3) on the
overall stance of the entire reference. The two first sets of annotations are deemed evidence-level annotations, while
the last is reference-level. Crowdsourcing is used to collect evidence-level annotations, due to the large number
of annotations needed (six per triple-reference pair) in combination with the simplicity of the task, which requires
workers only to read short passages of text. Reference-level annotations are less numerous (one per triple-reference
pair), much more complex, and hence manually annotated by the authors.

4.2.1. Crowdsourcing Evidence-level Annotations
Collecting evidence-level annotations for all retrievable sentences of each triple-reference pair in WTR, in order to

account for different rankings that can be outputted by ProVe, would be prohibitively expensive and inefficient. Thus,
evidence-level annotations are only provided for the five most-relevant passages in each reference, i.e. the collected
evidence. First, ProVe’s text retrieval (Section 3.3) and sentence selection (Section 3.4) modules are applied to each
reference and the five pieces of evidence for each collected. Since often only a couple of passages among the five
tend to be relevant, this does not severely bias the annotation towards highly-relevant text passages. It actually allows
for a more even collection of both relevant and irrelevant text passages. Then, evidence-level annotations for each
individual piece of evidence, as well as for the whole evidence set, are collected through crowdsourcing, totalling 6
annotation tasks per triple-reference pair.

4.2.1.1. Task Design Two crowdsourcing task designs have been created to carry out this evidence-level anno-
tation process. Task design 1 (T1) asks workers to assess the stance of an individual evidence towards the triple,
which can also be used as an indication of relevance. Each task in T1 is a bundle of 6 subtasks, each providing the
worker with a Wikidata triple, a piece of evidence extracted from its paired reference, the reference’s URL. Each
task then asks the worker the stance of that evidence: either it supports the claim, refutes it, has not enough infor-
mation for either, or the worker is not sure. This bundling is done in order to get more annotations out of a single
crowdsourcing task assignment. Task design 2 (T2) asks workers to assess the collective stance of the evidence set
(all five individual pieces of evidence) towards the triple. Similarly to tasks in T1, tasks in T2 are made from 6 sub-
tasks. Each T2 task provides the worker with a triple, five text passages extracted from the reference (the evidence
set), shown in a random order, and the reference’s URL. It then asks the collective stance of the five passages, with
similar response options to T1. The designs for both T1 and T2 tasks can be seen in Appendix A.

4.2.1.2. Recruitment and Quality Assurance The crowdsourcing campaign received ethical approval by King’s
College London on 7th of April, 2022, with registration number MRA-21/22-29584. All tasks were carried out
through Amazon Mechanical Turk (AMT). A pilot was run to collect feedback on instructions, design, and com-
pensation. After proper adjustments, the main data annotation tasks were carried out. Several quality control tech-
niques [41] were applied, following similar tasks by Amaral et al. [13, 57]. A number of subtasks in both T1 and
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T2 were manually created and annotated by the authors and used as golden-standard subtasks to reject low-quality
workers. A randomised attention test was put at the start of each task to discourage spammers. Finally, detailed
instructions and examples were available at all times to workers.

Execution times for each task in the pilot were measured and used to define payment in USD proportionally to
double the US minimum hourly wage (7.25): USD 0.50 for tasks in T1 and USD 1.00 for tasks in T2, calculated
based on the highest between mean and median execution time. 500 tasks were generated for T1 and 91 tasks for
T2, assigned to about 200 and 140 unique workers, respectively. Workers needed to have finished at least 1000
tasks in AMT with at least 80% approval. Each task was resolved 5 times and annotation aggregation was done via
majority voting to reduce worker bias. In the event of a tie (4% of cases for T1 and 13.4% for T2), authors served
as tie-breakers.

To assure annotation aggregation was trustworthy, inter-annotator agreement was measured through kappa values,
achieving 0.56 for tasks in T1 and 0.33 for tasks in T2. According to Landis and Koch [68], these results show fair
and moderate agreement, respectively. Several factors that contribute to lower inter-annotator agreement [69] are
present in this crowdsourcing setting: subjectivity inherent to natural language interpretation, a high number of
annotators which also lack domain expertise, and class imbalance. On individual annotations for T1, the majority
of passages (68.7%) were deemed as neither supporting nor refuting, followed by passages annotated as supporting
(27.5%), and a small portion refuting (3.3%). Only 0.4% of annotations were ‘not sure’. Aggregated by majority-
voting, these values are, respectively, 70.5%, 28.5%, 1.0%, and 0.0%. For T2, the proportions of individual (and
aggregated) annotations were 65.5% (73.6%) for supporting sets of evidence, 9.3% (5.9%) for refuting, 24.6%
(20.5%) for neither, and 0.6% (0.0%) for ‘note sure’.

4.2.2. Gathering Reference-level Annotations
WTR has reference-level annotations for each triple-reference pair. They define a reference’s overall stance to-

wards its associated triple, and are manually provided by the authors. These annotations are crucial in order to
provide a ground truth for an evaluation of the entire pipeline’s performance when taking the whole web page into
consideration. They consider a reference’s full meaning and context, and not only what was captured and processed
by the modules as evidence. Differently from sentence-level annotations, the mental load and task complexity of in-
teracting with the page to inspect all information (e.g. in text, infoboxes, images, charts) is too high for cost-effective
crowdsourcing. Thankfully, with one annotation per triple-reference pair, it is feasible for manual annotations to be
created by the authors. The authors have thus annotated the over 400 references into different categories and sub-
categories, which are a more detailed version of the three stance classes used at evidence-level annotations (and by
FEVER):

1. Supporting References (directly maps to the ‘supports’ class):

1.A. Support explicitly stated as text as natural language sentences
1.B. Support explicitly stated as text, but not as natural language sentences
1.C. Support explicitly stated, but not as text
1.D. Support implicitly stated

2. Non-supporting References

2.A. Reference refutes claim (directly maps to the ‘refutes’ class)
2.B. Reference neither supports nor refutes the claim (directly maps to the ‘not enough information’ class)

These six subclasses allow WTR to aid in evaluating the overall performance of ProVe in both ternary (the three
sentence-level stances) and binary (supporting vs. not supporting) classifications. They also allow us to investigate
which presentations of supporting information are better captured by the pipeline.

WTR contains 416 Wikidata triple-reference pairs, representing 32 groups of text-rich web domains commonly
used as sources, as well as 76 distinct Wikidata properties. 43% of references were obtained through external IDs
and 57% through direct URLs. Its structure is shown in Appendix B.
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5. Evaluation

This section covers the evaluation of ProVe’s performance by applying it to the evaluation dataset WTR, described
in Section 4, and comparing ProVe’s outputs with WTR’s annotations. These inspections and comparisons provide
insights into the pipelines’ execution and results at its different stages and modules. Each module in ProVe is covered
in a following subsection. The overall classification performance of ProVe is indicated by the outputs of the claim
verification module’s aggregation step and is covered at the end of the section. There, we also compare ProVe to
other AFC on KG approaches on WTR.

5.1. Claim Verbalisation

Given that ProVe’s verbalisation module is the exact same model used to create the Wikidata triple verbalisations
found in the WDV dataset [57], this section first reports the relevant evaluation results obtained by WDV’s authors.
It then analyses the claim verbalisation module’s execution on the WTR evaluation dataset, looking at the quality of
its outputs.

5.1.1. Model Validation
ProVe’s verbalisation module consists of a pre-trained T5 model [59] fine-tuned on the WebNLG dataset [60]. To

confirm that fine-tuning was properly carried out, the authors measure the BLEU [70] scores of its verbalisations on
WebNLG data. The scores are 65.51, 51.71, and 59.41 on the testing portion of the SEEN partition, on the UNSEEN
partition, and on their combination, respectively. These are all within a percentage point from current state of the
art [58].

Amaral et al. [57] use this exact same fine-tuned model to create multiple Wikidata triple verbalisations, which
compose the WDV dataset, and evaluate them with human annotators. WDV consists of a large set of Wikidata
triples, alongside their verbalisations, whose subject entities come from three distinct groups (partitions) of Wikidata
entity classes. The first partition consists of 10 classes that thematically map to the 10 categories in WebNLG’s SEEN
partition. The second, of 5 classes that map to the 5 categories in WebNLG’s UNSEEN partition. The third consists
of 5 new classes not covered in WebNLG but populous in Wikidata.

WDV’s verbalisations were evaluated by Amaral et al. through aggregated crowdsourced human annotations of
fluency and adequacy dimensions, as defined in Section 3.2. Fluency scores range from 0, i.e. very poor grammar and
unintelligible sentences, to 5, i.e. perfect fluency and natural text. Adequacy scores consisted of 0/No for inadequate
verbalisations and 1/Yes for adequate ones. WDV’s authors observed 96% of annotated verbalisations having a
median fluency score of 3 or higher, where 3 denotes “Comprehensible text with minor grammatical errors”, and
around 93% being voted by the majority of annotators as adequate. These results did not vary considerably between
WDV partitions, indicating model stability regardless if classes are seen in training or have mappings to WebNLG
(DBpedia) classes. The WDV paper [57] contains a more detailed evaluation.

5.1.2. Execution on WTR
The verbalisation module was applied to all 416 triple-reference pairs in WTR. For each triple t, its three com-

ponents were retrieved from Wikidata: subject (s), predicate (p), and object (o). Subjects and predicates are all
Wikidata entities and, thus, have associated main labels and aliases. Objects have multiple possible data types, in-
cluding Wikidata entity, from which labels were retrieved like with subjects. Strings and quantities without units are
used as-is as single labels, otherwise the unit’s main label and aliases are added. Date-time values are formatted into
multiple string patterns based on their granularity.

The process of defining preferred labels for verbalisation, represented in Section 3.2 through function l(·), con-
sisted of using the main labels of all three components for verbalisation, and changing the predicate’s label for an
alias in case the verbalisation (v) was not fluent or adequate. First, for a triple t, a concatenation of its components’
main labels is fed to the verbalisation model to generate a verbalisation v. Then, these verbalisations were manually
inspected by the authors in order to assess fluency and adequacy as previously defined. In case a verbalisation v
scored lower than a 4 on fluency or was inadequate, it was replaced by an alternate verbalisation v′ generated by
using a predicate alias rather than the predicate’s main label. As mentioned in Section 3.5, contextually-dependant
and vague predicate main labels hinder verbalisations and choosing proper aliases for it can be quickly carried out
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by KG editors and curators. One example is the predicate child (P40), whose alias ‘has child’ is used to remedy
the main label’s lack of explicit direction.

Out of the 416 verbalisations generated by ProVe through main labels, 62.6% were adequate and had good to
excellent fluency. Another 29.8% followed suit after predicate alias replacement, totalling 92.4%. The remaining
7.6% either had no aliases or could not be improved by them and had to be manually corrected before being passed
down the pipeline. While manual corrections are more demanding than alias selection, those were not frequent
and mainly affected specific properties such as isomeric SMILES (P2017) and designation (P1435).
Corrections were also not extensive; the normalised Levenshtein distance before and after corrections was under
0.25 (a quarter total length) for 80% of them.

Finally, 7 of the claims verbalised ended up having both identical URLs and verbalisations, and were thus dropped
from the evaluation downstream as they would have the exact same results. This results from ProVe not taking claim
qualifiers into consideration, which is further discussed in Section 6.3.

5.2. Text Extraction

Due to the complexity of defining metrics that measure success in text extraction, this section instead first defines
metrics that can be used for an indirect evaluation of the text extraction module. It then explores insightful descriptive
metrics obtained from executing the module on WTR.

5.2.1. Indirect Evaluation
ProVe’s text extraction module essentially performs a full segmentation of the referenced web-page’s textual

content without excluding any text. The model can not be directly evaluated through annotations due to the sheer
quantity of ways in which one can segment all references contained in the evaluation dataset. Annotating such text
extractions would require manually analysing entire web pages to find all textual content relevant to the claim,
inspecting all the text extractable from such page, and segmenting it such that boundaries are properly placed in
terms of syntax and relevant passages are kept unbroken. One would then need to compare one or multiple ideal
extractions to the extraction performed by ProVe. It is neither trivial to simplify this process for crowdworkers, nor
efficient for the authors to carry it out by hand. It is also not trivial to define what constitutes ‘well-placed’ sentence
boundaries nor how and if one can break relevant passages of text.

Thus, instead of a direct evaluation, the performances of the subsequent sentence selection and final aggregation
steps are used as indirect indicators of ProVe’s text extraction. A correlation between ProVe’s relevance scores
(ρ) and evidence-level crowd annotations, as defined in Section 5.3.2.3, can be used to measure how much ProVe
captures human-perceived relevance. A high value of such metric indicates ProVe extracts text passages such that
relevant and irrelevant text segments are well divided. Otherwise, there would be a dissonance between humans and
models in rating relevance, as while humans are good in judging badly divided passages, models would struggle
significantly.

Likewise, a good final classification performance, measured against WTR’s reference-level annotations, indicates
ProVe’s capacity of extracting useful sentences. Classification metrics for ternary and binary classification tasks,
such as accuracy and f-scores, are shown in Section 5.4. Still, the direct evaluation of ProVe’s text extraction module,
encompassing sentence segmentation and meaning extraction from unstructured and semi-structured textual content,
is intended as future work.

5.2.2. Execution on WTR
The text extraction module was applied to each of the 416 triple-reference pairs (t, r) in WTR, each yielding a

set of passages P, as defined in Section 3.3. The total number of extracted passages was of nearly 64K, an average
of 154 passages per reference. This average number of extracted passages varied heavily according to web domain,
ranging from 1 to 804, with relatively low inter-domain standard deviation (29.51 median standard deviation).
The average size, in characters, of individual extracted passages behaved similarly, ranging from 24.20 to 4059.23
depending on web domain. Finally, the number of passages |P| extracted from a reference r and their average size
(
∑|P|−1

i=0 |pi|)/|P| have a slightly moderate negative correlation (−0.2513 Pearson’s r), with a few domains, such as
bioguide.congress.gov returning very few but very large passages.

bioguide.congress.gov
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These metrics confirm that extracted textual content mainly varies based on web domain. It indicates ProVe’s
extraction depends heavily on particular web layouts, e.g. having difficulty segmenting the contents of specific
domains like bioguide.congress.gov, due to their textual content being contained in a single paragraph (<p> HTML
tag) without periods or any whitespaces to serve as sentence breaks.

5.3. Sentence Selection

ProVe’s sentence selection module contains a BERT model fine-tuned on FEVER’s training partition, as described
in Section 3.4. This section first performs a sanity check by evaluating the model on FEVER’s validation and
testing partitions, measuring standard classification metrics to ensure the model has properly fine-tuned to FEVER.
Afterwards, the entire module is applied to WTR and its performance is measured by relying on the crowdsourced
annotations.

5.3.1. Model Validation
For each claim-sentence pair in FEVER’s validation and testing partitions, the sentence selection module’s BERT

model outputs a relevance score between −1 and 1. A sentence is classified as relevant to a claim if it figures within
the top 5 highest scoring sentences for that claim, and as irrelevant otherwise. According to FEVER Scorer5, the
model scores 0.945 and 0.870 recall on validation and testing, respectively. Similarly, F1-scores were 0.421 and
0.386, which are less than a percentage point away from KGAT [22] and DREAM [21], current state of the art, on
the test partition.6 These indicate the model has properly fine-tuned to FEVER.

5.3.2. Execution on WTR
Inputs to the sentence selection module consist of the verbalisations v outputted by the claim verbalisation module,

as described in Section 5.1, and the extracted passages P taken from the reference, as described in Section 5.2. For
each passage p ∈ P, a relevance score ρ ∈ [−1, 1] is calculated.

5.3.2.1. Distribution of Relevance Score Relevance scores (ρ) varied heavily across web domains. For each triple-
reference pair (t, r) in WRT, its passages P were scored by the sentence selector module, and the scores of the
resulting evidence set E were averaged, with Figure 5 showing the distribution of these averages across and within
domains. Overall, relevance scores spanned the whole range of values (−1 to 1), with a median close to zero.
Variation within web domains was not wide, denoted by a prevalence of small to medium interquartile ranges. Web
domains with large variations were those that cover a large range of information domains and page layouts, such as
bbc.co.uk. In contrast, there was extensive variation across web domains. This was due, firstly, to how each domain
conveys its information, where long and continuous textual contents greatly favour reliable scores, as opposed to
spread-out information which pushes scores down. Secondly, due to the amount of content actually related to the
triple. A website like thepeerage.com mentions the triples’s subject many times, leading to many positively-scored
sentences, as opposed to vesseltracking.net, which provides fewer, shorter, and more direct information.

5.3.2.2. Proportion of Irrelevant Passages Given the distributions seen in Figure 5, we define the value zero as the
threshold between likely relevant and likely irrelevant passages. By using only the passages extracted by the n = 1

sliding window (P1), this threshold leaves 24.7% of triple-reference pairs as containing only passages that are likely
irrelevant. This decreases to 17.6% when combining the n = 1 and n = 2 sliding windows, clearly indicating the
method described in Section 3.3 achieves its desired objective of generating more relevant passages by combining
multiple text segments. This percentage of triple-reference pairs without likely relevant passages also varies heavily
across web domains, and is a problem mostly affecting those same domains at the lower end of the distribution seen
in Figure 5.

5https://github.com/sheffieldnlp/fever-scorer
6https://competitions.codalab.org/competitions/18814#results

bioguide.congress.gov
bbc.co.uk
thepeerage.com
vesseltracking.net
https://github.com/sheffieldnlp/fever-scorer
https://competitions.codalab.org/competitions/18814#results
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Fig. 5. Relevance scores distributions across and within different web domains. ‘ALL’ stands for the combined distribution of the subsequent 32
groups. Data values here are the averages of the top 5 passages’ relevance scores for each reference.

5.3.2.3. Correlation Between Modeled and Crowdsourced Relevance In order to compare the model’s relevance
scores (ρ) with human-perceived values of relevance (T1 crowd annotations), both ‘supports’ and ‘refutes’ anno-
tations are grouped as ‘relevant’, with ‘neither’ relabelled as ‘irrelevant’. Relevance score distributions are then
analysed based on this binary class annotation. Figure 6 shows annotated passages divided into groups based on the
percentage of ‘relevant’ individual annotations (or votes) each has received, as well as each group’s relevance score
distribution. There is a clear pattern of association between the model’s relevance scores and real humans’ opinions
of relevance. This conclusion is reinforced by the strong correlation between relevance scores and percentages of
individual annotations as ‘relevant’ (0.5058 Pearson’s r).

Such strong correlation can also be seen with aggregated annotations, as shown in Figure 7, where the relevance
score distributions for the group of passages majority-voted as ‘relevant’ vs. those voted as ‘irrelevant’. These
metrics and distributions indicate that ProVe’s sentence selection module produces scores that are well-related to
human judgements of relevance.
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Fig. 6. Distributions of relevance scores given by the module divided by the percentage of crowd annotations deeming that passage as ‘relevant’
(either ‘supports’ or ‘refutes’).

5.4. Claim Verification

The first step of ProVe’s claim verification module consists of a RTE classification task, resolved by a fine-tuned
BERT model, as described in Section 3.5. Such RTE model is used to classify the stances of individual pieces of
evidence (e ∈ E) towards a KG triple (t) by calculating three class probabilities (σ) corresponding to the three
RTE classes found in FEVER: ‘supports’, ‘refutes’, and ‘not enough information’. The module’s second step is an
aggregation which uses these classification probabilities to calculate a final verdict for the whole reference (r). This
section first describes a sanity-check of both steps by evaluating them in conjunction on FEVER’s validation and
testing partitions. It then assesses their performance on WTR.

5.4.1. Model Validation
ProVe’s claim verbalisation module has been applied to FEVER’s validation and testing partitions. For the valida-

tion partition, the sentences pre-annotated as relevant to the claim being judged were used as evidence. The first RTE
step is performed to calculate the individual stance probabilities of each piece of evidence. The second aggregation
step is then carried out to define the claim’s final verdict. The same process is carried out for the testing partition,
however, since its sentences do not come pre-annotated, ProVe’s sentence selection module was used instead.

For the final aggregation step, only methods #1 (a weighted sum) and #2 (Malon’s strategy) were used. That
is due to neither requiring training a new classifier and thus have similar complexity to other approaches used to
tackle FEVER [17, 18], yielding a more direct comparison. Label accuracy and FEVER score were calculated as
evaluation metrics. Label accuracy is a normal classification accuracy calculated over the three RTE classes. FEVER
score is an accuracy calculated by also taking collected evidence into consideration: a prediction is correct if the
label is correct and the predicted evidence set contains all correct evidence.

Aggregation method #1, the weighted sum, scores 0.696 label accuracy and 0.695 FEVER score on the validation
set, and 0.650 and 0.617 respectively on the testing set. Method #2, the rule-based aggregation, scores 0.762 label
accuracy and 0.761 FEVER score on the validation set, and 0.703 and 0.673 respectively on the testing set. Method
#2 puts ProVe 3.2 percentage points below state of the art (DREAM [21]) on FEVER score, which the authors
consider sufficient to validate the module’s fine-tuning.
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tained through argmax) vs. the crowd’s aggregated annotations.

5.4.2. Execution on WTR
ProVe’s claim verification module is tested on WTR by comparing its outputs to WTR’s annotations, both at

evidence level and reference level. Such annotations, as described in Section 4.2, consist of: crowd annotations
denoting the stances of individual pieces of evidence towards KG triples (from crowdsourcing tasks T1), crowd
annotations denoting the collective stances of sets of evidence towards KG triples (from crowdsourcing tasks T2),
and author annotations denoting the stance of the entire reference towards its associated KG triple.

5.4.2.1. Distributions of RTE Class Probabilities Similarly to the relevance scores outputted by the sentence se-
lection module, the RTE class probabilities outputted by the RTE model for individual pieces of evidence varied
greatly across web domains. Consider a triple-reference pair (t, r) and its i-th piece of evidence ei, whose stance
probabilities assigned by the model are (σS UPP

i , σREF
i , σNEI

i ). Consider also the highest of the three probabilities
to denote the predicted RTE class for that individual evidence zi, where zi = argmaxk∈K σ

k
i . Web domains such

as indiancine.ma have close to 95% of its evidence classified as ‘not enough information’, while domains such as
deu.archinform.net classify close to 98% as ‘supports’. Likewise to sentence selection, such variations can be at-
tributed to web layouts. For instance, infoboxes, implicit subjects, and large amounts of boilerplate clearly inflate the
number of unrelated sentences that might get highly ranked for relevance, but are neither supportive nor refutative.

5.4.2.2. Individual RTE Classification Metrics Using the argmax approach described above to define the predicted
stance zi of an individual piece of evidence ei, and using the aggregated annotations provided by the crowd through
T1 tasks as ground truth, one can measure classification metrics for ProVe’s individual RTE classification. Figure 8
shows the resulting confusion matrix. Accuracy was 0.56 and Macro F1-score was 0.43. While predicting supporting
sentences with moderate precision, ProVe’s RTE model has difficulty in disentangling refuting sentences from those
that neither support nor refute. This is believed to be due to the differences between refuting evidence data found in
FEVER and refuting references that occur naturally in Wikidata’s sources, discussed in more detail in Section 6.4.

ProVe’s pipeline focuses on the classification of entire references rather than individual sentences, and the RTE
class probabilities are merely features for the final aggregation. Still, RTE classifications for individual pieces of
evidence can be greatly improved by, rather than argmax, using a classifier with the three RTE class probabilities
(σi), the evidence’s relevance score (ρi), and the evidence’s length (|ei|) as features. The best scoring classifier
was a Random Forests Classifier (RFC) with cross-validated (k=5) scores of 0.77 accuracy and 0.50 F1-score.

indiancine.ma
deu.archinform.net
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Fig. 10. ROC curve for the simplified binary stance classification per-
formed by a RFC.

Furthermore, by grouping the ‘refutes’ and ‘neither’ classes into one ‘not supporting’ class, turning this into a
binary classification task, cross-validated (k=5) scores reach 0.79 accuracy and 0.76 F1-score, as well as an Area
Under the ROC Curve (AUC) of 0.83, as seen in Figures 9 and 10.

5.4.2.3. Collective RTE Classification Metrics The annotations obtained through T2 tasks describe human judge-
ments on the collective stance of the sets of evidence extracted from a reference towards its associated triple in
WTR. After majority-voting aggregation, there are 301 evidence sets collectively supporting the triple, 24 refut-
ing, and 84 that neither support nor refute it. Taking these annotations as ground truth labels, one can measure
the classification performance of ProVe. Table 2 showcases and compares these results with different aggregation
methods. Due to class imbalance, both macro averaged and weighted averaged results are reported. Not only the
original ternary classification problem but also to a simplified ‘supporting’ vs. ‘not supporting’ binary classification
problem is explored. Although a binary formulation is easier to solve, having a pipeline that provides assistance
on differentiating between supporting and non-supporting references is of huge benefit to any KG’s curation and
editing. Results show how a classifier considerably outperforms the other two aggregation approaches, especially in
the binary classification scenario.

Macro Averaged Weighted Averaged

Method Classes Accuracy Precision Recall F1 Precision Recall F1

1: Weighted Sum 3 0.592 0.439 0.484 0.439 0.700 0.592 0.626

2: Malon’s 3 0.641 0.430 0.456 0.436 0.691 0.641 0.659

3: RFC 3 0.726 0.433 0.468 0.446 0.709 0.726 0.714
1: Weighted Sum 2 0.626 0.609 0.639 0.596 0.716 0.626 0.648

2: Malon’s 2 0.667 0.614 0.638 0.617 0.712 0.667 0.683

3: RFC 2 0.750 0.681 0.664 0.667 0.747 0.750 0.745

Table 2
Classification performance of each of the three aggregation methods on both ternary and binary collective stance RTE classification formulations.
Majority-voted annotations obtained in T2 are used as true labels. Results from method 3 were cross-validated with k = 5.
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5.4.2.4. Reference Representation through Retrieved Evidence Verifying whether ProVe properly represents en-
tire references through the evidence set it retrieves from them is possible by comparing the evidence-level crowd
annotations on the collective stance of retrieved evidence (T2 tasks) with the reference-level author annotations,
which represent the stance of the reference as a whole.

As detailed in Section 4.2, reference-level annotations consist of six categories which directly map to the three
RTE labels used in crowd annotations. Figure 11 shows WTR’s reference-level annotation distribution. On the
ternary classification task, labels 1.A. through 1.D. map to ‘supporting’, label 2.A. maps to ‘refuting’, and label
2.B. to ‘neither’. As for the binary classification task, labels 1.X. map to ‘supporting‘ and labels 2.X. map to ‘not
supporting‘. There is a high class imbalance, with authors deeming only 2 references as ‘refuting’. This number is
much lower than the 24 majority-voted by the crowd as ‘refuting’.

Figure 12 shows a complete comparison between evidence-level collective stance annotations from the crowd and
reference-level author labels. Crowd annotators very successfully judge references in 1.A. (explicit textual support in
natural language), and obtain moderate to high performance on all other groups, except for 1.C. (non-textual support)
and 2.A. (refuting reference). It is trivial to see why ProVe, a text-based approach, fails at 1.C. The failure at 2.A.
is partially due to the disparity between refuting text seen in training and in the evaluation dataset, as explained
in Section 6.4. The low amount of refuting references compromises a deeper look. Still, where supportive textual
information is the most available, explicit, and naturally written, the better ProVe performs.

5.4.2.5. Full Pipeline Performance To evaluate the full pipeline, we investigate ProVe’s performance on a ‘sup-
ported’ vs. ‘not supported’ binary classification scenario by comparing the outputs obtained with the WTR evalua-
tion dataset to its reference-level annotations provided by the authors. The variation of such performance, based on
how supportive information is expressed on text, is also analysed.

ProVe is evaluated on the entire WTR by using the reference-level annotations as ground-truth and adopting
ProVe’s best performing aggregation method, the classifier (method #3). Additionally, for each of the supporting
reference-level labels 1.A. through 1.D. (except for 1.C, as it is non-textual), WTR is modified by keeping only
those triple-reference pairs with either that specific supporting label or labelled as ‘not supporting’. ProVe is then
also evaluated on these modified datasets. Due to the very low amount of 2.A. labels, only the binary ‘supporting’
vs. ‘not supporting’ classification task is evaluated. Table 3 showcases the results obtained. It shows that ProVe
has a good result on the evaluation dataset overall, with close to 80% accuracy, and an excellent performance
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on identifying support from references that showcase said support through explicit and naturally written textual
information (1.A.). It also shows good results on references where support is not naturally written (1.B.).

Macro Averaged Weighted Averaged

Support type Accuracy Precision Recall F1-Score Precision Recall F1-Score AUC

1.A. 0.875 0.821 0.838 0.829 0.878 0.875 0.876 0.908
1.B. 0.779 0.668 0.637 0.648 0.762 0.779 0.768 0.745

1.D. 0.666 0.662 0.669 0.649 0.749 0.666 0.682 0.754

ALL 0.794 0.565 0.635 0.574 0.864 0.794 0.821 0.753

Table 3
ProVe’s binary classification performance on all WTR and per type of textual support. Reference-level annotations were used as ground-truth,
and a classifier as aggregation method. Values obtained through cross-validation (k = 5).

5.4.2.6. Comparison Against Other AFC on KG Systems As explained in Section 2.2.2, the systems that come
closest to ProVe in task formulation and approach within AFC on KGs are DeFacto [27], FactCheck [29], and
HybridFC [31]. There are, however, crucial differences between how the DeFacto lineage and ProVe formulate this
task. DeFacto, FactCheck, and HybridFC all evaluate the truthfulness of KG triples, meaning verifying whether the
triple’s information is true or not. For that, they assume a collective body of knowledge that is cohesive and aligned
with the truth, in the form of indexed Wikipedia dumps searchable through patterns or web documents retrievable
by search engines. ProVe formulates AFC on KGs as provenance verification where support is verified, rather than
truthfulness, i.e. it cares only whether a given piece of provenance supports a given KG triple, regardless if it is true.

As ProVe requires the provenance document as input, it is not possible to test it on FactBench, the benchmark
dataset of the DeFacto lineage. However, if we assume that all retrievable information for a KG triple’s fact checking
is a single pre-selected provenance document associated to it, and that its support is the same as a declaration of
truthfulness, then DeFacto, FactCheck, and HybridFC can all be applied to the WTR dataset.

DeFacto relies on BOA patterns which are no longer available or maintained, thus only FactCheck and HybridFC
can be evaluated. HybridFC consists of a mix of fact-checking methods, two of which rely on KG structures sur-
rounding the input triple rather than solely on the provenance document. Since we do not consider the KG to hold a
singular truth and are limiting ourselves to the provenance, we will not employ those two methods of HybridFC.

All these approaches rely on phrase patterns for document retrieval. For both FactCheck and HybridFC, docu-
ments and sentences are retrieved through an Elasticsearch7 query whose keywords are the concatenation of the
triple’s subject, predicate, and object labels. FactCheck was executed on WTR using only the predicates’ preferred
labels (as defined in Section 3.2), and then again after including all labels and aliases as provided by Wikidata.
HybridFC was executed using the sentences retrieved by FactCheck’s second run. Both approaches also need to be
trained on newly introduced predicates. Training and testing both systems was carried through a 50/50 stratified split
of WTR. The resulting metrics for comparison can be seen in Table 4. It is important to note that WTR has a large
class imbalance, with 158 supportive references and 25 non-supportive. This has greatly affected both approaches.

6. Discussions and Conclusions

In this section, aspects and limitations of the implementation and evaluation results of ProVe are further discussed.
Additionally, future directions of research are pointed out and final conclusions are drawn.

7https://www.elastic.co/

https://www.elastic.co/


26 G. Amaral et al. / ProVe: A Pipeline for KG Provenance Verification

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Macro Averaged Weighted Averaged

Support type Accuracy Precision Recall F1-Score Precision Recall F1-Score AUC

ProVe 0.794 0.565 0.635 0.574 0.864 0.794 0.821 0.753
FactCheck 0.328 0.544 0.594 0.312 0.889 0.328 0.396 0.572

FactCheck + Aliases 0.369 0.549 0.617 0.345 0.893 0.369 0.447 0.615

HybridFC (Textual Component) 0.863 0.432 0.500 0.462 0.745 0.863 0.800 0.618
Table 4

ProVe’s results compared to FactCheck and HybridFC. Metrics for ProVe are based on the entirety of WTR. Metrics for FactCheck and HybridFC
are based on the test partition.

6.1. ProVe for Fact Verification

Fact checking as a tool to assist users in discerning between factual and non-factual information has a myriad of
applications, formulations, approaches, and, overall, considerably ambiguous results. The effects of fact-checking
interventions, while significant, are substantially weakened by its targets’ preexisting beliefs and knowledge [71].
Its effectiveness depends heavily on many variables, such as the type of scale used and whether facts can be partially
checked, as well as different impacts if they go along or against a person’s ideology. This further motivates ProVe’s
standpoint of judging support instead of veracity. Triples are evaluated not as factual or non-factual, but based on
their documented provenance, passing the onus of providing trustworthy and authoritative sources to the graph’s
curators. This keeps ProVe’s judgements from clashing with the ideologies of its users, as the pipeline does not
pass factual, but linguistic judgement. Additionally, by using only two to three levels of verdict and not including
graphical elements, the presence of elements that compromise fact-checking [71] is hampered. The authors’ focus
for future research lies in increasing ProVe’s explainability in order to increase trust and understanding.

The results achieved by ProVe, especially on text-rich references, are considered by the authors as more than
satisfactory, representing an excellent addition to a family of approaches that currently includes very few, e.g.
DeFacto [27], FactCheck [29], and HybridFC [31]. ProVe clearly outperforms this line of systems on the provenance
verification task presented by the WTR dataset. FactCheck and HybridFC suffered due to being limited to a single
document as a source of evidence, as well as by the lack of semantic capabilities during sentence retrieval. For 71%
of triples in WTR, using all labels and aliases, no evidence sentence was collected at all by both, with 15% of triples
limited to a single extracted sentence.

ProVe’s use as a tool can greatly benefit from an active learning scenario which would further enhance the models
and techniques it employs. At the same time, users of the tool inherently introduce a bias based on their demograph-
ics, with the same being valid for the crowdsourced evaluation of ProVe’s pipeline. Being aware of this bias is
crucial to the proper deployment of such approaches.

6.2. Text Extraction Add-ons

ProVe’s text extraction module has three essential steps: rendering web pages with a web crawler, using rule-based
methods to convert content inside HTML tags into text, and sentence segmentation. While the rule-based methods
presented in this paper are simple, they are quite effective, as shown in Section 5. Better and more specialized
rules and methods to detect and extract text from specific HTML layouts, such as turning tabular structures or
sparse infoboxes into sequential and syntactically correct sentences, can be seamlessly integrated into ProVe. Both
supervised and unsupervised approaches can also be applied.

In order to properly assess such added methods, as well as to provide more insight into the text extraction mod-
ule in general, a direct evaluation of its performance would be extremely helpful. Although good performance on
downstream tasks is a good indicator, it does not show where to improve text extraction. Be it through descriptive
statistics or comparison against golden data, this is a focus of future research alongside model explainability.

6.3. Usage of Qualifiers

Triples in KGs such as Wikidata often are accompanied by qualifiers that further detail it. A triple such as the
one seen in Figure 2 (<Librarian of Congress, position holder, James H. Billington>) has several qualifiers, such
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as ‘start time’ and ‘end time’. If a person were Librarian of Congress twice, this qualifier would differentiate two
triples that would otherwise be identical if expressed only with main components. ProVe does not take qualifiers
into consideration. As such, two triples with distinct IDs and meanings can have exactly the same verbalisations
which, while adequate, do not contain all information.

Ribeiro et al. [58] show transformers can verbalise multiple triples into a single sentence. Hence, adding qualifiers
as secondary triples is possible, generating more detailed verbalisations. However, ProVe’s sentence selection and
claim verification modules contain models fine-tuned on FEVER, whose vast majority of sentences contain only
a main piece of information with little to no additional details, e.g. ‘Adrienne Bailon is an accountant’ and ‘The
Levant was ruled by the House of Lusignan’. In order to make proper use of qualifiers during verbalisation, there
needs to be an assurance that downstream modules can properly handle more complex sentences by either different
or augmented training data.

6.4. Detecting Refuting Sources with FEVER

The FEVER dataset presents claims that are normally short and direct in nature, from multiple domains, and
associated evidence extracted directly from Wikipedia. ProVe shows it is possible to use FEVER to train pipeline
modules to detect supportive and non-supportive sources of evidence. However, as seen in Section 5.4, detecting
refuting sources is hard for ProVe and is believed to be due to how FEVER generates refuted claims through ar-
tificial alterations. Claims labelled by FEVER as ‘REFUTES’ are those generated by annotators who alter claims
that would otherwise be supported by its associated evidence. Alterations follow six types: paraphrasing, negation,
entity/relationship substitution, and making the claim more general/specific. This leads to claims that, while mean-
ingful and properly annotated, would never be encoded in a KG triple, such as “As the Vietnam War raged in 1969,
Yoko Ono and her husband John Lennon did not have two week-long Bed-Ins for Peace” or “Ruth Negga only
acts in Irish cinema”. Additionally, associated evidence often rely on common sense in order to refute these claims,
such as “Kingdom Hearts III is owned by Boyz II Men”, whose relevant evidence at no point elaborate on Kingdom
Hearts III’s ownership, only describing it as a Japanese video-game. We supposedly know Boyz II Men is a music
group, rendering the claim implausible.

While useful for other tasks, these refuted claims are very different from refutable triples occurring naturally in
KGs, which mainly consist of triples whose objects have different values in the provenance. One such example
is “Robert Brunton was born on 23/03/1796”, whose reference actually mentions the “10th of February 1796”. In
order to better detect KG provenance that refute their triples, ProVe’s claim verification module needs re-training on
a fitting subset of FEVER, or on a new dataset containing non-artificial refuted claims.

6.5. Conclusions

KGs are widespread secondary sources of information. Their data is extremely useful and available in a semantic
format that covers a myriad of domains. Ensuring the verifiability of this data through documented provenance is a
task that is crucial to the upkeep of their usability. This provenance verification task should be actively supported by
automated and semi-automated tools to help data curators and editors cope with the sheer volume of information.
However, as of now, there are no such tools deployed at large scale KGs and only a very small family of approaches
tackle this task from a research standpoint.

This paper proposes, describes, and evaluates ProVe, a pipelined approach to support the upkeep of KG triple
verifiability through their documented provenance. ProVe leverages large pre-trained LMs, rule-based methods, and
classifiers, to provide automated assistance to the activity of creating and maintaining references in a KG. ProVe’s
pipeline aims at extracting relevant textual information from references and evaluating whether or not they support
an associated KG triple. This provides its users with support classification, support probability, as well as relevance
and textual entailment metrics for the evidence used. Deployed correctly, ProVe can help detect verifiability issues
in existing references, as well as improve the reuse of good sources. Additionally, the approach can be expanded to
work in a multilingual setting.

ProVe has been evaluated on WTR, a dataset of triple-reference pairs extracted directly from Wikidata and an-
notated by both crowdworkers and the authors. ProVe achieves 79.4% accuracy, 0.574 F1-macro, and 0.753 AUC



28 G. Amaral et al. / ProVe: A Pipeline for KG Provenance Verification

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

on the full evaluation dataset, which includes references to many different web domains. On references where sup-
port is stated explicitly and in natural text, ProVe achieves an excellent 87.5% accuracy (0.829 F1-macro and 0.908
AUC). ProVe was also compared to other similar AFC on KG systems, such as FactCheck [29] and HybridFC [31],
on the WTR dataset. ProVe outperforms such systems on this provenance verification task by a considerable margin.

In addition to the application of ProVe on reference re-usability and recommendation, future work mainly lies in
exploring techniques to improve ProVe’s explainability, with a focus on its sentence selection and claim verification
steps. Other directions can include expanding the size and the distinct predicate coverage of the benchmarking
dataset WTR, as well as a direct evaluation of text extraction and segmentation techniques.
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Appendix A. Crowdsourcing Task Designs

Show Instructions

Pair 1 of 6:

Read the following affirmation:

G V Raja died in Kullu Valley.0

Now, read the following passage, paying particular attention to the highlighted text:

He was the main architect in developing Kovalam as an international tourist spot. He died in an air crash near Kullu
(Kulu) Valley on April 30, 1971. Sports journalists, historians, experts and sportsmen consider him as the Father of
Sports and Tourism in Kerala.

The passage was extracted from the following link:
https://en.wikipedia.org/wiki/G._V._Raja
You can click on the link to see the passage with its original form and with more context.

In your opinion, how does the highlighted text relate to the affirmation?

 The highlighted text SUPPORTS the affirmation

 The highlighted text REFUTES the affirmation

 The highlighted text NEITHER supports nor refutes the affirmation

 Not Sure

Next

Affirmation Classification with a Single Evidence file:///C:/Users/gabri/Documents/Repos/ClaimVerificationHIT/single/single_mockup.html

1 of 1 04/08/2022, 15:25

Fig. 13. The task design T1, which collects evidence-level annotations of the individual stances of pieces of evidence towards a Wikidata triple.
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Show Instructions

Affirmation 1 of 6:

Read the following affirmation:

G V Raja died in Kullu Valley.

The following passages were extracted from this link: https://en.wikipedia.org/wiki/G._V._Raja
If you want, you can click on the link to see the passages with their original form and with more
context.

Now, read the following passages, paying particular attention to their highlighted texts:

He died in an air crash near Kullu (Kulu) Valley on April 30, 1971. Sports journalists, historians, experts and sportsmen
consider him as the Father of Sports and Tourism in Kerala. G. V. Raja's birth anniversary, 13 October, is observed as
"Kerala Sports Day".

G. V. Raja was also the President of Tourism Promotion Council of Kerala. He was the main architect in developing
Kovalam as an international tourist spot. He died in an air crash near Kullu (Kulu) Valley on April 30, 1971.

He died in an air crash near Kullu (Kulu) Valley on April 30, 1971. Sports journalists, historians, experts and sportsmen
consider him as the Father of Sports and Tourism in Kerala.

P. R. Godavarma Raja Karthika Nal Godavarma Raja Born 13 October 1908 Poonjar Royal House, Kottayam Died 30
April 1971 Kullu Valley, Himachal Pradesh Cause of death Air Crash Spouse(s) Maharani Karthika Thirunal Lakshmi Bayi
of Travancore (m. 1934) Children Crown Prince Rama Varma (died aged six)

He made an unscheduled trip to the Kulu Valley on 30 April 1971. With two others, G V Raja flew in a three-seater
aircraft which nose-dived and crashed, killing all its passengers. He was aged 62 at the time of his death.

In your opinion, when taken into consideration together, how does the highlighted texts relate
to the affirmation?

 Taken together, the highlighted texts SUPPORT the affirmation

 Taken together, the highlighted texts REFUTE the affirmation

 Taken together, the highlighted texts NEITHER support nor refute the affirmation

 Not Sure

Next

Affirmation Classification with Multiple Evidence file:///C:/Users/gabri/Documents/Repos/ClaimVerificationHIT/multiple/multiple_mockup.html

1 of 1 04/08/2022, 15:25

Fig. 14. The task design T2, which collects evidence-level annotations of the collective stances of evidence sets towards a Wikidata triple.
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Appendix B. WTR Dataset Format

WTR is available at Figshare 8 and contains 409 Wikidata triple-reference pairs, representing 32 groups of text-
rich web domains commonly used as sources, as well as 76 distinct Wikidata properties. Out of the 416 sampled
triple-reference pairs, as described in Section 4.1, 7 were left out due to having exactly the same triple components
and referenced URL as other triple-reference pair, as explained in Section 6.3. 43% of references were obtained
through external IDs and 57% through direct URLs. Each entry has the following attributes:

– Reference attributes:

* Reference ID: An unique identifier issued to the reference by Wikidata;
* Reference property ID: The unique identifier of the Wikidata property used by the reference to encode the

URL we retrieve for it;
* Reference datatype: Whether the reference’s URL was retrieved by a direct URL or an URL formatted with

an external identifier;
* URL: The URL retrieved for this reference;
* Netloc: The actual web domain of this URL;
* Netloc group: The web domain of this URL after grouping references under the RARE and OTHER groups;
* Final URL: The URL reached after redirects and whose HTML and text were extracted by ProVe into

sentences for annotation;
* HTML: The HTML code extracted from the reference’s final URL.

– Claim attributes:

* Claim ID: An unique identifier issued to the claim by Wikidata;
* Rank: The claims’s rank, either normal or preferred;
* Datatype: The datatype of the claim’s object, e.g. quantity, string, etc;
* Component IDs: The Wikidata IDs of the claim’s subject and property;
* Component labels: Main labels for subject, property, and object;
* Component aliases: Aliases lists for subject, property, and object;
* Component descriptions: Wikidata descriptions for subject, property, and object (if it is a Wikidata item).

– Annotations for evaluation:

* Evidence-level annotations (T1): The evidence-level annotations that describe the individual TER stances
of each piece of evidence towards the claim, in which the evidence set is the five most relevant passages
collected from the URL. This consists the following attributes for each piece of evidence:

* Evidence: The individual textual evidence collected and being annotated;
* MTurk IDs: A list of anonymous worker IDs and assignment IDs denoting the crowd workers who pro-

vided annotations/votes;
* TER Relation: The list of TER stances voted by the workers, where 0 = SUPP, 1 = REF, 2 = NEI, 3 = Not

Sure;
* Reason for ’Not Sure;: If a voter gave ’not sure’ as their relation, this denotes the reason why, out of the

list of options seen in this paper’s appendix or a free-text reason;
* Times: The times in seconds taken by a worker to provide their full annotations;
* Aggregated TER Relation: The majority-voting aggregation of each individual worker’s TER stance an-

notation;

* Evidence-level annotations (T2): The evidence-level annotations that describe the collective TER stances
of the entire evidence set towards the claim, in which the evidence set is the five most relevant passages
collected from the URL. This consists of the following attributes:

8https://figshare.com/s/df0ec1c233ebd50817f4

https://figshare.com/s/df0ec1c233ebd50817f4
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* Evidence: The entire textual evidence set collected and being collectively annotated;
* MTurk IDs: A list of anonymous worker IDs and assignment IDs denoting the crowd workers who pro-

vided annotations/votes;
* TER Relation: The list of TER stances voted by the workers, where 0 = SUPP, 1 = REF, 2 = NEI, 3 = Not

Sure;
* Reason for ’Not Sure;: If a voter gave ’not sure’ as their relation, this denotes the reason why, out of the

list of options seen in this paper’s appendix or a free-text reason;
* Times: The times in seconds taken by a worker to provide their full annotations;
* Aggregated TER Relation: The majority-voting aggregation of each individual worker’s TER stance an-

notation;

* Sentence-level author annotations: The sentence-level annotation representing the stance of the entire refer-
ence towards the triple.
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