
Imitation Learning Datasets: A Toolkit For Creating Datasets,
Training Agents and Benchmarking

Demonstration Track

Nathan Gavenski
King’s College London

London, United Kingdom
nathan.schneider_gavenski@kcl.ac.uk

Michael Luck
University of Sussex

Sussex, United Kingdom
michael.luck@sussex.ac.uk

Odinaldo Rodrigues
King’s College London

London, United Kingdom
odinaldo.rodrigues@kcl.ac.uk

ABSTRACT
Imitation learning field requires expert data to train agents in a task.
Most often, this learning approach suffers from the absence of avail-
able data, which results in techniques being tested on its dataset.
Creating datasets is a cumbersome process requiring researchers
to train expert agents from scratch, record their interactions and
test each benchmark method with newly created data. Moreover,
creating new datasets for each new technique results in a lack of con-
sistency in the evaluation process since each dataset can drastically
vary in state and action distribution. In response, this work aims
to address these issues by creating Imitation Learning Datasets, a
toolkit that allows for: (i) curated expert policies with multithreaded
support for faster dataset creation; (ii) readily available datasets and
techniques with precise measurements; and (iii) sharing implemen-
tations of common imitation learning techniques. Demonstration
link: https://nathangavenski.github.io/#/il-datasets-video

KEYWORDS
Imitation Learning; Benchmarking; Dataset

ACM Reference Format:
Nathan Gavenski , Michael Luck , and Odinaldo Rodrigues . 2024. Imi-
tation Learning Datasets: A Toolkit For Creating Datasets, Training Agents
and Benchmarking: Demonstration Track. In Proc. of the 23rd International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2024),
Auckland, New Zealand, May 6 – 10, 2024, IFAAMAS, 3 pages.

1 INTRODUCTION
Creating imitation learning (IL) techniques requires researchers to
gather expert samples to train an agent in the desired task. This
process can be arduous since collecting expert samples usually
involves either recording humans performing the task or training a
new agent from scratch using another learning paradigm. Moreover,
creating new datasets for each new technique does not allow for
evaluation consistency across different IL approaches [9].

When creating IL datasets, we must also consider which experts
are used to collect data. Most often, when a new expert is created, no
information is provided about the quality of the data collected [1],
which can drastically affect the performance across different IL
approaches [9]. Moreover, researchers must find available code and
run it in any newly created dataset for consistent comparison.

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 – 10, 2024,
Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org).

Evaluating IL techniques in new datasets is time-consuming
since: (i) not all techniques have code readily available; (ii) im-
plementations might contain bugs; and (iii) published versions
might not support the environment the user is experimenting with.
Testbeds, such as Gym [8], help researchers to overcome problems
with different environment support. However, it is up to researchers
to create code that supports all available environments, such as
those with continuous and discrete actions and states spaces.

In light of these issues, we have developed Imitation Learning
Datasets (IL-Datasets) [4], a toolkit that aims to help researchers
through: (i) creating new datasets by allowing for faster multi-
threaded creation and curated expert policies; (ii) assisting the
training of IL agents by sharing readily available datasets with eas-
ily customisable data; and (iii) benchmarking by providing results
for IL techniques in a diverse set of environments. Figure 1 shows
each stage in a typical pipeline implementation. In Step (i) users can
use a ‘Controller’ class that allows them to create datasets using
expert policies hosted on HuggingFace [3] or custom-made ones
following the ‘Policy’ interface. With the dataset selected (based on
the data provided on HuggingFace or locally), the user can instanti-
ate the ‘BaselineDataset’ to create training and evaluation datasets
to train an agent in step (ii). Lastly, in step (iii), users can specify a
benchmarking strategy, including data and hyperparameters, and
the toolkit will ensure that no leakage (which refers to training data
being present during test) will occur, recording the benchmarking
details for reproducibility and better comparison with other work.

2 DATASET CREATION
The multithreaded ‘Controller’ class allows users to execute func-
tions that record the ‘Policy’ experiences asynchronously. This is a
lightweight class since it creates a thread pool with a fixed number
of threads (informed by the user) and spawns objects that will be
executed for each episode instead of processes waiting for available
resources. Therefore, as the execution of each episode ends, the
execution of a new episode starts ensuring nearly 100% uptime in

Imitation Learning Datasets

(i) Dataset Creation

Controller

Functions

Custom
Functions

Policy

Expert
Weights

Custom
Policy

(ii) Training Assistance

BaselineDataset

Source
Expert
Datasets

Local
Dataset

IL agent

(iii) Benchmark

Benchmark Results

IL Methods

Custom
Method

Environments

Custom
Environments

Figure 1: Visualisation of typical pipeline implementation.

https://orcid.org/0000-0003-0578-3086
https://orcid.org/0000-0003-0578-3086
https://orcid.org/0000-0002-0926-2061
https://orcid.org/0000-0002-0926-2061
https://orcid.org/0000-0001-7823-1034
https://orcid.org/0000-0001-7823-1034
https://nathangavenski.github.io/#/il-datasets-video
https://orcid.org/0000-0003-0578-3086
https://orcid.org/0000-0002-0926-2061
https://orcid.org/0000-0001-7823-1034


all threads. IL-Datasets is agnostic to environment implementation
(e.g., vectorized environments) since threads do not share memory
pointers. IL-Datasets allows users for the creation of new datasets
using already curated policies ensuring for lower behaviour diver-
gence across different datasets [1]. In addition, users can also define
custom-made policies to create new datasets while still benefiting
from IL-Datasets features, and make them available for other users.

To create a new dataset a user simply needs to provide an ‘enjoy’
function, which uses a policy to interact with the environment
and collect samples during an episode; and a ‘collate’ function that
creates a single dataset file from all the recordings of the ‘enjoy’
function. IL-Datasets provides functions for converting the newly
created dataset into a HuggingFace dataset, which can later be
updated to the platform if the user desires. The following code
snippet illustrates the creation of a new dataset using IL-Datasets.
1 from imitation_datasets.controller import Controller
2 from imitation_datasets.functions import baseline_enjoy
3 from imitation_datasets.functions import baseline_collate
4 Controller(
5 baseline_enjoy, baseline_collate, episodes=1000, threads=4
6 ).start({"game": "walker", "mode": "all"}

The ‘Controller’ class (Lines 4-6) uses the already provided ‘en-
joy’ and ‘collate’ functions, Lines 2 and 3, respectively. Therefore,
creating a new dataset only requires 6 lines of code (without los-
ing the asynchronous multithread benefit). We provide ‘enjoy’ and
‘collate’ functions (based on the StableBaselines [6] pattern) for
fast prototyping of new agents, where these functions will create a
dataset containing ‘state’, ‘action’, ‘reward’, ‘accumulated episode
reward’, and ‘episode start’ (signalling which states are the first
in each episode). Line 6 starts the asynchronous multithread pro-
cess for the register entry ‘walker’, which has a curated expert
for the ‘Walker2d-v3’ environment. IL-Datasets provides a list of
registered environments with expert policies.1 Lastly, we allow cus-
tomisable ‘enjoy’ and ‘collate’ functions to avoid the pitfalls from
Imitations [5] and StableBaselines [6], which have dataset creation
functions but only support a strict format not suitable for most
common state-of-the-art code available.

3 TRAINING ASSISTANCE
IL-Datasets provides a ‘BaselineDataset’ class that allows researchers
to use custom-made (Line 2) or hosted data (Lines 3).
1 from src.imitation_datasets.dataset import BaselineDataset
2 local = BaselineDataset("/path/to/local/file.npz")
3 hf = BaselineDataset("/path/to/hosted/data", source="hf" )

It is important to note that even though these datasets are hosted on
HuggingFace, once downloaded, the whole process can be executed
offline if so needed. The ‘BaselineDataset’ class inherits the PyTorch
Dataset class [7] and returns a tuple of (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1), where 𝑠𝑡 and
𝑠𝑡+1 are the current and next states, and 𝑎𝑡 is the action responsible
for the state transition. ‘BaselineDatasets’ can also be inherited from
other classes to support other formats, e.g., sequential data2. By us-
ing IL-Datasets’s3 data, researchers can use up to 1, 000 episodes for
each of the available environments. These episodes can be divided
between train (Line 2) and evaluation (Line 3) splits:

1http://github.com/NathanGavenski/IL-Datasets
2https://gist.github.com/NathanGavenski/ec904c7c3bf06b6361a0897b798206ac
3https://nathangavenski.github.io/#/IL-Datasets-data

1 from src.imitation_datasets.dataset import BaselineDataset
2 dataset_train = BaselineDataset(..., n_episodes=100)
3 dataset_eval = BaselineDataset(..., n_episodes=100, split="eval")

In Line 2, ‘n_episodes’ denotes the number of training episodes, e.g.,
[0, 100), and in Line 3, it refers to the evaluation set interval, e.g.,
[100, 1, 000). Each dataset published contains the expert policies
used during creation and provides the average reward in cases
where the performance metric (also provided by IL-Datasets) is
desired. Moreover, all of these features exist within IL-Dataset to
ensure consistency in IL experiments. By using the same dataset
and splits, researchers can be sure that all trajectories remain the
same through different runs.

4 BENCHMARKING
The final IL-Datasets feature is benchmarking, with which we aim
to implement and test different IL techniques based on the available
datasets. We publish all data to help researchers reduce the amount
of work to create IL techniques and to reduce the entry barrier to
new researchers, but users’ benchmarks will only be published if
they desire to do so. The benchmark trains each technique with the
available data for 100, 000 epochs and, afterwards, evaluates each
one using a specific set of seeds guaranteeing reproducibility and
consistency across multiple executions. These seeds are selected
to reduce data leakage and to make sure that the first state is not
present in the training datasets. Each technique is evaluated by
executing the best model (according to the original work selection
criteria) in each environment, and the average episodic reward and
performance metrics are displayed in a list with all benchmark re-
sults published in the IL-Datasets page. Furthermore, when training
these techniques, IL-Datasets also uses specific seeds to guarantee
that the training results will be the same for each method across
multiple executions. We note that this is done outside of Gym [8]
environments since they do not support random number generators
anymore. Therefore, training IL-Datasets implementations without
using these seeds will not guarantee the same results.

5 CONCLUSION
In this paper, we described Imitation Learning Datasets: a toolkit
to help researchers implement, train and evaluate IL agents. IL-
Datasets can be used to reduce comparison efforts while increasing
consistency between published work. It achieves this by offering:
(i) fast and lightweight dataset creation through asynchronous mul-
ti-thread processes with curated expert policies that allow for no
prior expert training and low behaviour divergence between dif-
ferent creations; (ii) readily available datasets, for fast prototyping
of new techniques letting users only worry about model imple-
mentation; and (iii) benchmarking results for IL techniques. We
believe that IL-Datasets will help facilitate the integration of new
researchers and improve consistency across different IL work.

ACKNOWLEDGMENTS
This work was supported by UK Research and Innovation [grant
number EP/S023356/1], in the UKRI Centre for Doctoral Training in
Safe and Trusted Artificial Intelligence (www.safeandtrustedai.org)
and made possible via King’s Computational Research, Engineering
and Technology Environment (CREATE) [2].

http://github.com/NathanGavenski/IL-Datasets
https://gist.github.com/NathanGavenski/ec904c7c3bf06b6361a0897b798206ac
https://nathangavenski.github.io/#/IL-Datasets-data
www.safeandtrustedai.org


REFERENCES
[1] Suneel Belkhale, Yuchen Cui, and Dorsa Sadigh. 2023. Data Quality in Imitation

Learning. arXiv (2023). arXiv:2306.02437v1 [cs.RO]
[2] King’s College London e Research team. 2023. King’s computational research,

engineering and technology environment (CREATE). https://doi.org/10.18742/
rnvf-m076

[3] Hugging Face. 2023. Hugging Face. Web Page. https://huggingface.co/
[4] Nathan Gavenski. 2023. Imitation Learning Datasets. GitHub Repository. https:

//github.com/NathanGavenski/IL-Datasets
[5] Adam Gleave, Mohammad Taufeeque, Juan Rocamonde, Erik Jenner, Steven H.

Wang, Sam Toyer, Maximilian Ernestus, Nora Belrose, Scott Emmons, and
Stuart Russell. 2022. imitation: Clean Imitation Learning Implementations.
arXiv:2211.11972v1 [cs.LG]. arXiv:2211.11972 [cs.LG] https://arxiv.org/abs/2211.
11972

[6] ashley hill, antonin raffin, maximilian ernestus, adam gleave, anssi kanervisto,
rene traore, prafulla dhariwal, christopher hesse, oleg klimov, alex nichol, matthias
plappert, alec radford, john schulman, szymon sidor, and yuhuai wu. 2018. stable
baselines. https://github.com/hill-a/stable-baselines.

[7] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban
Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. In Advances in Neural Information Processing Systems 32, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox, and R. Garnett (Eds.). Curran
Associates, Inc., 8024–8035. http://papers.neurips.cc/paper/9015-pytorch-an-
imperative-style-high-performance-deep-learning-library.pdf

[8] mark towers, jordan k terry, ariel kwiatkowski, john u. balis, gianluca de cola, tris-
tan deleu, manuel goulão, andreas kallinteris, arjun kg, markus krimmel, rodrigo
perez vicente, andrea pierré, sander schulhoff, jun jet tai, andrew tan jin shen, and
omar g. younis. 2023. gymnasium. https://doi.org/10.5281/zenodo.8127026

[9] Boyuan Zheng, Sunny Verma, Jianlong Zhou, Ivor W. Tsang, and Fang Chen. 2022.
Imitation Learning: Progress, Taxonomies and Challenges. IEEE Transactions on
Neural Networks and Learning Systems (2022), 1–16. https://doi.org/10.1109/tnnls.
2022.3213246

https://arxiv.org/abs/2306.02437v1
https://doi.org/10.18742/rnvf-m076
https://doi.org/10.18742/rnvf-m076
https://huggingface.co/
https://github.com/NathanGavenski/IL-Datasets
https://github.com/NathanGavenski/IL-Datasets
https://arxiv.org/abs/2211.11972
https://arxiv.org/abs/2211.11972
https://arxiv.org/abs/2211.11972
https://github.com/hill-a/stable-baselines
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.5281/zenodo.8127026
https://doi.org/10.1109/tnnls.2022.3213246
https://doi.org/10.1109/tnnls.2022.3213246

	Abstract
	1 Introduction
	2 Dataset Creation
	3 Training Assistance
	4 Benchmarking
	5 Conclusion
	Acknowledgments
	References

