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Abstract. In [8], we proposed an iteration schema which operated on
an extended argumentation framework whose nodes were assigned ini-
tial values in [0, 1], coming from some application area, e.g., revision
theory. We showed that the schema generated a new set of node values
at each iteration and that after a finite number of steps no new values
in the open interval (0,1) were generated. Any remaining nodes with
values in the set {0, 1} retain those values during all future iterations.
The sequence eventually converges by turning as few values in (0, 1)
into {0,1} as necessary in order to yield a complete extension in the
traditional sense (interpreting the value 1 as “in”, the value 0 as “out”,
and any other value as “undecided”. This traditional extension is the
best at accommodating the {0, 1}-part of the initial set of values. Al-
though the iteration schema operates on values in [0, 1], in this work,
we show a simplified form operating on the set {0, %, 1} which is more
suitable for use in a practical implementation.
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1 Introduction

An abstract argumentation framework is a tuple (S, R), where S is a set of
arguments and R is an attack relation on S x S. Semantics of argumentation
frameworks can be defined in terms of extensions, which are subsets of the set
of arguments S with special properties.

In [8], we proposed the Gabbay-Rodrigues Iteration Schema. The schema
is an iterative method that can be used for calculating extensions in the tradi-
tional Dung sense mentioned above. The schema takes an assignment of initial
values Vp : S — [0, 1] and produces a new assignment V;y; for each iteration
t > 0. The values in the schema eventually converge and in the limit of the



sequence we can construct a complete extension by taking the nodes with value
1.

One disadvantage of the schema is the need to calculate the limit values of
the sequence. This can be approximated by iterating sufficiently many times
until the difference between the values of the nodes of two consecutive itera-
tions falls below a certain threshold e. In GRIS [9], Rodrigues set the threshold
¢ as the upper bound of the relative error introduced due to the rounding in the
calculations of the target machine.? In experimental tests, this required around
100 iterations. Since in GRIS the schema is used to “ground” the strongly con-
nected components of an argumentation framework and hence invoked often,
if we were able to obtain the same results without the need to do any approxi-
mation, this would increase the overall performance of the computation of the
semantics significantly. This paper proposes and discusses a discrete version
of the method called the Discrete Gabbay-Rodrigues Iteration Schema and its
application in argumentation and revision theories. The computational steps of
this method are developed in the main body of this paper and are summarised
in Section 6. The reader might wish to refer to the summary to get a more
complete overview of the paper.

The following example motivates how an argumentation framework can
have requested values coming from revision theory. The interested reader may
wish to refer to [6,7] for a more in-depth analysis of the relationship between
revision and argumentation theories.

Ezample 1 (Numerical Revision Under Constraints). John and Mary are young
students and they are getting married. As part of the planning of the wedding,
John and Mary, as well as both sets of parents, put forward names of people
they want to invite to the wedding.

This can be modelled as a database A of names, where x € A means “invite
x to the wedding”. There are however constraints on A. It may be the case
that z and y are not in good terms and if z is invited, then y should not be
invited. So let C be a set of contraints of the form

T — Y.

The system A U C should not be regarded as a classical theory with negation,
in the sense that if it is inconsistent it proves everything. We do not mean that
if both x and y are invited then we should invite everybody. We would rather
regard AUC as a set violating the constraints and that A should be revised to
a smaller A" C A which satisfies the constraints.

The organisers decided to ask everyone who put a name forward to rank
them by a number, indicating how they feel about x being invited. These num-
ber were aggregated into a single number h(x) from {0, %, 1}, for every x, where
h(z) = 0 means “do not invite 27 and h(z) = 1 means “absolutely must invite
2" and h(z) = % means “indifferent with respect to x’s invitation”.

3 When the threshold is reached we can no longer reliably tell if the difference in
value is a legitimate approximation of the limit value or was introduced due to a
rounding error in the arithmetic unit of the target machine.



In order now to revise the theory A, we present the constraints in a relational
form, where Ry means “if you invite z, do not invite y”. This turns (A, R)
into an abstract argumentation framework and the function h into a numerical
assignment to the elements of A. Our task is to seek a function h’, as near h
as possible, such that

A ={z|h(z) =1}

If the wishes of everyone can be accomodated without conflicts, then we want
A’ = A. Otherwise, we want to invite as many people as possible subject to the
constraint that “everyone whose attendance is not objected by anyone invited
is also invited.”

To solve this problem and other problems like it, we turn to the discrete
version of the Gabbay-Rodrigues Iteration Schema [8].

The rest of the paper is structured as follows. In Section 2 we provide
some background material from argumentation theory. In Section 3, we re-
introduce the full-fledged version of the Gabbay-Rodrigues Iteration Schema.
This is followed by the presentation of its discrete version in Section 4. We
show some examples in Section 5 and conclude with a discussion in Section 6.

2 Background

This section provides a very brief overview of the key concepts from argumen-
tation theory that will be needed in the remainder of this paper. For a more
comprehensive introduction to these concepts the reader is referred to [5,2, 3,
1].

We mentioned in the introduction that the semantics of an argumentation
framework can be given in terms of extensions. In [2] Caminada has shown that
the semantics can be alternatively presented in terms of labelling functions.
Essentially, a labelling function A is an assignment A : S — {in, und, out}.
There is a direct correspondence between the labelling semantics and the notion
of extensions, by taking an extension to be the set of arguments with label in
in labelling functions with special properties (defined below).

As numerical assignments will also give values to all arguments, it will be
easier for us to think in terms of labellings instead of extensions. The corre-
spondence between the numerical values and the values in {in,und, out} is
given later in Definition 5. We start by defining the status of the label of an
argument with respect to the labels of its attackers.

Definition 1 (Illegal labelling of an argument [4]). Let (S, R) be an ar-
gumentation framework and X\ a labelling function for S.

1. An argument X € S is illegally labelled in by \ if \(X) = in and there
exists Y € Att(X) such that A(Y) # out.

2. An argument X € S is illegally labelled out by X if A(X) = out and there
isnoY € Att(X) such that A(Y) = in.

3. An argument X € S is illegally labelled und by A if A\(X) = und and
either for all Y € Att(X), A(Y) = out or there exists Y € Att(X), such
that \(Y) = in.



The conditions above are used to define labelling functions associated with
admissible sets, grounded and complete extensions. The sets are defined in
terms of the arguments labelled in by the corresponding labelling functions.

Definition 2 (Admissible labelling function [4, Definition 8]). An ad-
missible labelling function is a labelling function without arguments that are
illegally labelled in and without arguments that are illegally labelled out.

It is easy to see that any illegal labelling function A\g can be turned into
an admissible labelling function A4, by successively turning each node illegally
labelled in or out into und.* This process was called a contraction sequence
in [4]. The labelling function Ay, obtained in this way is the largest element of
the set of all admissible labellings that are smaller or equal to \.%

Definition 3 (Complete labelling function [4, Definition 9]). A com-
plete labelling function is a labelling function without any illegally labelled ar-
guments.

After a contraction sequence, by successively assigning the correct legal label
to each illegally labelled undecided node in A4, we eventually end up with a
labelling function A¢p without any illegally labelled nodes. By Definition 3,
Acp is a complete labelling function. This corrective process was called an
expansion sequence in [4]. Caminada and Pigozzi have further shown that Acp
is the smallest element of the set of all complete labellings that are larger or
equal to Ag, (in the sense of Footnote 5).

If we start with A\g(X) = und, for all X € S, then obviously A¢p will cor-
respond to the smallest complete labelling function of all, which is the grounded
labelling function.

Definition 4 (Grounded labelling function [4, Definition 10]). Let A be
a complete labelling function. A is a grounded labelling function if and only if
the set {X € S | M(X) = in} is minimal with respect to set inclusion among
all complete labelling functions.

These results can be understood in our numerical setting through the fol-
lowing two-way translation mechanism.

Definition 5 (Caminada-Pigozzi/Gabbay-Rodrigues Translation). A
labelling function A and a valuation function V' can be inter-defined according
to the table below.

AX) = M(X)[V(X) = Av(X)

in —» 1 1 — in
out — 0 — out
und - 3+ [(0,1) - und

4 Here “da” reminds us that A4, is the “down-admissible” labelling function resulting
from Ao.

% A1 is smaller or equal to A2 if in(A1) C in(A2) and out(A2) C out(A2). Conversely,
A1 is larger or equal to Az if in(A1) D in(A2) and out(A2) D out(A2).



What this gives us is that it is possible to turn labellings that are not
complete (i.e., are not associated with a complete extension in Dung’s sense)
via a contraction sequence followed by an expansion sequence. The Gabbay-
Rodrigues Iteration Schema can be used in a numerical context and in the limit
of the sequence, the computed values will correspond to the same complete
labelling. This is explained in more detail in the next section.

3 The Gabbay-Rodrigues Iteration Schema

In [8], we proposed the Gabbay-Rodrigues Iteration Schema. The schema is an
iterative method that can be used for calculating extensions in the traditional
Dung sense. The schema takes an assignment of initial values Vg : S — [0, 1]
and produces a new assignment V; 1 for each iteration i > 0. We will use U to
denote the unit interval [0, 1]. The schema is defined as follows.

Definition 6. Let N' = (S, R) be an argumentation framework and V, be
an assignment of values to the nodes in S. The Gabbay-Rodrigues Iteration
Schema is defined by the following system of equations T', where for each node
X €S, the value V;11(X) is defined in terms of the values of the nodes in
{X} U Att(X) in iteration V; as follows:

Vipr (X) = (1= V(X)) - min {1, 1 — maxyeancx, Vi(Y)} +
Vi(X) - max {%, 1- maxy c Att(X) Vz’(Y)} (T)

The schema guarantees that all node values generated remain in the unit
interval U:

Proposition 1 ([8]). Let N = (S,R) be an argumentation framework and
Vo : S — U an assignment of initial values to the nodes in S. Let each
assignment V;, i > 0, be calculated by the Gabbay-Rodrigues Iteration Schema
for N. 1t follows that V;(X) € U, for alli >0 and all X € S.

In order to understand what the schema computes based on the initial
assignment Vj, it will prove useful to introduce some terminology first.

Definition 7. For any assignment of values V : S —— U define the sets
in(V)={X e€domV |V(X)=1} and out(V) = {X € dom V | V(X) = 0}.

Definition 8. Let V : S —— U be an assignment of values to the nodes in
S. The set of crisp values with respect to V, Cy is the defined as the set
in(V) U out(V)

By abuse of notation, we will also use in(\) (resp. out())) to designate the
nodes labelled in (resp. out) by A and C) to denote in(\) U out(N).

As in a contraction followed by an expansion sequence, the schema also
operates in two phases. In the first phase, all nodes X whose initial values are
crisp and whose equation

V(X)=1- YelggggX){V(Y)} (1)



is not satisfied have their values re-assigned to a value in the open interval (0, 1).
Intuitively, what this does is to turn illegal crisp values into the undecided
range, but unlike in a contraction sequence, more than one illegal crisp value
can be turned into undecided in the same iteration. The schema does not turn
values in (0,1) into {0,1}, as can be seen by the theorem below, although as
many values as required will approximate their correct “legal” {0,1} values so
as to yield a complete extension.®

Theorem 1 ([8]). Let N = (S, R) be an argumentation framework, T a sys-
tem of equations for N using the Gabbay-Rodrigues Iteration Schema, and
Vo : S — U an assignment of initial values to the nodes in S. Let Vy, Vi,
Vo, ... be a sequence of value assignments where each V;, i > 0, is generated
by T'. Then the following properties hold for all X € S and for all k > 0

1. Ika(X) = O, then Vk+1(X) 7é 1.
2. If Vi(X) =1, then Vi1 (X) # 0.
3. If0< Vi(X) <1, then 0 < Vi1 (X) < 1.

We say that a sequence becomes stable if no new undecided nodes are gen-
erated between iterations.”

Definition 9. Let N = (S, R) be an argumentation framework and Vy : S —
U an assignment of initial values to the nodes in S. A sequence of assignments
Vi8S +—— U where each i > 0 is said to be stable at iteration k, if for all nodes
X € S we have that

1. Ika(X) S {0, 1}, then Vk+1(X) = Vk(X), and
2. k is the smallest value for which the condition above holds.

The theorem below shows that once all crisp values stabilise between two
iterations, they remain unchanged throughout the rest of the sequence.

Theorem 2 ([8]). Let N' = (S, R) be an argumentation framework, T its GR
system of equations, and Vy an initial assignment of values to the nodes in S.
Let Vo, Vi, Vi, ... be a sequence of value assignments where each Vi, i > 0,
is generated by T. Assume that for some iteration i and all nodes X € S
such that V;(X) € {0,1}, we have that V;11(X) = Vi(X), then for all j > 1,
Vi (X) = Vi(X).

Since no new crisp values are generated and S is finite, then at some iteration
k the last set of illegal crisp values is changed into the undecided range.

Corollary 1 ([8]). Let N' = (S,R) be an argumentation framework, Vy :
S +—— U an assignment of initial values to the nodes in S and T its GR
system of equations. The following hold:

% The correct “legal” values are obtained in the limit of the sequence lim; ;o V;.

7 Stability here for us just means that the schema has corrected all incorrectly as-
signed crisp values and hence no new values that were not already in the (0,1)
interval will be generated.



1. If the sequence of value assignments is not stable at iteration k, then there
exists X € S, such that Vi,(X) € {0,1} and Vi41(X) € (0,1).
2. Let |S| = n. Then, the sequence is stable for some k < n.

Corollary 1 shows that for some value 0 < k < |S], the sequence of value
assignments Vp(X), V1 (X), Vo(X), ... eventually becomes stable. That is, there
exists k > 0, such that for all 7 > 0 and all nodes X

— if Vk(X) = O, then Vk+j(X) = O;
— if V&(X) =1, then Vj1;(X) = 1; and
— §f Vi(X) € (0,1), then Viy;(X) € (0,1).

Obviously, if the initial assignment already gives a value in (0,1) to all
nodes, then the schema is already stable at the outset:

Proposition 2. Consider the assignment Vi such that Vo(X) = % forall X €

S. Then the Gabbay-Rodrigues Iteration Schema is stable at iteration 0.

Proof. The initial assignment has no nodes in {0,1}, so condition 1. for stabil-
ity of Definition 9 is vacuously satisfied and obviously 0 is the smallest iteration
value for which this holds.

We mean “stable” in the sense that all crisp values at the stable point
remain unchanged. Stability in the sequence does not guarantee that all values
are legal, and hence it does not guarantee that the corresponding labelling is
complete. What remains to be done is to “correct” as many illegal undecided
nodes so as to yield an extension. We have shown in [8], that this is achieved
in the limit of the sequence:

Theorem 3 ([8]). Let (S, R) be an argumentation framework; Vy be an initial
assignment of values to the nodes in S; Ao an initial labelling of these nodes;
and Vo and A\g faithful to each other according to Definition 5. Let \gq, be the
labelling at the end of a contraction sequence from Ao and Acp the labelling
at the end of an expansion sequence after Agq. Let k be the point at which the
sequence Vg, Vi,...becomes stable and V. (X) the value of the node X in the
limit of the sequence of values calculated through the Gabbay-Rodrigues Iteration
Schema. Then A\cp and V. agree with each other according to Definition 5.

The above theorem therefore establishes a correspondence between the re-
sults obtained in the limit of the sequence of the Gabbay-Rodrigues Iteration
Schema and those obtained after a contraction and expansion sequence (in
Caminada-Pigozzi’s sense). However, by using the Gabbay-Rodrigues Iteration
Schema in a numerical context, we can also use the values at the stable point
as the admissible values closest to the initial assignment of values (in Dung’s
sense). The values at the stable point are not used in this paper.

We now present a simplified version of the schema which only operates on
the set of values {0, 5,1}.



4 The Discrete Gabbay-Rodrigues Iteration Schema

We would like to simplify the calculations of the Gabbay-Rodrigues Iteration
Schema by avoiding having to approximate the limit values of the sequence and
yet keeping the same final results. This is the objective of the discrete schema
we present next.

Definition 10. Let N' = (S, R) be an argumentation framework and Vy be an
assignment of values from {0, %, 1} to the nodes in S. The Discrete Gabbay-
Rodrigues Iteration Schema is defined by the following system of equations
(Tq), where the value Viz1(X) of each node in iteration i + 1 is defined in

terms of the values of the nodes in iteration i as follows:

Ve (X)=1- max {Vi(¥)} (Ta)

The theorem below shows that, as for the full-fledged Gabbay-Rodrigues
Iteration Schema, initial assignments corresponding to complete labelling func-
tions are preserved.

Theorem 4. Let (S, R) be an argumentation framework and V; an assignment
of values from {0, %, 1} to the nodes in S. Ay, is a complete labelling function
if and only if Viy1(X) = Vi(X), for all X € S.

Proof. (=) Take any X € S and assume Ay, is a complete labelling function.

1. If Vi(X) =1, then Ay, (X) = in. Since Ay, is a complete labelling function,
then for allY € Att(X), Ay, (Y) = out. Therefore, maxy capn(x){Vi(Y)} =
0, and hence Vi1(X)=1-0=1.

2. If Vi(X) = 0, then Ay, (X) = out. Since Ay, is a complete labelling func-
tion, then there exists Y € Att(X), such that Ay,(Y) = in. Therefore,
maxy e ap(x){1Vi(Y)} = 1, and hence Vi{1(X) =1-1=0.

3. If Vi(X) = 3, then \v,(X) = und. Since Ay, is a complete labelling func-
tion, then there exists Y € Att(X), such that Ay, (Y) = und and fornoY €
Att(X) do we have that Ay, (Y) = in. Therefore, maxy ¢ an(x){Vi(Y)} = 3.
and hence Viy1(X) =1—1 = 1.

Therefore, for all nodes X € S, if Ay, is a complete labelling function, then

Vit (X) = Vi(X).

(<) Take any X € S, and assume that Vi11(X) = Vi(X).

1 If Vigi(X) = 1, then maxyeaux){Vi(Y)} = 0, and hence for all Y €
Att(X), Vi(Y) = 0. It follows that Ay, labels all attackers Y of X out.
Since Vi(X) = Viz1(X), then Ay, (X) = in and therefore Ay, legally labels
X.

2. If Viy1(X) = 0, then there exists Y € Att(X), such that V;(Y) = 1. There-
fore, one of the attackers of X is labelled in by Ay, . Since V;(X) = Viy1(X),
Av, (X) = out and hence \y, legally labels X .



3. If Vi (X) = %, then maxy ¢ ap(x){Vi(Y)} = % Therefore, there exists
Y € Att(X), such that V;(Y) = § and for no Y € Att(X) do we have that
Vi(Y) = 1. This means one attacker of X is labelled und by Ay, but no
attacker of X is labelled in by it. Since V;(X) = Viy1(X), Ay, (X) = und.

Therefore, X is legally labelled by Av;,.

It follows that if for all nodes X € S, Viy1(X) = Vi(X), then all nodes X € S
are legally labelled by Av, and hence Ay, is a complete labelling function.

Corollary 2. Let (S, R) be an argumentation framework and take the assign-
ment of values V; : S — {0, %, 1}. If Ay, is a complete labelling function, then
Vit (X) = Vi(X), for all X € S and all j > 0.

Proof. Theorem & shows that if Ay, is a complete labelling function, then
Vit1(X) = Vi(X) for all X € S. Since each iteration only depends on the val-
ues of the nodes of the previous iteration and Viy1(X) = Vi(X) for all X € S,
then all subsequent iterations will produce the exact same values.

The above corollary shows that the sequence of values generated by the
Discrete Gabbay-Rodrigues Iteration Schema does not change when the values
of an iteration correspond to a complete labelling function. In practice what
this means is that the discrete schema can be used to check whether an initial
labelling function is complete. If the initial assignment corresponding to the
labelling function is complete, then the values calculated at the second iteration
will remain the same for all nodes.

It is easy to see that the complexity of this check is not higher than that of
using labelling functions on {out,in,und} and that the check can be imple-
mented in a single loop such as the one in Algorithm 1.

Algorithm 1 Checking whether a labelling is complete

1: procedure ISCOMPLETE((S, R, V'))

2 for all nodes X € S do

3 if V(X) #1—maxyeanx){V(Y)} then

4: return false > The value of the node X is illegal
5

return true > The values of all nodes are legal

X/—\
[\_/
Z

Fig. 1. An argumentation framework with multiple complete extensions.



Ezxample 2. Consider the argumentation framework of Fig. 1 and the com-
plete labellings Ay = {X = und,Y = und,Z = und}; \; = {X = in,Y =
out,Z = out} and Ay = {X = out,Y = in, Z = in}. The associated trans-
lations are Vi, = {X = 3, Y =1, Z =1}V, ={X =1Y =0,Z = 0};
and V), = {X =0,Y = 1,Z = 1}. The table below shows how the Discrete
Gabbay-Rodrigues Iteration Schema evolves using V), as the initial values for

Vi

V(X)) =3 VP(X)=1-max{i} =3
VoY) =3 V2(Y)=1-max{i} =1
Vi(2) =3 V2(Z)=1-max{3} =1
VEX)=1  VH(X)=1-max{0} =

Vo (Y)=0 VH(Y)=1-max{l} =0
Vi(Z) =0 VHZ)=1—-max{l} =0
VE(X)=0 V2(X)=1-max{l} =0
VE(Y)=1 V2(Y)=1-max{0} =1
VE(Z)=1 V2(Z) =1 —max{0} =1

Unlike the full-fledged Gabbay-Rodrigues Iteration Schema, its discrete ver-
sion does not correct all possible illegal initial assignments. For instance, if the
assignment Vy = all-in is given to the Discrete Gabbay-Rodrigues Iteration
Schema, then the sequence of values will not converge, as shown in Example 3.
The sequence in the full-fledged Gabbay-Rodrigues Iteration Schema will how-
ever converge to the values X = %, Y = %, 7 = %, which do correspond to the
empty complete extension.

Ezxample 3. Consider the argumentation framework of Fig. 1 and the initial
assignment Vy = {X = 1,Y = 1,Z = 1}. The table below shows how the
Discrete Gabbay-Rodrigues Iteration Schema evolves using V; as initial values.

WiX)=1 WVX)=1-max{1} =0 V(X)=1-max{0}=1...
WY)=1 WVi(Y)=1-max{1} =0 To(Y)=1-max{0}=1...
VoZ)=1 Vi(Z)=1-max{1}=0 Vi(Z)=1-max{0}=1...

We will see that under the particular initial assignment all-und, the dis-
crete version of the schema will always converge to values whose corresponding
labelling function is complete.

This means that given the all-und initial assignment for an argumenta-
tion framework (S, R), the Discrete Gabbay-Rodrigues Iteration Schema will
compute its grounded extension.

Theorem 5. Let Vi, (X) be the values of the Gabbay-Rodrigues Iteration Schema
at the stable point. Then the labelling Ay, is admissible.



Proof. We only need to show that if Vi (X) = 1 then X is legally labelled in by
Av,, and that if Vi,(X) = 0 then X is legally labelled out by Ay, .

So suppose Vi(X) = 1. Since the sequence is stable at k, Viy1(X) =
Vi(X) = 1. Hence,

.1 1
1f00m1n{5,1fyenf}?tx {Vi(y )}+1~max{§,1fyenj?t>((x {Vi(Y)}

1
=maxtg, 1 -, g, Vi)
Therefore, maxy c ap(x){Vi(Y)} = 0, and hence for allY € Att(X), Vip(Y) = 0.
Therefore, Ay, labels all attackers of X out, and hence X is legally labelled in
by )\Vk .
On the other hand, if Vi,(X) = 0, since the sequence is stable at k, Vi1 (X) =
Vi(X) = 0. Hence,

1 1
0=1-min{=.1— V; 0- —,1— Vi
min{z, 1 - max {ViV)}+0-max{z, 1 - max {Vi(V)}

1
mm{z, Yelﬂg(cx){v( )
Therefore, maxy e asy(x){Vi(Y)} = 1, and hence there exists Y € Att(X) such
that Vi,(Y) = 1. Therefore, Ay, labels some attacker of X in, and hence X is
legally labelled out by Ay, .

Proposition 3. Let A be an admissible labelling function, then no expansion
sequence can change the labels of the nodes in Cl.

Proof. 1. Take A\(X) = in. Since A is admissible, then all attackers of X must
be labelled out by X\, and hence none of them is labelled und.
The significance of this is that no attacker of X can have its label changed
to in in any expansion sequence, and hence X cannot itself be changed
from in to out or to und. So the label of X remains in in all expansion
sequences.

2. Take M(X) = out. Since V' is admissible, then for at least one attacker
Y of X do we have that A(Y) = in, and therefore, by 1. above, A\(Y)
cannot change from in. Furthermore, any change in the values of any other
attacker of X cannot affect X ’s label, since it is already out, and hence it
remains out.

The counterpart for the above proposition using the schema (Tq) is shown
below.

Proposition 4. Let A be an admissible labelling and let Viy be Vy according to

Definition 5. Now consider the schema (Tq). If Vo(X) € {0,1}, then V1(X) =

Vo(X).

Proof. 1. Suppose Vo(X) = 1. Since A is admissible, then all attackers Y of
X are labelled out, and hence for all such attackers Vo(Y') = 0. Therefore,

(X) =1 max (15(V)} =1-0=1=V(X)



2. Suppose Vo(X) = 0. Since A is admissible, then there exists one attacker Y
of X which is labelled in, and hence Vo(Y) = 1. Therefore,
Vl(X):].— maXX){VE)(Y)}:].—O:].:VO(X)

Y €att(

So it is easy to see that given an admissible assignment of values Vp, (Tq)
will only change the values of the nodes X such that V5(X) € (0,1). But what
1

nodes can change? Suppose V5(X) = 5. We have three cases

1. Either mazycanx){Vo(Y)} = 1, and then Vi(X) = 0. Notice that this
change cannot alter the value of any node Z attacked by X with V5(Z) €
{0,1}. If V4 is admissible and X attacks Z, then certainly V4(Z) # 1. If
Vo(Z) = 0, then again since Vj is admissible, Z would have been attacked
by another node W such that Vo(W) = 1, so the change of X to 1 is
irrelevant to Z.

2. Or mazycapnx){Vo(Y)} = 0, and then V1 (X) = 1. Notice that this change
cannot again alter the value of any node Z attacked by X with V((Z) €
{0,1}. If V; is admissible and X attacks Z, then if V5(Z) = 0, it would have
been attacked by some node W with V(W) = 1, and so V4 (Z) will remain
0. We cannot have that V5(Z) = 1, since Vp is admissible and V5(X) = 1,
so the change in the value of X to 1 is irrelevant to all nodes attacked by
it.

3. Or mazycanx){Vo(Y)} = %, and then V;(X) = 1. Therefore all nodes
attacked by X will remain unaffected.

Conjecture 1. Let V.(X) be the equilibrium value of the node X calculated
according to the Gabbay-Rodrigues Iteration Schema and V,4(X) its value cal-
culated according to the discrete version of the schema, where

Vo (X) = { L otherwise

2

(2)

Then for all nodes X, V,(X) = V4(X).
Sketch of proof.

1. Use the full-fledged Gabbay-Rodrigues Iteration Schema. By Theorem 5,
the values in V};, correspond to an admissible labelling.

2. Proposition 1 shows that the sequence of values becomes stable at some
iteration k. Definition 9 says that crisp values do not change after the
stable point. Turn the remaining values in (0,1) into %, generating V(.
Notice that V{ is still admissible, since no nodes with values in {0, 1} were
changed.

3. Run the discrete version of the Schema using Vod as initial values. Proposi-
tion 4 guarantees that old crisp values remain the same throughout.

4. All nodes for which the sum of the value of the attackers is 0 will turn into
1. This may then change the value of some nodes attacked by them and so
forth. Any change of values will not affect the original crisp values in Vi,
because of Proposition 4.

Proceeding in this way will generate the minimal complete labelling includ-
ing the initial admissible labelling.



5 Worked examples

This section presents some examples and discusses both the differences between
the two versions of the schema and how they can be combined.

1. We have seen in Fig. 1, that the Discrete Gabbay-Rodrigues Iteration
Schema is not guaranteed to converge if given an arbitrary illegal initial
assignment. So for the argumentation framework of Fig. 1, and initial as-
signment V{(X) = VH(Y) = V@(Z) = 1, we get the values of the nodes
in odd steps of the iteration as being 0 and in the even steps as being 1,
without convergence. The full-fledged Gabbay-Rodrigues Iteration Schema
does not suffer from this. The values calculated will be as follows:

Discrete Full-fledged

Vel Vi Vs Vo Vi |Ve
X|1)0]1 X133
Y101 vil|i|d
Z{1]0]1 Z|1|3|3

Our suggestion is to let the discrete version take over from iteration k,
giving (in the discrete version):

VOd‘/id: 0d
X3 3
Yig| 3
Zl5] 3

Which does converge in a finite number of steps (without the need to cal-
culate the limit of the sequence).

2. Consider the argumentation framework of Fig. 2. It has the grounded la-
belling \y = {X = in,Y = out,W = Z = und} corresponding to the
grounded extension Ey = {X}.

Given the all—% initial assignment V; below, the Discrete Gabbay-Rodrigues
Iteration Schema will compute the subsequent values in the sequence as
follows.

Vodvldv2d‘/3d
X|il1]1 |

1 1
Yig|a |0} \

1 1 1
Wisgla|z]|

1 1 1
Z]3l5|3 |




The values converge at iteration 2, and the corresponding labelling function
Av, is the same as A1, so in(Va) = Ej.

Notice that the complete labellings Ay = {X = in,Y = out, W = in, Z =
out} and A3 = {X = in,Y = out, W = out, Z = in} cannot be obtained
using the Discrete Gabbay-Rodrigues Iteration Schema directly using % as
initial values. This is because A\; and Ay are complete but not grounded.
However, if the initial assignments Vg™ (X) = 1, V" (Y) = 0, Vi (W) = 1,
Vi(Z) =0 and V2(X) = 1, V{2 (Y) = 0, V(W) = 0, V2(Z) = 1 are
given to the discrete schema, the values will immediately stabilise as they
correspond to complete extensions:

V'Odl Vldl Vod2 V1d2
X111 X/ 1|1
Y| 0] O0 Y| 0] O0
Wi1l]|1 wio0o|o0
Z101|0 Z| 1|1

X Y w Z

Fig. 2. A sample argumentation framework.

6 Conclusions and Discussion

In [8] we put forward the Gabbay-Rodrigues Iteration Schema, which given
any initial assignment of values to the nodes of an argumentation framework,
will successively turn each node with an illegal value 1 or 0 into the undecided
range (i.e., in the open interval (0,1)). The schema will then, in the limit of
the sequence of values, turn each illegal undecided values into 0 or 1 so as to
yield a complete extension.

The disadvantage of this is that we need some means of computing the
values in the limit of the sequence. Every computer has an upper bound of the
relative error introduced due to the rounding in the arithmetic calculations.
When the maximum variation in node values between two successive iterations
becomes smaller than or equal to this value, we can no longer be certain if the
variation is genuine or due to rounding errors. In [9], Rodrigues used this as
the halting point of the approximation.

In this paper we proposed a simplified version of the schema, which we
called the Discrete Gabbay-Rodrigues Iteration Schema.

Using the simplified schema, we can only give two guarantees: 1) if the
initial assignment corresponds to a complete labelling (i.e., yields a complete
extension), then the values of the schema will remain the same; 2) If the initial
values are all %, then the schema will converge to values corresponding to



the grounded labelling of the argumentation framework. However, there is no

guarantee of correction of any other initial illegal values other than

1
5.
Our suggestion is to combine the two schema as follows.

. Start with the Gabbay-Rodrigues Iteration Schema and iterate until no

new nodes with undecided values are generated (say, iteration k). This is
the stable point for the schema.

. At the stable point k, Corollary 1 and Theorem 1 guarantee that all crisp

values are stable (you can read this as “they are legal”). This is also the
largest possible set of such values and nodes cannot swap values within
{0,1}.

The limit theorem of the Gabbay-Rodrigues Iteration Schema gives us that
all values will eventually converge to one of {0, %, 1}. This means that the
remaining values in (0,1) will all converge to one of {0, %, 1} and this
convergence will not affect the previously calculated crisp values.

Instead of approximating the limit, let us take the discrete version of the
iteration schema and use the following assignment V{ as the initial assign-

ment for the discrete schema:

V() = {Vk(XL if Vi (X) € {0,1} )

% , otherwise

. Now apply the discrete schema with the initial values Vod.

d 1 d
VEA(X) =1 max (V) (Ta)

The initial crisp values in Vi are all legal, since V! = V}, is admissible, so
by Proposition 4, they will not change.

The illegal % values will change, but only so as to yield a complete extension.
We conjecture that this extension has to be the same as the one calculated
by the full-fledged Gabbay-Rodrigues Iteration Schema, since that exten-
sion is the minimal extension including the crisp values calculated at the
stable point.
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