
Introducing Bayesian Argumentation
Networks

D. M. Gabbay
Department of Informatics, King’s College London,

Ashkelon Academic College, Israel,
Bar Ilan University, Ramat Gan, Israel
University of Luxembourg, Luxembourg.

http: // /www. inf. kcl. ac. uk/ staff/ dg
dov.gabbay@kcl.ac.uk

O. Rodrigues
Department of Informatics, King’s College London, The Strand, London, WC2R

2LS, UK,
http: // www. inf. kcl. ac. uk/ staff/ odinaldo

odinaldo.rodrigues@kcl.ac.uk

Abstract

We give a faithful interpretation of Bayesian networks into a version of nu-
merical argumentation networks based on Łukasiewicz infinite-valued logic with
product conjunction. The advantages of such a translation, beyond the theoret-
ical aspects of it, are hopefully threefold: 1) importing updating algorithms into
argumentation networks; 2) importing the handling of loops into cyclic Bayesian
networks; and 3) importing logical proof theory into Bayesian networks.
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1 Introduction
In this paper, we compare probabilistic argumentation with Bayesian networks and
motivate the new definition of Bayesian Argumentation Networks. We examine what
extra features are needed to extend traditional abstract argumentation frameworks
to enable the extended frameworks to simulate Bayesian networks. Once we identify
such features, then we can call the extended argumentation frameworks by the name
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Bayesian Argumentation Networks. We shall see later that the extra features are
all well-known features existing in the literature in various contexts.

In order to illustrate these ideas, consider the network 〈S,R〉 of Fig. 1. In
this figure, the arrows just indicate parenthood. If the arrows are considered as
attacks, then 〈S,R〉 is a traditional abstract argumentation framework (henceforth
a “Dung network”), and there is only one complete extension E = {X,Y, U,W}
(with A = “out”).

X Y

A

U W

Figure 1: A sample argumentation network.

The operating assumptions (which are violated in Bayesian networks) are:

1. Since there is no connection (i.e., attack) going into X and into Y , then X
and Y are “in” (intuitively meaning X = Y = >).

2. Since U and V have the same parent A, we treat U and V in the same way.

3. We do not mind having cycles, i.e., R need not be acyclic.

There are other assumptions in the case of argumentation networks, but let us
concentrate only on the ones above.

Bayesian networks do not allow for cycles (R must be acyclic) and they do not
determine the values of nodes without parents, such as X and Y . Moreover, they
are not committed to treating nodes with the same parents (such as U and W ) the
same way. Such a view is not new to argumentation. In fact such a view is shared
by Abstract Dialectical Frameworks (ADFs) [6]. In an ADF, each node α depends
on its parents, say {β1, . . . , βn} via a Boolean formula Ψα specific to α. Thus, we
have that α depends on Ψα(β1, . . . , βn) in the ADF case and we want that

α↔ Ψα(β1, . . . , βn).

In Dung’s networks, the same constraint Ψα is imposed on all nodes α, namely

α↔
n∧
i=1
¬βi
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where “∧¬” is the Peirce-Quine connective

↓ {Ei} = ∧ni=1¬Ei1

Still, we do not have many options when we treat the network of Fig. 1 as an ADF.
Since X and Y depend on the empty set, then each can be either > or ⊥. A depends
on X and Y , and these being > or ⊥ allow for A to be either > or ⊥ and similarly
for U and W . So depending on the Boolean functions Ψα employed, we can get all
possible distributions of {⊥,>} among the nodes in Fig. 1.2

If we allow source nodes such as X and Y to have arbitrary given values in
[0, 1] and are able to describe the desired dependencies between node values in
an argumentation context, then we can bridge the gap between the Bayesian and
argumentation representations and hence analyse the properties of the former under
the perspective of the latter. This can bring benefits to both areas which we will
discuss later.

We find that the probabilistic approach to argumentation is the nearest we can
get to Bayesian networks. We identify that what is missing in the probabilistic
approach is a representation of conditional probabilities, a feature which is central in
Bayesian networks. We further realise that if we define new argumentation networks
based on joint attacks defined numerically using Łukasiewicz infinite-valued logics,
we will have what we need. The integration of conditional probabilities and joint
attacks is one of the objectives of this paper.

The rest of the paper is structured as follows. We start with a description
of the probabilistic approach to argumentation in Section 2. The section is writ-
ten in a Socratic manner, leading the reader to our conclusions using examples
and semi-formal definitions. Section 3 gives the formal definitions in a systematic
manner. Section 4 contains a comprehensive example illustrating what we have
done. Section 5 deals with complexity issues. Section 6 discusses related literature
[3, 4, 9, 16, 5, 19, 20, 8, 21, 22, 24, 25, 27]. In Section 7, we conclude with a discussion
and directions for future research.

1Notice that the other boolean connectives can be defined in terms of ↓, for instance, ¬P ≡ P ↓
P .

2As pointed out by one of the referees, the reader might think that this is a shortcoming of
ADFs in the sense that initial arguments, being dependent on the empty set, can only have a fixed
value. However, there is also the possibility to consider all initial arguments A as self-looping with
acceptance condition A. In this case most semantics then yield a “guessing” value for A. We should
however be cautious in not allowing too many modifications. It is known that enough modifications
can reduce ADFs to traditional argumentation systems (see [14]).
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2 Background Discussion

This section develops in a Socratic manner the features we need to reach a proper
representation of a Bayesian network as an extension of an argumentation network.
We therefore turn to the probabilistic approach to argumentation, it being the near-
est to Bayesian networks. We need some notation before we describe it. As a
starting point, we consider the elements of S = {X,Y,A,U, V } as classical proposi-
tional atoms capable of getting the values α = > (corresponding to α is “in”) and
α = ⊥ (corresponding to α is “out”). Let us understand the term full conjunction of
literals to mean a conjunction containing for each atom α of the language (which is
assumed to be finite) either α or ¬α. Any full conjunction of literals of the form

e = ∧iα±i

can be considered a classical model m(e). We have

m(e) |= α iff e ` α

We can also associate with e a subset Se of S, Se = {α ∈ S | e ` α} (remember
that the elements of S are atoms without negation). So if we assign probability
distributions π on the modelsm(e) or on the set of full conjunctions of literals {e}, we
get a traditional probability function π on the space Ω = 22S = families of models =
2{e} = the set of all propositional well-formed formulae (wffs) built-up from the
atoms of S.

In our example, S = {X,Y,A,U, V }. 2S = all subsets of S = all models of the
language S. Ω = 22S = all possible sets of models. So π gives a value 0 ≤ π(m) ≤ 1,
for each model m of S. We have that

∑
m π(m) = 1.

According to [13], the probability π(m) for a typical conjunctive model m(e)
where e = ∧α∈Sα± can be given in two main ways.

i) The semantic way, which gives values π(m(e)) directly for each e.

ii) The syntactic way, which gives values π(α), for each α ∈ S, and then π(m(e))
is defined as the product ∏

α

π±(α)

where π+(α) = π(α) and π−(α) = 1− π(α).

So for example in Fig. 1, we either give probability directly to each model, e.g., to
e = X ∧ Y ∧ ¬A ∧ U ∧ ¬W or give probabilities to each of X, Y , A, U and W , and
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then the probability of e can be calculated as

π(X) · π(Y ) · (1− π(A)) · π(U) · (1− π(W ))3

The version of the probabilistic approach to both Dung or ADF which can be
compared with the Bayesian approach is the syntactical one, ii) above, the one
which assigns probabilities to nodes (not the one that assigns probabilities to the
subnetworks). Thus each of the nodes X, Y , A, U and V is assigned a probability
value.

The most general case of getting such probability is to regard the arguments as
atoms in a space (i.e., S = {X,Y,A,U, V }) and assign probabilities to the subsets of
S. This is a traditional probability distribution. Note that the subsets E ⊆ Ω = 22S

can also be identified with sets of models of formulas built-up using atoms from S.
We now show a connection of probabilistic argumentation with Bayesian argu-

mentation. Both Dung and ADFs would read Fig. 1 as follows. The figure suggests
the probability space being the family Ω = 22S of all subsets of S = {X,Y,A,U, V }
and the connections (arrows) in the figure suggest restriction on the probability π
on Ω. We want to consider only those probabilities which satisfy for every α ∈ S
with parents {β1, . . . , βn} the following:

π(α) = π(ψα(β1, . . . , βn))

Remember that each wff defines a set of models in which it holds, and π is a prob-
ability on sets of models. Thus π gives a number 0 ≤ π(m) ≤ 1 to each model m of
the language of S with

∑
m π(m) = 1.

Bayesian argumentation looks at the elements of S as random variables capable of
getting > or ⊥, and regards all probability functions P (α1, . . . , αn) where {αi} = S.

In our case we have probability functions P (X,Y,A,U, V ). Thus for each com-
bination of values of > or ⊥ to the variables in S, P will give a probability.

Such a combination can also be viewed as a model m for the language of S, and
so P gives probability to models. This is the same as π, but the restrictions on
P and the manipulation of P are different in this case. We have, according to the
Bayesian view, that Fig. 1 gives the dependencies of the variables on each other. Let
{β1, . . . , βn} be all the parents of α and P (α|Z) denote the conditional probability
of α given Z. We have the following equations:

P (α) = P (α | β1, . . . , βn) · P (β1, . . . , βn)

3See [13].
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If α has no parents, then P (α) must be given. If α does have parents {β1, . . . , βn},
then P (α | β1, . . . , βn) must be given. P (α | β1, . . . , βn) can be given as a function
giving a value in [0, 1] for every choice of >,⊥ to each βi.

Thus the Bayesian approach specifies a syntactical type probability on the atoms
α ∈ S, by using the graph of the network and giving conditional probabilities for
the dependencies of the graph.

So for the network of Fig. 1 we need the following values to specify a specific
Bayesian distribution P :

• Values of the probabilities of the source nodes X and Y , i.e., P (X) and P (Y ).

• A table of values v, describing the coefficients of the function P (A|X,Y ). We
use the notation FA|11 for the case A|X ∧Y , FA|10 for the case A|X ∧¬Y , etc.
We denote the transmission coefficient for each case as eFA|11 , eFA|10 , and so on:

X Y v

> > eFA|11

> ⊥ eFA|10

⊥ > eFA|01

⊥ ⊥ eFA|00

• A table for P (U |A):

A v

> eFU|1

⊥ eFU|0

• A table for P (W |A):

A v

> eFW |1

⊥ eFW |0

Note that the network of Fig. 1 actually depicts Pearl’s famous Earthquake
example [20] as described in the book “Bayesian Artificial Intelligence” by Korb and
Nicholson [17]:
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“You have a new burglar alarm installed. It reliably detects burglary,
but also responds to minor earthquakes. Two neighbors, John and Mary,
promise to call the police when they hear the alarm. John always calls
when he hears the alarm, but sometimes confuses the alarm with the
phone ringing and calls then also. On the other hand, Mary likes loud
music and sometimes doesn’t hear the alarm. Given evidence about
who has and hasn’t called, you’d like to estimate the probability of a
burglary.”

Replacing X with “Burglary”, Y with “Earthquake”, A with “Alarm”, U with
“John calls”, and W with “Mary calls”, gives the Bayesian network:

Burglary Earthquake

Alarm

John calls Mary calls

For simplicity, we will continue to use the letters X, Y , A, U and W .
Let us assume the following values. P (X) = 0.01, giving P (X = >) = 0.01, and

P (X = ⊥) = 0.99; P (Y = >) = 0.02, giving P (Y = ⊥) = 0.98; and the values
given by the tables below:

X Y v

> > eFA|11 = 0.95
> ⊥ eFA|10 = 0.94
⊥ > eFA|01 = 0.29
⊥ ⊥ eFA|00 = 0.001

A v

> eFU|1 = 0.9
⊥ eFU|0 = 0.05

A v

> eFW |1 = 0.70
⊥ eFW |0 = 0.01
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We can now compute the probabilities P (A), P (U) and P (W ).

P (A) = eFA|11 × P (X)× P (Y ) +
eFA|10 × P (X)× (1− P (Y )) +
eFA|01 × (1− P (X))× P (Y ) +
eFA|00 × (1− P (X))× (1− P (Y )).

P (W ) = eFW |1 × P (A) + eFW |0 × (1− P (A)).

P (U) = eFU|1 × P (A) + eFU|0 × (1− P (A)).

So

P (A) = 0.95× 0.01× 0.02 +
0.94× 0.01× 0.98 +
0.29× 0.99× 0.02 +
0.001× 0.99× 0.98.

= 0.00019 + 0.009212 + 0.005742 + 0.0009702
= 0.0161142 ≈ 0.016

So P (¬A) ≈ 0.984. Now for U and W , we get

P (W ) = (0.7× 0.016) + (0.01× 0.984) = 0.0112 + 0.00984 ≈ 0.021.

P (U) = (0.9× 0.016) + (0.05× 0.984) = 0.014 + 0.0492 ≈ 0.063.

Thus we can see that we have a syntactical probability distribution on S.

2.1 A Common Ground for Bayesian, Argumentation and Abstract
Dialectical Frameworks

To compare Bayesian networks with say ADFs or with traditional Dung networks, we
need to go to a common ground. First we note that with any formal system, whether
it be a logic such as classic or intuitionistic logic, or whether it be a Bayesian, ADF
or traditional argumentation network there are always two components. The first
one is the intended meaning of the system. The second is the formal mathematical
representation of the system and the mathematical machinery of handling it. When
we compare two such systems we can compare them in regard to their formal ma-
chinery or we can compare them in their intended meaning. It may be that two
systems have the same formal machineries but completely different meanings. This
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happens a lot in modal logics with possible world semantics. In the case of a network
〈S,R〉, the intended meaning may impose some restrictions on the graph. In an ar-
gumentation network the arrows mean attack; the variables get values “in”, “out”
and “undecided”; and unattacked nodes must get value “in”. In Bayesian networks
the arrows represent dependencies and there is the requirement of the network being
acyclic. In addition, nodes with the same parents in Bayesian networks can behave
differently, which is not the case in the traditional argumentation but is the case in
ADFs. In ADFs the arrows represent dependencies and there is no requirement of
being acyclic. Having said all that let us now compare the systems on the basis of
their mathematical machinery which can be captured by the two points below.

a. Since Bayesian networks allow for points without parents to have an arbi-
trary probability assigned to them, Bayesian networks can agree to limit such
assignment for the sake of common grounds with argumentation and assign
probability 1, we can assume a similar sacrifice and the same property for
ADFs. If, on the other hand, we want to leave Bayesian networks as they are
(not ask them to make any limitations) but we still want to have common
ground with respect to this property with ordinary Dung networks, we can
modify Dung’s networks, and add for each node α a new node called ¬α, with
α and ¬α attacking each other. This will allow any node α which was origi-
nally unattacked to get any value in the modified network, because it will be
part of the cycle {α,¬α}.
We can also assume, for Bayesian networks, the sacrifice limitation that nodes
with the same parents behave the same (we can call these Bayesian networks
BNA nets.4 We can also add this requirement (that nodes with the same
parents behave the same way) as an additional assumption on ADFs to make
them more in line with traditional Dung networks.

b. Bayesian networks are acyclic and since ADFs and traditional Dung networks
can also be acyclic, let us accept this additional restriction on them.

So we compare acyclic probabilistic ADFs with BNA nets and see what else we need
to add to argumentation networks to be able to implement Bayesian networks in
them.

The above discussion outlined several possibilities for finding common
grounds between Bayesian networks and Dung’s networks. We made what we think
is the best choice/approach, which we now proceed to explain.

4The letters “NA” stand for “nice-to-argumentation”.
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Looking again at Fig. 1, we see that what is missing in order to do a proper
comparison is the fact that Bayesian networks have the conditional probabilities.
Let us look at Fig. 2, which is the top part of Fig. 1.

X Y

A

Figure 2: The top part of the network in Fig. 1.

What the Bayesian approach does is to give arbitrary values P (X), P (Y ) (so we
have syntactical probabilities for X and Y ), but to get P (A), it uses transmission
values as given in Fig. 3. eFA|ij

are transmission coefficients in the sense of [1, 2] and
F ij is an attack formation in the sense of [12], to be explained below and formally
defined in Section 3.

F 11 : X ∧ Y F 10 : X ∧ ¬Y F 01 : ¬X ∧ Y F 00 : ¬X ∧ ¬Y

A eFA|00

eFA|10

eFA|11

eFA|01

We have P (A) =
∑
eijP (F ij).

Figure 3: An argumentation network with attack formations, transmission coeffi-
cients and joint attacks.

So what we need to accommodate Bayesian networks are argumentation net-
works with attack formations, transmission coefficients, and joint attacks obeying
the attack formula of Fig. 3. The semantics of such networks is best given using the
equational approach [15].5

5There are several different interpretations of basic argumentation notions. In traditional Dung
networks arcs represent attacks while in ADFs they represent dependencies It is natural then to
think that ADFs are closer in meaning to Bayesian networks because certainly arcs in Bayesian
networks are not attacks but dependencies. Our reader may therefore be puzzled at our translation
of Bayesian networks into argumentation where arcs represent attacks. We even use joint attacks.
We remind the reader that ADFs can be translated into traditional argumentation networks using
joint attacks and additional nodes. The additional nodes are used to help simulate the boolean
dependencies (see [14]). It may be possible to translate Bayesian networks into ADFs, but we
would need additional points and some kind of fuzzy propagation. It therefore makes more sense to
translate directly into traditional networks with attacks. Note also that numerical values associated
with nodes can have several interpretations: 1) a fuzzy truth-value; 2) a probability value express-
ing uncertainty about argument acceptance; 3) a value obtained in the context of the equational



Bayesian Argumentation Networks

We now explain the components needed.

a. Attack formations

Consider Fig. 4 (L) and Fig. 4 (R). In Fig. 4 (L), we have that α attacks β.
We have

(a) If α = “in”, then β = “out”
(b) If α = “out”, then β = “in” (unless β is attacked by something else that

is not “out”)
(c) If α = “undecided”, then β = “undecided” (unless it is attacked by

something else that is “in”, in which case β has to be “out”)

α

β

α

Xα,β

Yα,β

β

(L) (R)

Figure 4

In Fig. 4 (R), we have two intermediary points unique to the pair (α, β). We
view this as an attack formation. It does the job of Fig. 4 (L). (a), (b) and (c)
still hold for Fig. 4 (R). Fig. 4 (R) is a general replacement for Fig. 4 (L), used
by Gabbay in [14]. It allows for the implementation of higher level attacks.6

approach as the result of some calculation. 4) a Bayesian probability value. The conditions when
two of such values coincide need to be investigated. For example, we do know that for the Eqinv

equational approach the numerical values can be viewed as probabilistic values where the arguments
are mutually independent [13].

6Higher level attacks are attacks on attacks. So for example, an academic professional argument
β put forward in favour of promoting three members of staff to the rank of full professor by virtue of
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For example the attack γ → (α → β) can be implemented as γ → Yα,β. The
two additional dummy pointsXα,β and Yα,β are just two “transmitting points”,
which allow the node γ to attack the transmission by attacking the point Yα,β.
We do not need higher level attacks in this paper but it is useful to know
how useful attack formations are in translations/implementations. We use the
notation F [α, β] as in Fig. 5.

α

F [α, β] =

auxiliary points
xα,β, yα,β, . . .

appearing only in
this diamond

β

Input α

Output β

Figure 5

Attack formations can be single arguments as in Fig. 6. The argument A is
both the input and the output point of the formation.
Attack formations can attack each other, as in Fig. 7. The output point of
formation F 1 attacks the input point of formation F 2.

b. Transmission coefficients

their brilliant performance may be attacked by an argument α which says that there is not enough
money to pay their higher salaries and benefits if indeed promoted. If the claims of both arguments
are true (i.e., the individuals did perform well and indeed there is not enough money to pay for
the extra expenditure caused by the promotion, there is nothing to say except to put forward an
argument γ which says that budgetary considerations should not be arguments against promotion.
Here γ is a higher level attack on the very attack arrow α→ β. We write this as γ → (α→ β).
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input/output

A

Figure 6

input/output F 1

input/output F 2

Input 1

Output 1

Input 2

Output 2

Figure 7: An attack formation attacking another attack formation.
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β1 β2 . . . βk

α

Figure 8: A typical attack configuration in an argumentation network.

Consider Fig. 8, under the equational approach of [15]. Let β1, . . . , βk be all
of the attackers of node α. Each node has a numerical value, f(α), f(β1),
. . . , f(βk). The equational approach (under the Eqinv Equational semantics)
requires that

f(α) =
k∏
i=1

(1− f(βi)) (1)

The equational approach obtains f as a solution to the equations of type (1),
for every α ∈ S, and at least all the preferred extensions (in Dung’s sense) are
obtained via the correspondence:

(a) α = “in”, if f(α) = 1
(b) α = “out”, if f(α) = 0
(c) α = “undecided”, if 0 < f(α) < 1

Such solutions also can be seen as syntactical probability distributions for the
nodes as shown in [13]. So, if we implement Bayesian networks in argumen-
tation networks with the Eqinv interpretation, we hope to get the Bayesian
probabilities as preferred extensions.
When we have a transmission coefficient ei between the attacker βi and α,
the strength of the attack from βi is adjusted by the coefficient ei, and hence
its value is only ei × βi. Thus, we get for Fig. 9 of attacks with transmission
coefficients that

f(α) =
k∏
i=1

(1− ei × f(βi)) (2)

It is worth noting that the transmission coefficient does not change the expres-
sive power of Eqinv, since the effects of the coefficients can be implemented
through additional nodes in Eqinv.

c. Joint attacks
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β1 β2 . . . βk

α

e1 e2 ek

Figure 9: A typical attack configuration in an argumentation network with trans-
mission coefficients.

In [14], Gabbay et. al. used the notation of Fig. 10 in the context of Fibring
networks, joint attacks and disjunctive attacks. The idea of joint attacks on
its own was earlier introduced in [18]. The intended meaning of a joint attack
is that α is “out”, if all βi are “in”. In a numerical context (i.e., under an
equational approach), we can write the equation

f(α) = 1−
∏
i

f(βi)

Clearly α is “out” exactly when all of βi are “in”.

β1 . . . βk

α

Figure 10: A joint attack from β1,. . . ,βk to α.

Remark 1. Note that if we have such joint attacks (as given in [18]) under
the equational approach, we can implement products (π-attacks) with the help
of auxiliary points. For example, the value of α as the product of β1 and β2
in Fig. 11 can be implemented as Fig. 12 and vice-versa. In Fig. 12 we have
that f(x) = 1− β1 · β2 and f(α) = 1− x = β1 · β2.
Fig. 13 can be implemented as Fig. 14. In Fig. 13, we have that f(α) =
1− β1 · β2. In Fig. 14, f(y) = β1 · β2 and f(α) = 1− y = 1− β1 · β2.

For implementing Bayesian networks we need a different understanding for
joint attacks, yielding a different equation. What we need is the following
equation:

f(α) = min(1,
∑
j(1− f(βj))) (3)
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β1 β2

α= β1 · β2

π product

Figure 11

β1 β2

x

α

∧ joint

Figure 12

β1 β2

α

∧ joint

Figure 13

β1 β2

y

α

π product

Figure 14

From (3), one can see that only if all f(βj) = 1, do we get f(α) = 0.
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So we are using the equation below for the joint attacks of Fig. 10.

α = min(1,
∑
j 1− βj)

We make some comments about this equation.

(a) First, note that this equational truth-table is definable in Łukasiewicz
logic [23]. In this logic, propositions get value in [0, 1], 1 represents truth
and 0 represents falsity. The truth-tables for ¬ and → are:

¬X = 1−X
X → Y = min(1, 1−X + Y )

Therefore,
X → ¬Y = min(1, 1−X + 1− Y )

Let ϕ be a new connective operating on a non-empty list [X1, . . . , Xn]7
defined as follows.

ϕ([X1]) = ¬X1

ϕ([X1, X2]) = X2 → ϕ([X1])

By induction, assume ϕ(X1, . . . , Xn) is definable and satisfies

ϕ(X1, . . . , Xn) = min(1,
∑
i

(1−Xi))

Then

Xn+1 → ϕ(X1, . . . , Xn) = min(1, 1−Xn+1 + ϕ(X1, . . . , Xn))
= min(1,

∑n+1
i=1 (1−Xi))

= ϕ(X1, . . . , Xn+1)

Note that ϕ(X1) = min(1, 1−X1) = ¬X1. So we have

ϕ(X1) = ¬X1

ϕ(X1, . . . , Xn, Xn+1) = Xn+1 → ϕ(X1, . . . , Xn)

(b) Also note that argumentation networks with a formula of the type of ϕ
just defined for joint attacks are not definable through the traditional
Dung semantics. This gives new semantics. Consider Fig. 15.
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a b

c

Figure 15

a b x d e

c

c = min(1, 1− a+ 1− b)×min(1, 1− x)×min(1, 1− d+ 1− e)
= min(1, 1− a+ 1− b)× (1− x)×min(1, 1− d+ 1− e)

Figure 16

Use only ϕ. We get a = 1
2 , b = 1

2 , c = min(1, 1
2 + 1

2) = 1. So c = “in”.
The rationale behind this semantics is as follows.
We reject c if there are joint attacks on c where all the attackers are
“in”. If some attackers are “undecided”, then so is c. However, if too
many attackers are “undecided” (and remember this is a consortium joint
attack where too many members of the consortium are undecided), then
we disregard the attack and let c = “in”.
To get a better idea of how Eqinv with Łukasiewicz joint attacks works,
compare Figures 16 and 17.
The equation in Fig. 17 is given by Eqinv, for β1 being the joint attack of
{a, b}, β2 being the attack of x, and β3 being the joint attack of {d, e}.
The joint attacks of β1 and β3 are calculated each according to Equation 3
(see page 15). So going back to Fig. 16, under the above considerations
we get

c = min(1, 1− a+ 1− b)× (1− x)×min(1, 1− d+ 1− e).

7For example conjunction is an operator that can be seen to be operating on a list, where∧
([X]) = X and

∧
([X1, . . . , Xn]) = Xn

∧
([X1, . . . , Xn−1]).
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β1 β2 β3

c

c = min(1, 1− β1)×min(1, 1− β2)×min(1, 1− β3)
= (1− β1)× (1− β2)× (1− β3)
=

∏
i

(1− βi)

Figure 17

ϕ11 ϕ10 ϕ01 ϕ00

x11 x10 x01 x00

A

ex00|ϕ00ex01|ϕ01ex10|ϕ10ex11|ϕ11

1

Figure 18: A complex configuration of joint attacks with transmission factors.

2.2 Combining It All

Consider Fig. 18.
The equational approach will give a solution f to this configuration as

f(xij) = 1− eij × f(ϕij)

and

f(A) = min (1,
∑

(1− f(xij)))
f(A) = min (1,

∑
(1− (1− eij × f(ϕij))))

f(A) = min (1,
∑
eij × f(ϕij))

Now look again at Fig. 3. If we can instantiate ϕij by an appropriate attack



D. M. Gabbay and O. Rodrigues

¬X X Y ¬Y

c00

¬X X Y ¬Y

c01

¬X X Y ¬Y

c10

¬X X Y ¬Y

c11

1 1

1 1

1 1

1 1

F 00[¬X,¬Y ] =

c00 = (1− P (X)) · (1− P (Y ))

F 01[¬X,Y ] =

c01 = (1− P (X)) · (1− 1 + P (Y )) = (1− P (X)) · P (Y )

F 10[X,¬Y ] =

c10 = (1− 1 + P (X)) · (1− P (Y )) = P (X) · (1− P (Y ))

F 11[X,Y ] =

c11 = (1− 1 + P (X)) · (1− 1 + P (Y )) = P (X) · P (Y )

Figure 19

formation F ij such that

f(ϕij) = f(F ij) = P±(X)× P±(Y )

then we have implemented that figure as Fig. 18.
This is easy to do. Look at Fig. 19 and remember that since X, ¬X, Y and

¬Y are end points attacking each other respectively, we can give them arbitrary
probabilities! In Fig. 19, cij is the output point (realising f(ϕij)), and X and
Y are given probabilities P (X) and P (Y ), respectively. This gives probabilities
P (¬X) = 1− P (X) and P (¬Y ) = 1− P (Y ).
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Remark 2. Note that the above implementation required two types of attacks. The
product attack of Fig. 11 and the new joint attack of Fig. 10, namely

α = min(1,
∑
j(1− βj)).

We know that the new joint attack can be expressed in Łukasiewicz infinite-valued
logic. Therefore in the extension of this logic with product conjunctions, namely with
the additional connective ∗:8

x ∗ y = x · y

we can implement Bayesian networks!

3 Formal Definitions
This section will describe the formal machinery of Bayesian Argumentation Networks
(BANs) and the mechanism to translate a Bayesian network into a BAN.

Definition 1 (Bayesian Argumentation Network (BAN)).

a. A BAN has the form B = 〈S,R, e〉, where S is a non-empty set of arguments,
R ⊆ (2S − ∅) × S is the attack relation between non-empty subsets of S and
an element of S. For each pair (H,x) ∈ R, such that H ⊆ S and x ∈ S, e is a
transmission function giving each h in the pair (H,x) a real value e(H,x, h) ∈
[0, 1].
We can describe this situation in Fig. 20, where (H,x) ∈ R, H = {h1, . . . , hk}
and ei = e(H,x, hi).
The general attack configuration of a node is depicted in Fig. 21, where H1 =
{h1

1, . . . , h
1
k1
}, . . . ,H i, . . . ,Hm = {hm1 , . . . , hmkm

} are all attackers of the node
x. In such configuration eij = e(H i, x, hij).

b. Let f be a function from S into [0, 1]. The equation associated with f and the
configuration of Fig. 21 is

f(x) =
m∏
j=1

min(1,
kj∑
i=1

(1− eij · f(hji ))) (4)

c. A solution to equation (4) of item b. is called an extension to B.

8See [10] for details.
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h1 . . . hk

x

e1 ek

H = {h1, . . . , hk}
(H,x, h1) = e1

(H,x, h2) = e2
...

(H,x, hk) = ek

Figure 20

H1 . . . H i . . . Hm

h1
1 h1

k1
hm1 hmkm

x

e11 e1k1 em1 emkm

Figure 21

Example 1. Consider Fig. 22. In this figure we have:

S = {a, b, c, d, e, x}
R = {({a, b}, c), ({x}, c), ({d, e}, c)}

e({a, b}, c, a) = e1

e({a, b}, c, b) = e2

e({x}, c, x) = e3

e({d, e}, c, d) = e4

e({d, e}, c, e) = e5

The equation for c is

f(c) = min(1, 1− e1 · f(a) + 1− e2 · f(b))×
min(1− e3 · f(x))×
min(1, 1− e4 · f(d) + 1− e5 · f(e))
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Take ei = 1 and compare this with Fig. 16.

a b x d e

c

e1 e2
e3
e4 e5

Figure 22

Definition 2. A Bayesian network N has the form 〈S, %,P 〉 where S is a set of
nodes, % ⊂ S × S is an acyclic dependence relation, and P gives probability distri-
butions based on (S, %) defined below. The symbol Ψx will denote the set of parents
of the node x in N , i.e., Ψx = {y | (y, x) ∈ %}.

• The elements of S are considered Boolean variables which can be in only one
of two states either true = > = 1, or false = ⊥ = 0.

• If x ∈ S is a source node, i.e., Ψx = ∅, then P (x) ∈ [0, 1] denotes the
probability that x = >. P (¬x) = 1−P (x) denotes the probability that X = ⊥.

• If Ψx 6= ∅, then P gives the conditional probability of x on Ψx = {y1, . . . , yk},
denoted by P (x|Ψx). This means the following:

a. First for each q ∈ S, consider a new atom letter denoted by ¬q. Read
q0 def= ¬q and q1 def= q.

b. For each ε ∈ 2k (a vector of numbers ε(i), 1 ≤ i ≤ k from {0,1}), we look
at the option

−→y (ε) = ∧iyε(i)i

where we read y0
i as ¬yi or yi = ⊥ and y1

i as yi or yi = >.
c. We can now state what P (x|Ψx) is. P (x|Ψx) gives values P (x,Ψx, ε) ∈

[0, 1], for each ε ∈ 2k.

• Let x be a node such that Ψx 6= ∅. Assuming that the probabilities P (yi), for
yi ∈ Ψx, are known, the probability P (x) of x can be calculated as

P (x) =
∑
ε

P (x,Ψx, ε)× P (−→y (ε))

where P (−→y (ε)) is
∏
i P (yi)ε(i) and P (yi)0 = 1− P (yi) and P (yi)1 = P (yi).

Once we know P (x), we also know P (¬x) = 1− P (x).
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Remark 3. Note that certainly P (x) ≥ 0, but also that P (x) ≤
∑
ε P (−→y (ε)) = 1,

since all P (yi) are probabilities.

Remark 4. Note that Definition 2 is restricted to Boolean values. Variables can be
either in state 1 = true or in state 0 = false. So any conditional probability for a
variable x depending on a variable y needs to give real numbers for each state of y,
see condition c. of Definition 2. This is similar to Pearl’s definition in [19]. Note
however that we propagate values in the direction of the arrows, i.e., towards descen-
dant nodes. Pearl allows for updating of probabilities in both directions (ancestors
and descendant nodes) at any point in the network (see Section 2.2.3 of [19]). As
we are dealing with argumentation networks, the restriction to boolean variables is
more natural and we need not be concerned about it. However, the propagation of
updates in both directions is important and should be investigated not only in order
to be more faithful in translating Bayesian networks into argumentation networks
but even without any connection with Bayesian networks. Just by looking at tra-
ditional Dung networks we may wish to insist on a certain status for an argument
(i.e., “in”, “out” or “undecided”) and propagate this result in both directions. Our
work on Bayesian networks may give us ideas on how to do that, not only in the case
of Bayesian Argumentation Networks (i.e., reflecting their behaviour) but perhaps
by also taking advantage of the argumentation environment in developing an update
theory applicable in argumentation in general, and not just restricted to the context
of translated Bayesian networks. This requires extensive research and we leave it as
future work.

Example 2. In order to illustrate Definition 2, we consider the network in Fig. 1
once more, with the probability values given in Section 2. We have P (X) = 0.01, so
P (¬X) = 0.99. P (Y ) = 0.02, so P (¬Y ) = 0.98.

ΨA = {X,Y }. We have that P (A,ΨA, X ∧ Y ) = 0.95; P (A,ΨA, X ∧ ¬Y ) =
0.94; P (A,ΨA,¬X ∧ Y ) = 0.29; and P (A,ΨA,¬X ∧ ¬Y ) = 0.001. According to
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Definition 2:

P (A) = P (A,ΨA, X ∧ Y )× P (X)× P (Y ) +
P (A,ΨA, X ∧ ¬Y )× P (X)× P (¬Y ) +
P (A,ΨA,¬X ∧ Y )× P (¬X)× P (Y ) +
P (A,ΨA,¬X ∧ ¬Y )× P (¬X)× P (¬Y )

P (A) = 0.95× 0.01× 0.02 +
0.94× 0.01× 0.98 +
0.29× 0.99× 0.02 +
0.001× 0.99× 0.98

P (A) ≈ 0.016

We then get P (¬A) = 1− P (A) = 0.984. The values of P (U) (resp., P (¬U)) and
P (W ) (resp., P (¬W )) are calculated in a similar way.

Definition 3. We now translate any Bayesian network N = 〈S, %,P 〉 into a
Bayesian Argumentation Network 〈A,R, e〉.

a. Assume the elements of S to be positive atoms of the form {qi}. Let S̄ be a
new set of atoms of the form S̄ = {q̄ | q ∈ S} and let A0 = S ∪ S̄.

b. For any x ∈ S such that Ψx has k elements, define two sets of new atoms

C(x,Ψx) = {c(x,Ψx, ε) | ε ∈ 2k} and
D(x,Ψx) = {d(x,Ψx, ε) | ε ∈ 2k}

Let A = A0 ∪
⋃
x∈S (C(x,Ψx) ∪D(x,Ψx)).

c. We now define R on A.

(a) Have ({q̄}, q) and ({q}, q̄) be in R.
(b) For any x ∈ S such that Ψx has k elements, let ({c(x,Ψx, ε)}, d(x,Ψx, ε))

be in R and let ({y1−ε(i)
i }, c(x,Ψx, ε)) be in R.

(c) Let (D(x,Ψx), x) be in R.

d. We now define e. We let

e({c(x,Ψx, ε)}, d(x,Ψx, ε), c(x,Ψx, ε)) = P (x,Ψx, ε)
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Theorem 1. Let N = 〈S, %,P 〉 be a Bayesian network and let 〈A,R, e〉 be its
(argumentation) translation. Let the source nodes of N be the set Ω ⊆ S and let f
be a solution extension of (A,R, e) such that f(w) = P (w), for w ∈ Ω. Then for
every s ∈ S, f(s) = P (s) (remember that S ⊆ A).

Proof. The proof is done by induction on the distance (level) of nodes from Ω.
Level 0: nodes w ∈ Ω.
Level n+ 1: nodes s such that all nodes in Ψs are of level up to n with at least

one of them being of level n.
Every node in S has a unique level because (S, %) is acyclic. So we prove by

induction on the level of a node s that f(s) = P (s).
Consider a node s of level n+ 1, such as the one in Fig. 23. Its translation into

(A,R, e) is Fig. 24. The computation of P (s) in the Bayesian network is

P (s) =
∑
ε∈2k

P (s, ys, ε)×
∏
i

P (yi)ε(i)

Our inductive assumption is that P (yi) = f(yi). We want to show that P (s) = f(s).
Let us calculate f(s) from Fig. 24. First we have

f(yi) = P (yi)
f(¬yi) = f(y0

i ) = 1− f(yi)

Thus,

f(c(s,ys, ε) =
∏
i

(1− f(yi)1−ε(i))

=
∏
i

f(yε(i)i ) =
∏
i

P (yi)ε(i)

So

f(d(s,ys, ε) = 1− e(s, ys, c(s, ys, ε))× f(c(s, ys, ε))
= 1− P (s, ys, ε)×

∏
i

P (yi)ε(i)

Therefore,

f(s) = min(1,
∑
ε

(1− f(d(s, ys, ε))

= min(1,
∑
ε

P (s, ys, ε)×
∏
i

P (yi)ε(i))

= P (s)
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Remark 5. Note that the translation of a Bayesian network uses only a restricted
fragment of Definition 1, where each node s satisfies for all yis and for all yjs:

(yis, s) ∈ R and (yjs, s) ∈ R implies either yis and yjs are singleton sets or yis = yjs

This means that translated Bayesian networks do not have the combination of joint
attacks and single attacks such as the one in Fig. 22. Nodes either have a unique
joint attack or zero or more attacks by individual nodes.

ys : y1 . . . yk

s

Figure 23: A node of level n+ 1.

¬y1 y1 . . . y
1−ε(i)
i

. . . ¬yk yk

c(s, ys, ε)

. . . d(s, ys, ε) . . .

s

P (s, ys, ε) = e(s, ys, c(s, ys, ε))

Figure 24: A node of level n+ 1.

Remark 6. a. Note that the class of Bayesian Argumentation Networks con-
tains more networks than just translated images of original Bayesian net-
works. These are indeed a type of argumentation networks inspired by looking
at Bayesian networks. Note also that images of Bayesian networks are faithful
and can translated back into Bayesian networks.

b. Another important point to observe is that we are not imposing an argumen-
tation structure on top of a Bayesian network, thus analysing the Bayesian
network from an argumentation point of view. Such methods are common in
the argumentation community. This will be discussed further in Section 6.
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4 A Comprehensive Translation Example

In this section, we show in detail how a Bayesian network can be translated into a
Bayesian Argumentation Network. For this, we will use the network of Fig. 1 as an
example. The translation starts with the source nodes of the Bayesian network.

Consider a node α and its attackers Att(α) = {β1, . . . , βk}. Assume that the
nodes in Att(α) are all source nodes, without any attackers. When βi is a source
node, it is given an initial probability P (βi). We model this in a BAN by adding a
new node ¬βi for each βi such that βi and ¬βi attack each other. Now, in the new
network, βi can assume any initial probability P (βi) we want, with ¬βi obtaining
P (¬βi) = 1 − P (βi). In order to represent all possible conjunctive expressions of
the form

e2k−1
j=0 = ∧ijβ±ij

where β+
ij

= βij and β−ij = ¬βij , we need to create 2k intermediate points cj , whose
attackers are all βi, ¬βi, such that ej |= βi, and ej |= ¬βi, respectively. Note that
the value of each cj will now correspond to a particular product

P (cj) =
∏
ij

pij

where

pij =
{

1− P (βi), if ej |= βi
P (βi), if ej |= ¬βj

Because we also want to represent transmission values, we now need to duplicate
each intermediate point cj with a corresponding xj and have cj attack xj with
transmission factor ej .

In order to illustrate this, let us recall the Bayesian network of Fig. 1.

X Y

A

U W

Consider the node A, with attackers X and Y . We first add points ¬X and ¬Y
such that each of X and ¬X and Y and ¬Y attack each other. If we give value
P (X) to X and value P (Y ) to Y , then ¬X will get value 1 − P (X) and ¬Y will
get value 1− P (Y ).
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We now add points c00, c01, c10 and c11 corresponding to the conjunctive expres-
sions

e0 : c00 = X ∧ Y
e1 : c01 = X ∧ ¬Y
e2 : c10 = ¬X ∧ Y
e3 : c11 = ¬X ∧ ¬Y

Note that e0 |= X and e0 |= Y , so we add attacks from X and Y into c00 and do
the same for e1–e3.

X ¬X Y ¬Y

c11 c10 c01 c00

We can now see that the probabilities of cij are given as follows

P (c00) = (1− P (X)) · (1− P (Y ))
P (c01) = (1− P (X)) · (1− 1 + P (Y )) = (1− P (X)) · P (Y )
P (c10) = (1− 1 + P (X)) · (1− P (Y )) = P (X) · (1− P (Y ))
P (c11) = (1− 1 + P (X)) · (1− 1 + P (Y )) = P (X) · P (Y )

Remember the initial parameters given for this network:

P (X) = 0.01
P (¬X) = 0.99

P (Y ) = 0.02
P (¬Y ) = 0.98

This gives us

P (c00) = 0.99× 0.98 = 0.9702
P (c01) = 0.99× 0.02 = 0.0198
P (c10) = 0.01× 0.98 = 0.0098
P (c11) = 0.01× 0.02 = 0.0002

Now for each node cij , we add an additional node xij , so that we can incorporate
the transmission factors eij .
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X ¬X Y ¬Y

c11 c10 c01 c00

x11 x10 x01 x00

ex00|ϕ00ex01|ϕ01ex10|ϕ10ex11|ϕ11

The resulting probabilities of the nodes xij are then given by the equations

P (x00) = 1− ex00|ϕ00 · c00

P (x01) = 1− ex01|ϕ01 · c01

P (x10) = 1− ex10|ϕ10 · c10

P (x11) = 1− ex11|ϕ11 · c11

With our initial parameters, we have that

ex00|ϕ00 = 0.001
ex01|ϕ01 = 0.29
ex10|ϕ10 = 0.94
ex11|ϕ11 = 0.95

and hence

P (x00) = 1− 0.001× 0.9702 = 0.9990
P (x01) = 1− 0.29× 0.0198 = 0.9942
P (x10) = 1− 0.94× 0.0098 = 0.9907
P (x11) = 1− 0.95× 0.0002 = 0.9998

The xij jointly attack A:

X ¬X Y ¬Y

c11 c10 c01 c00

x11 x10 x01 x00

A

ex00|ϕ00ex01|ϕ01ex10|ϕ10ex11|ϕ11

1
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This finally gives us the value of the probability of node A as

P (A) = min{1,
∑
ij

(1− P (xij))}

= min{1, 0.001 + 0.0058 + 0.0093 + 0.0002}
≈ 0.016

as before. Therefore, P (¬A) ≈ 0.984.
Now to proceed to the next level all we need to do is to add a complementary

node to A, ¬A, such that A and ¬A attack each other. This will give us P (¬A) =
1 − P (A). As before, we also need new intermediate nodes wA, w¬A, uA and u¬A
to incorporate transmission factors.

The original attack of A on W is then realised by the joint attack of the new
intermediate nodes w¬A and wA and the attack of ¬A on U is realised by the joint
attack of the new intermediate nodes u¬A and uA.

X ¬X Y ¬Y

c11 c10 c01 c00

x11 x10 x01 x00

wA w¬A uA u¬A

A ¬A

W U

1 1

ew¬A|¬AewA|A eu¬A|¬AeuA|A

ex00|ϕ00ex01|ϕ01ex10|ϕ10ex11|ϕ11

1

The values of wA, w¬A, uA and u¬A are calculated as follows.

P (wA) = 1− ewA|A · P (A)

P (w¬A) = 1− ew¬A|¬A · P (¬A)

P (uA) = 1− euA|A · P (A)

P (u¬A) = 1− eu¬A|¬A · P (¬A)
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Since

ewA|A = 0.7
ew¬A|¬A = 0.01

euA|A = 0.9
eu¬A|¬A = 0.05

We get

P (wA) = 1− 0.7× 0.016 ≈ 0.988

P (w¬A) = 1− 0.01× 0.984 ≈ 0.990

P (uA) = 1− 0.9× 0.016 ≈ 0.985

P (u¬A) = 1− 0.05× 0.984 ≈ 0.950

We can finally calculate the values of W and U .

P (W ) = min{1, 1− P (w¬A) + 1− P (wA)} = min{1, 0.009 + 0.0112} ≈ 0.021

P (U) = min{1, 1− P (u¬A) + 1− P (uA)} = min{1, 0.049 + 0.0144} ≈ 0.063

These are exactly the same values we had before.

5 Complexity Discussion

We need to consider two aspects involved in the complexity arising from the trans-
lation of a Bayesian network into a Bayesian Argumentation Network. The first
one is related to the translation itself whereas the second is related to the actual
computation of the node values.

It is easy to see that the translation of a Bayesian network into a Bayesian
Argumentation Network according to Definition 3 results in the creation of many
new nodes. This addition of nodes is linear on the number of nodes of the origi-
nal Bayesian network (item a. of Definition 3) and exponential on the number of
ancestors of each node of the original Bayesian network (item b. of Definition 3).

The effect of the increase in the number of nodes in the actual computation of
node values is deceptive.

Although the translation does incur in the addition of many new nodes, the
complexity of the actual calculation of the node values remains basically the same.
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The nodes added in a Bayesian Argumentation Network simply encode explicitly
the intermediate calculations that would otherwise be implicitly done in the original
Bayesian network.

In conclusion, a Bayesian Argumentation Network simply explicitly encodes as
nodes the calculations that would have to be done anyway in the original Bayesian
network. The new nodes name key values when using the conditional probability
tables in the original calculations of the Bayesian network. Therefore there is no
significant additional cost.

6 Related Work
Let us compare with several related papers. We start with Vreeswijk’s “Argumen-
tation in bayesian belief networks” [27]. An important point to observe is that we
are not using a meta-level device of extracting/identifying arguments and a notion
of attack on the arguments from the Bayesian network and thus obtaining an argu-
mentation network as is done in [27].

Vreeswijk’s approach does not give us a direct connection/translation between
Bayesian networks and argumentation networks. It is more akin to imposing an
argumentation structure on top of a Bayesian network, thus analysing the Bayesian
network from an argumentation point of view. Indeed Vreeswijk sees his approach
[27] as

“a proposal to look at Bayesian belief networks from the perspective
of argumentation. More specifically, I propose an algorithm that enables
users to start an argumentation process within the context of an existing
Bayesian belief network. . . . with some imagination, the CPTs9 of the
above Bayesian network can be translated into the rule-base and evidence
. . . A next step towards argumentation is to chain rules into arguments.
. . .What remains to be done to obtain a full-fledged argument system,
is to define an attack relation between pairs of arguments. To this end, I
choose to define the notion of attack on the basis of two notions that are
more elementary and (therefore) fall beyond the scope of a Dung-type
argument system, viz. the notion of counterargument and the notion
of strength of an argument. First I will discuss counter-arguments, and
then I will discuss argument strength. . . .

Definition 4 (Attack). We say that argument a is attacked by argu-
ment b, written a← b, if it satisfies the following two conditions:

9Conditional Probability Tables
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1. Argument b is a counterargument of a sub-argument a′ of a.
2. Argument b is stronger than argument a′.”

Such methods are common in the argumentation community. For example, tak-
ing a logic program, forming arguments using this logic program and thus generating
an argumentation network, and then proving equivalence of the logic program with
the argumentation network (see for example [7, 28]).

The next related work we consider is the translation of various kinds of argu-
mentation networks into Bayesian networks, as is done for example in [16]. The idea
is beautifully described by the authors:

“This paper presents a technique with which instances of argument
structures in the Carneades model can be given a probabilistic semantics
by translating them into Bayesian networks. The propagation of argu-
ment applicability and statement acceptability can be expressed through
conditional probability tables. This translation suggests a way to extend
Carneades to improve its utility for decision support in the presence of
uncertainty.”

Note that [27] identifies some argumentation structure in Bayesian networks
whilst [16] uses Bayesian networks to implement certain kinds of argumentation
networks. There is similarity but the approaches are different. On the other hand,
our approach is to faithfully represent Bayesian networks inside a newly motivated
numerical argumentation network.

Finally, the approach used in [25, 24] is similar in spirit to the one used in [27].
The idea is to provide explanations of Bayesian networks in legal or medical domains
using support graphs. The nodes of the support graph can be labelled to provide
an argumentative interpretation of the Bayesian network.

7 Conclusions and Future Work
The perceptive reader from the Bayesian community may take no interest in the
translation of Bayesian networks into argumentation. They will point out justifiably,
that we are just translating the Bayesian algorithms into argumentation and then
using these same algorithms under the guise of argumentation. This may be of
interest from the abstract mathematical expressive power point of view, but that is
all.

We would like to show that there are indeed other benefits to this translation
both to the argumentation community and to the Bayesian community.
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a. By interpreting Bayesian networks in some extension of Dung’s networks and
vice-versa, the argumentation community, who also deals with updates and
change, stands to benefit from the updating algorithms in Bayesian networks.
We can add nodes and change values of nodes and use Bayesian propagation
to propagate the changes.
This needs to be studied further.

b. Bayesian networks are acyclic, they have difficulties with loops (see [26]). The
equational approach in argumentation can deal with loops without any prob-
lems (see for instance the forthcoming special issue in the Journal of Logic and
Computation on the Handling of Loops in Argumentation Networks and see
[11]). We notice that Bayesian networks can adopt the equational approach
[15] in case of loops and simply solve the equations which arise on the prob-
abilities. A solution always exists by Brouwer’s fixed-point theorem. We are
in fact surprised that this approach has never been taken (to the best of our
knowledge) by the Bayesian community. One can then use loop handling tech-
niques from argumentation to propagate updates and changes in the (cyclic)
Bayesian network by simply solving equations. By implementing Bayesian net-
works in argumentation under the equational approach we can allow for loops
in Bayesian networks and still hopefully see a way to obtain results, again, this
requires further research.

c. A third benefit to Bayesian networks is the possibility to develop proof theory
for Bayesian networks. The extension of argumentation networks which hosts
the translation of Bayesian networks is implemented in Łukasiewicz infinite-
valued logic with product.10 This Łukasiewicz logic has a proof theory (see
[10]). We can therefore hope for the same for Bayesian networks. Again this
needs to be studied.

In addition, the following needs to be investigated in detail:

a. Take an example of a cyclic Bayesian network, recognised as interesting in
the Bayesian community, and translate it into argumentation. See how argu-
mentation handles the loops and try to find suitable algorithms for handling
cycles in Bayesian networks. These algorithms should now be independent of
argumentation.

b. Develop algorithms of updating argumentation networks by looking at the
examples of updating used in the Bayesian domain and the way they implement

10This is actually shown in the current paper (see Remark 2).
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the updates. There are important papers investigating updates and revision of
argumentation networks by central figures in the argumentation community,
including [4, 22, 21, 5, 8, 3, 9]. Addressing these papers will be done in future
work.

c. Identify proof theoretic queries in Bayesian networks and import proof theory
from Łukasiewicz logic to model them.
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