
EqArgSolver – System Description

Odinaldo Rodrigues

Department of Informatics,
King’s College London,

The Strand, London, WC2R 2LS, UK
odinaldo.rodrigues@kcl.ac.uk

Abstract. This paper provides a general overview of EqArgSolver, a
solver for enumeration and decision problems in argumentation theory.
The solver is implemented from the ground up as a self-contained appli-
cation in C++ without the use of any other external solver (e.g., SAT,
ASP, CSP) or libraries.

1 Introduction

EqArgSolver is a computer application that can be used to solve enumeration
and decision problems in argumentation theory. EqArgSolver builds and expands
on the prototype GRIS [8] submitted to the 1st International Competition on
Computational Models of Argumentation (ICCMA, [1]). It includes two technical
advances that result in significant improvements in performance [7] and func-
tionality. Firstly, EqArgSolver uses the discrete version of the Gabbay-Rodrigues
Iteration Schema (dGR-iteration schema) [4], which can be implemented in a
much more efficient way than its full-fledged counterpart [3]. Secondly, the com-
ponent in GRIS responsible for computing preferred extensions (and based on
Modgil and Caminada’s algorithm for the computation of preferred labellings
[6]) has been replaced by a novel and more efficient algorithm [7] that can com-
pute all complete extensions. This allows EqArgSolver to handle the following
two types of problems: i) Given an argumentation network 〈S,R〉, to produce
one or all of the extensions of the network under the grounded, complete, pre-
ferred or stable semantics; and ii) Given an argument X ∈ S, to decide whether
X is accepted credulously or sceptically according to one of those semantics.

The solver follows the general process of computation described in [5], which
requires the decomposition of the framework into SCCs and the arrangement of
these into layers following the direction of attacks between the arguments.

The dGR-iteration schema is employed in what we call a grounding module
that propagates a (conditioning) solution f (under a particular semantics) to an
attacked SCC in a subsequent layer. Provided f is a legal assignment, i.e., an
assignment in which all arguments are correctly labelled, the result of the prop-
agation will also be legal. The numerical computations of the dGR-iteration
schema are optimised by using the integer values 0 = out (rejected), 1= und
(undecided), and 2 = in (accepted). It is worth emphasising, that although the
dGR-iteration schema is employed in these computational tasks, EqArgSolver



actually uses a direct approach to the problem (in the sense of [2]), i.e., argu-
mentation problems are solved via operations performed directly on the graph.
We will refer to the labels 0/out, 1/und and 2/in interchangeably.

The newly proposed algorithm [7] ensures that all arguments left undecided
by the propagation of solutions to SCCs are systematically tried for inclusion in
some extension (this is explained in more detail in Section 2).

EqArgSolver has been submitted to the 2nd iteration of ICCMA, whose re-
sults will be announced at the 2017 International Workshop on Theory and
Applications of Formal Argument (TAFA-17).

2 System Overview

EqArgSolver accepts problems submitted according to probo’s syntax (see [1]).
The problem specification is fully validated before the computation proceeds.

Algorithm 1 gives a high-level overview of this computation, which we now
briefly describe. Some shortcuts allowing early termination are omitted for space
limitations. The network is first divided into SCCs and arranged into layers. The
starting point is an initial partial solution labelling all arguments as undecided
(all-und, line 4). The solutions to each layer expand on the previous layers’
solutions to include the new labelling assignments for the layer’s arguments.

The composition of a typical layer is shown in Fig. 2 (L). It consists of a
block of trivial SCCs that are mutually dependent and operated on in one step,
and a set of non-trivial SCCs that are independent from each other. Before
working on a layer, each partial solution generated for the preceding layer is
propagated to the layer’s SCCs in order to condition its argument values – a
process we call grounding. Grounding will fully determine all of the values of the
arguments in the trivial block (line 9) but not all of the values of the arguments in
the non-trivial SCCs. Some of these arguments will be left undecided although
they could potentially be labelled in in a larger extension (line 12). A newly
proposed algorithm [7] ensures that all such arguments are systematically tried
for inclusion generating a number of partial solutions for the SCC (line 13).
The partial solutions thus obtained1 are then combined using what Liao calls
the horizontal and vertical combinations of partial solutions [5] (lines 14 and 16,
respectively). This process is repeated until all relevant layers are processed.

Strictly speaking, the dGR-iteration schema can be applied to the entire
argumentation framework (without decomposition) to compute the grounded
extension. However, since the decomposition of the network into SCCs and their
arrangement into layers can be performed very efficiently, the extra decomposi-
tion cost is offset by performance gains obtained through the computation by
layers in all but a few special cases, and is therefore our preferred choice for all
semantics. Further optimisation here is possible but left as future work.

How Grounding Works. Propagation of the conditioning values of a solution
is done using the dGR-iteration schema, whose behaviour we can only outline

1 Some filtering to eliminate solutions not leading to maximal extensions in pre-
ferred/stable semantics problems is also done, although this is not shown in Al-
gorithm 1. For full details, refer to [7].



due to space limitations. Each node X ∈ S gets an equation describing its value
at iteration i+1 (Vi+1(X)) based on the nodes’ values at iteration i. All nodes get
initial value und (i.e., V0(X) = 1, for all X ∈ S). Let Att(X) denote the attackers
of X. The general form of the equations is Vi+1(X) = 2−maxY ∈Att(X){Vi(Y )}.
The sequence of values of all nodes will converge in linear time producing a
legal assignment that corresponds to an extension (see [4] for details). Fig. 1,
depicts a sample argumentation framework, its associated system of equations,
and the behaviour of the schema in several grounding scenarios until convergence
is achieved. In layer 0 the schema produces the solution X = 2, A = 0, and
W,Y = 1. It is easy to see that besides X, arguments W and Y could also
be included in (distinct) complete extensions. The new algorithm is invoked at
this point considering all candidate arguments that could potentially be labelled
in. This imposes some constraints on any additional candidate partial solutions.
In this example, it will produce the two remaining partial solutions to layer 0:
W = 2, Y = 0 and W = 0, Y = 2. Propagating layer 0’s three conditioning
solutions to layer 1 is done again by grounding SCC4 with the solutions. The
result of these groundings can be seen in Fig. 1 (R). It produces extensions {X},
{X,W} and {X,Y,D}.

Generating All Complete Extensions. As mentioned, the grounding module
may leave some nodes with label und which could potentially be labelled in
yielding a larger extension (e.g., nodes W,Y in layer 0 or the nodes in layer 1 of
Fig. 1). Our algorithm attempts to label in all such undecided nodes, propagating
the results as required. When this is employed judiciously, it not only generates
all remaining complete extensions, but also offers significant performance gains
because the legal labelling of an argument imposes constraints that help prune
the search space of feasible solutions. Full details are given in [7].

Argumentation Framework:

W Y X A

B C E F

D

Layer 0

SCC4, layer 1

Equations:

Vi+1(X) = 2

Vi+1(A) = 2− Vi(X)

Vi+1(W ) = 2− Vi(Y )

Vi+1(Y ) = 2− Vi(W )

Vi+1(B) = 2−max{Vi(W ), Vi(D)}
Vi+1(C) = 2−max{Vi(B), Vi(Y ), Vi(E)}
Vi+1(E) = 2−max{Vi(C), Vi(F )}

Vi+1(D) = 2−max{Vi(C)}
Vi+1(F ) = 2−max{Vi(E)}

Results of grounding:
Layer 0

X A W Y
V0 1 1 1 1
V1 2 1 1 1
V2 2 0 1 1

in out und und

Layer 1, sol W =1, Y =1
B C D E F

V0 1 1 1 1 1
und und und und und

Layer 1, sol W =2, Y =0
B C D E F

V0 1 1 1 1 1
V1 0 1 1 1 1

out und und und und

Layer 1, sol W =0, Y =2
B C D E F

V0 1 1 1 1 1
V1 1 0 1 1 1
V2 1 0 2 1 1
V3 0 0 2 1 1

out out in und und

Fig. 1. Examples of grounding invocations.



1 EqArgSolver
2 Read and validate graph G
3 Decompose G into SCCs and arrange them into layers L = {L0, . . . , Lk−1}
4 Sols←{all-und}
5 for i← 0 to k − 1 do /* Iterate through layers */

6 newSols←∅
7 foreach f ∈ Sols do
8 λ←GR-ground(Li, f); TSB← trivial SCC block of Li

9 LayerSols←{λ ↓ TSB}
10 S← non-trivial SCCs in Li

11 foreach S ∈ S do
12 possIns← candidate in-nodes of S according to λ
13 SCC-sols←findExtsFromArgs(possIns, S, f, λ ↓ S)
14 Horizontally combine SCC-sols with solutions in LayerSols

15 end foreach
16 Add vertical combination of f with each γ ∈ LayerSols to newSols

17 end foreach
18 Sols ←newSols
19 end for

20 end
Algorithm 1: EqArgSolver’s overall processing sequence.

3 Functionality and Design Choices

As we mentioned, EqArgSolver can tackle enumeration and decision problems
(sceptical and credulous) of the grounded, complete, preferred and stable se-
mantics. EqArgSolver can also provide solutions for the Dung’s Triathlon, i.e.,
to compute in sequence the grounded extension, all stable extensions, and all
preferred extensions of an argumentation framework. Graphs must be supplied
as a trivial graph format text file, consisting of a sequence of argument designa-
tors one per line, followed by the separator “#” in its own line, followed by a list
of pairs of argument designators, a pair per line, where the first element of the
pair is the attacking argument and the second element is the attacked argument.

Each argument in EqArgSolver is assigned an internal identifier (an unsigned
integer) and the argumentation graph is represented internally as an enhanced
adjacency list. The argument data structure used is shown in Fig. 2 (C) and
Fig. 2 (R). layer is the graph layer assigned by the decomposition; extArgId is
the external argument identifier (the string given in the graph’s input file); and
attsIn and attsOut give, respectively, the list of incoming and outgoing attacks
of the argument. This data structure is associated with the internal argument
identifier using C++’s associative container unordered map.

Storing both directions of the attack relation in the vectors attsIn and
attsOut makes it more efficient to traverse the graph as needed. Similarly, a
second associative container is created using the external node identifier as key
and the internal node identifier as value (this is useful in decision problems). A
(partial) solution is just a mapping from node identifiers to unsigned integers.



Layer structure Node definition Node structure

X1 X2
. . . Xk

SCC1 SCC2
. . . SCCn

Y1

Y2 Y3

trivial SCC

block

Li

Li+1

non-trivial

SCC block

struct
ArgNode_T {

int layer;
ExtArgId_T extArgId;
vector<IntArgId_T> attsIn;
vector<IntArgId_T> attsOut;

};

Z1 Z2 Zk

layer X extArgId

Y1 Y2 Yn

attsIn . . .

. . .attsOut

(L) (C) (R)

Fig. 2. Data representation in EqArgSolver

In order to avoid resizing of the associative container at creation time (which
in large graphs can be very inefficient), EqArgSolver looks ahead in the input
graph file to count the total number of arguments. It then creates a hash map
with a sufficiently large number of buckets to represent the entire graph. This
ensures that even graphs with many tens of thousands of nodes can be created
in a just a few seconds.

Many further improvements can still be made to EqArgSolver. In tests, we
have identified a number of randomly generated graphs with problem instances
that were particularly difficult to solve. Work is under way to understand why
these graphs are challenging and to refine the complete extension generator al-
gorithm further to avoid the multiple generation of the same solution in different
search branches.

References

[1] F. Cerutti, N. Oren, H. Strasse, M. Thimm, and M. Vallati. The First Inter-
national Competition on Computational Models of Argumentation (ICCMA’15).
2015. http://argumentationcompetition.org/2015/index.html.

[2] G. Charwat, W. Dvořák, S. A. Gaggl, J. P. Wallner, and S. Woltran. Methods
for solving reasoning problems in abstract argumentation – A survey. Artificial
Intelligence, 220:28 – 63, 2015.

[3] D. M. Gabbay and O. Rodrigues. Equilibrium states in numerical argumentation
networks. Logica Universalis, pages 1–63, 2015.

[4] D. M. Gabbay and O. Rodrigues. Further applications of the Gabbay-Rodrigues
iteration schema in argumentation and revision theories. In C. Beierle, G. Brewka,
and M. Thimm, editors, Computational Models of Rationality, volume 29, pages
392–407. College Publications, 2016.

[5] B. Liao. Efficient Computation of Argumentation Semantics. Elsevier, 2014.
[6] S. Modgil and M. Caminada. Proof theories and algorithms for abstract argumen-

tation frameworks. In Guillermo Simari and Iyad Rahwan, editors, Argumentation
in Artificial Intelligence, pages 105–129. Springer US, 2009.

[7] O. Rodrigues. A forward propagation algorithm for semantic computation of argu-
mentation frameworks. In E. Black, S. Modgil, and N. Oren, editors, Theory and
Applications of Formal Argumentation, Melbourne, Australia, 2017. Springer.

[8] M. Thimm and S. Villata. System descriptions of the 1st International Competition
on Computational Models of Argumentation (ICCMA’15). CoRR, abs/1510.05373,
2015.


