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Abstract. Some imitation learning methods combine behavioural
cloning with self-supervision to infer actions from state pairs. How-
ever, most rely on a large number of expert trajectories to increase
generalisation and human intervention to capture key aspects of the
problem, such as domain constraints. In this paper, we propose Con-
tinuous Imitation Learning from Observation (CILO), a new method
augmenting imitation learning with two important features: (i) ex-
ploration, allowing for more diverse state transitions, requiring less
expert trajectories and resulting in fewer training iterations; and
(ii) path signatures, allowing for automatic encoding of constraints,
through the creation of non-parametric representations of agents and
expert trajectories. We compared CILO with a baseline and two lead-
ing imitation learning methods in five environments. It had the best
overall performance of all methods in all environments, outperform-
ing the expert in two of them.

1 Introduction
One of the most common forms of learning is by watching someone
else perform a task and, afterwards, trying it ourselves. As humans,
we can observe an action being performed and transfer the acquired
knowledge into our reality. In this respect, it is less challenging to
achieve a goal in an optimal way by observing how an expert be-
haves; in the field of computer science, this is Imitation Learning
(IL). Unlike conventional reinforcement learning, which depends on
a reward function, IL learns from expert guidance, and is concerned
with an agent’s acquisition of skills or behaviours by observing a
‘teacher’ perform a given task.

Learning from demonstration is the obvious approach for IL, re-
quiring expert demonstrations, which are ‘trajectories’ including ac-
tions performed along the way to goal completion [12]. Such an
approach uses the trajectories to learn an approximate policy that
behaves like the expert. Learning from demonstration suffers from
two significant drawbacks in practice: poor generalisation in envi-
ronments with multiple alternative trajectories that achieve a goal,
which is bound to occur when the dataset size increases, and the un-
availability of data about the expert’s actions. Learning from obser-
vation (LfO) overcomes these limitations by learning a task without
direct action information via self-supervision, which increases gen-
eralisation [8]. This allows a model to learn from sample executions
without action information, which would otherwise be unusable. LfO
∗ Corresponding Author. Email: nathan.schneider_gavenski@kcl.ac.uk

approaches often rely on techniques from classification to improve
sample-efficiency [30] and generalisation [18]. Such agents require
fewer expert trajectories, yielding more general approaches that are,
hence, adaptable to unseen scenarios. However, these methods still
fail to leverage some useful learning features, particularly the use of
an exploration mechanism.

Some existing work [5, 7] requires manual intervention in differ-
ent stages of the process, e.g., the hard-coding of environment goals,
which is not feasible in complex environments, such as robotic sys-
tems with multifaceted goals. Other work [7, 13, 30] is limited in
that learning the environment dynamics depends strongly on previ-
ously collected samples that usually do not relate to how the envi-
ronment dynamics operate under expert behaviour, such as random
transitions, or prior knowledge of the dynamics of environments. In
addition, maintaining self-supervision [7, 13] for an IL method is
important since unlabelled data is more readily available, e.g., from
sources that are not necessarily meant for agent learning.

In this paper, we propose a novel LfO approach to IL called Con-
tinuous Imitation Learning from Observation (CILO) that addresses
the above issues. CILO (i) eliminates the need for manual interven-
tion when using different environments by discriminating between
policy and expert; (ii) requires fewer samples for learning by leverag-
ing exploration and exploitation; and (iii) does not require expert-la-
belled data, thus remaining self-supervised. We evaluated CILO in
five widely used continuous environments against a baseline and two
leading LfO methods (see Section 4). Our results show that CILO
outperformed all of the alternatives, surpassing the expert in two of
five environments.

CILO’s new mechanisms are model-agnostic and applicable to a
wider range of environment dynamics than those of the compared
LfO alternatives. We argue that the new mechanisms can be readily
incorporated into other IL methods, paving the way for more robust
and flexible learning techniques.

2 Problem Formulation

We assume the environment to be an MDP M = ⟨S,A, T, r, γ⟩,
in which S is the state space, A is the action space, T is a transi-
tion model, r is the immediate reward function, and γ is the discount
factor [25]. Although in general an MDP may carry information re-
garding the reward and discount factors, we consider that this infor-
mation is inaccessible to the agent during training, and the learning
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process does not depend on it. Solving an MDP yields a policy π
with a probability distribution over actions, giving the probability of
taking an action a in state s. We denote the expert policy by πψ .

A common self-supervised approach to solving a task via IL uses
an Inverse Dynamic Model M. M uses a set of state transition sam-
ples (st, st+1) to predict the action performed in the transitions.
By training M to infer the actions in the state transitions, these
approaches can automatically annotate all expert trajectories T πψ

with actions without the need for human intervention [27, 18, 7].
The agent policy πθ then uses these self-supervised expert-labelled
states (sπψ , â) to learn to predict the most likely action given a state
P (a | sπψ ). Torabi et al. [27] show that applying an iterative pro-
cess in self-supervised IL approaches helps πθ achieve better perfor-
mance. Initially, M uses only single transition samples Ipre from
πθ and its randomly initialised weights. At each iteration, these ap-
proaches use πθ to create new samples Ipos that are used to fine-tune
M. However, using all transitions from πθ makes this iterative ap-
proach susceptible to getting stuck in local minima due to class im-
balance from the Ipos data. Monteiro et al. [18] propose a solution
that introduces a goal-aware function to sample from all trajectories
at each epoch. This function does not require an aligned goal from
the environment, hence it is up to the user to choose a desired goal. If
πθ reaches this goal, the trajectory will be used. Finally, it is sensible
to assume that M is not well-tuned during early iterations and pre-
dicts mostly wrong labels. Therefore, Gavenski et al. [7] implement
an exploration mechanism that uses the softmax distribution of the
output as weights to sample actions proportionally to optimality from
the model’s prediction. As the confidence in the model increases, it
predicts suboptimal actions less than the maximum a posteriori es-
timation. By exploring using the model’s confidence, their approach
can learn under the exploration and exploitation phases, helping M
to converge faster. Nevertheless, creating a handcrafted goal-aware
function and using a softmax distribution as an exploration mecha-
nism requires manual intervention and discrete actions. As a result,
these methods become unsuitable for more complex environments
where goal achievement is non-trivial to check.

3 Continuous Imitation Learning from
Observation

We address the need for manual intervention and for maintaining
self-supervision in CILO through two key innovations: an explo-
ration mechanism used when the action predictions are uncertain;
and a discriminator to interleave random and current states to im-
prove the prediction of self-supervised actions. CILO achieves this
by employing three different models: (i) the inverse dynamic model
M to predict the action responsible for a transition between two
states P (a | st, st+1); (ii) a policy model πθ that uses the self-su-
pervised labels â to imitate the expert πψ given a state P (a | st);
and (iii) a discriminator model D to discriminate between πψ and
πθ , creating newer samples for M.

Algorithm 1 provides an overview of CILO’s learning process.
First, CILO initialises all models with random weights and uses the
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Figure 1. CILO’s training cycle.

Algorithm 1 CILO
1: InitializeMθ , πθ , and D with random weights
2: Is ← Ipre s.t. Ipre ← samples from πθ
3: for i← 1 to epochs do
4: ImproveMθ by TRAINM(Is)

5: UseMθ with T πψ to predict Â
6: Improve πθ by errorπθ ← BEHAVIOURCLONING(T πψ , Â)
7: Use πθ to solve environments E
8: T πθ ← T πθ ⊕ {(s0, â0, s1), · · · , (st−1, ât−1, st)}
9: Ipos ← Ipos ⊕

{
∀i∈T πθ | D(β(T

πθ
i )) is ⊤

}
10: Is ← Ipre ⊕ Ipos

11: if errorπθ ⩽ threshold then
12: Finish training

random initialised policy to collect random samples Ipre from the
environment (Lines 1-2). The dynamics model uses these random
samples to train in a supervised manner (Function TRAINM, Line 4).
These samples are vital since they help M learn how actions cause
environmental transitions without expert behaviour-specific knowl-
edge. TRAINM uses the loss from Eq. 1, where θ are the model’s
current parameters, S is the vector for state representations, A is the
action vector representation, and t is the timestep.

LM(Is, θ) =

Is∑
t=1

|Mθ(St, St+1)−At| (1)

With the updated parameters θ, M predicts the self-supervised la-
bels Â to all expert transitions (T πψ in Line 5). CILO then uses
these expert labelled transitions to train πθ using behaviour cloning
(Function BEHAVIOURALCLONING with Eq. 2) coupled with an ex-
ploration mechanism (Line 6).

LBC(Is) =
∑

(st,st+1)∈Is
|Mθ(st, st+1)− πθ(st)| (2)

The policy then generates new samples (T πθ ) that might help
M approximate the unknown ground-truth actions from the expert
(Lines 7-8). Given all new samples, CILO generates path signatures
β [2] and uses D to classify signatures as from the expert or the agent.
Line 9 updates the discriminator weights with the classification loss
in Eq. 3, where Tβ are path signatures for all trajectories from expert
and agent, C is for the source of the observation (expert and agent),
y is the ground-truth label, and ŷ is the source predicted by D.

LD(T πψ
β , T πθ

β ) = −
|Tβ |∑
i=1

|C|∑
j=1

yij log(ŷij), (3)

Samples classified as expert by D are added to Ipos (Line 9), which
is then combined with the original Ipre to form Is (Line 10). CILO
uses this updated Is in each iteration for a specified number of
epochs (Line 4) or until it no longer improves (Lines 11-12), with
an optional hyperparameter threshold.

The exploration mechanism allows CILO to deviate from its orig-
inal action distribution according to the model certainty. This be-
haviour is helpful during early iterations when M is unsure about
which action might be responsible for a specific transition. Since ran-
dom samples can be very different from the expert’s transitions, we
can assume that the model does not learn to recognise these transi-
tions and generalises poorly. Here, we assume that the environment
is stochastic, in that multiple actions might occur with a non-zero
probability of transition between any pair of states. D’s key objec-
tive is to discard trajectories that could result in M getting stuck in
bad local minima, and for instance, stop predicting specific actions



(underfitting). Without a discriminator, it would be difficult to ignore
signatures that differ considerably from the ground-truth without an
environment-specific hyperparameter, hence reducing the method’s
generalisability. Finally, combining these mechanisms makes CILO
more sample efficient, allowing for oversampling without misrepre-
senting the action distributions and overfitting. Figure 1 shows the
CILO learning cycle in more detail with the different loss functions.

3.1 Exploration

Exploration is vital for IL methods that use dynamics models to learn
how the expert behaves. It enables policy divergence when the dy-
namics model is uncertain and increases state diversity, which helps
the model approximate labelled transitions from unlabelled ones (ex-
pert). CILO borrows an exploration mechanism from reinforcement
learning in continuous domains, in which each action in a policy con-
sists of two outputs: the mean and standard deviation to sample from
a Gaussian distribution. However, unlike traditional reinforcement
learning, where a policy receives feedback in the form of the reward
function, IL lacks this information. Thus, for a model M and param-
eters θ (Mθ), we employ the sampling mechanism in Eq. 4, where π
is the usual mathematical constant 3.14 . . . and ε, as defined in Eq. 5,
is used as standard deviation, where a is the ground-truth action (or
pseudo-labels from M) and â is the action predicted by the model:

ãMθ =
1

ε
√
2π

e
− (set−Mθ(S))

2ε2 (4)

ε = ∥a− â∥p (5)

In Eq. 4, M is either M or π, and θ are the parameters of the model
updated for the epoch. Notice that when p = 1, the model M uses
the absolute value between the predicted and ground-truth labels
∥a− â∥ and this allows for higher exploration.

Observation 1. If L is a loss function that monotonically decreases
a model’s M error as it approximates the ground-truth function,
eventually ∥a− â∥ < 1. If we then use p > 1 in Eq. 5, ε will ex-
ponentially decrease.

Given all of the above, Eq. 5 offers a trade-off between exploration
and exploitation. Since ε is the standard deviation for the exploration
function, as the model’s predictions get closer to the ground-truth
and pseudo-labels, the clusters will have lower variance because the
exploration ratio is directly correlated to the model’s error.

In Alg. 1, functions TRAINM (ln. 4) and BEHAVIOURCLONING

(ln. 6) use this adaptation to adjust the exploration ratio depending on
how close the model’s predictions are to the ground-truth (or pseudo-
labels), in accordance with the standard deviation of the Gaussian
distribution. This mechanism also has the benefit of not having to
predict information beyond the agent’s actions, such as standard de-
viation, instead obtaining this directly from the model’s error. For
deterministic behaviour, we can assume that the standard deviation
for the model is 0 and use the model’s output since sampling from a
Gaussian distribution with average x and deviation 0 equals x.

3.2 Goal-aware function

Developing a goal-aware function may not be a trivial task. For en-
vironments with a well-defined goal, such as CartPole [1], which
defines the goal to be balancing the pole for 195 steps, a goal-
identification function could simply classify all trajectories that reach
195 steps as optimal. In this work, we formally define trajectories as:

Definition 1. A trajectory τ is a finite sequence of states
(s1, . . . , sn) where for each 1 ≤ i < n, si+1 is obtained from si via
the execution of some action. We use the term (τ1

t , τ
2
t , . . . , τ

d
t ) ∈ Rd

to denote the particular state st (1 ⩽ t ⩽ n) within the trajectory τ .

However, recall that in the context of IL, the agent has no access to
the reward signal, and as environments grow in complexity, such a
function becomes even harder to encode. By contrast, some environ-
ments have no prescribed goal. For example, the Ant environment
requires the agent to walk as far as possible without falling, but with
no defined cap on the number of time steps [23]. Thus, existing IL
approaches [18, 7, 10] often rely on manually defined goal-aware
functions, which have the benefit of dispensing with the alignment of
the environment’s goal. For example, we might define a specific tra-
jectory as required in the Ant environment. Unless the agent reaches
all points in this trajectory, our goal-aware function does not classify
the episode as successful. However, this creates a degree of unwanted
complexity in a learning algorithm and a cumbersome process as
the number of environments grows. Yet, trajectories may carry rele-
vant information for CILO since they approximate Is’s samples from
T πψ [7]. Therefore, CILO tries to classify trajectories that are close
to T πψ instead of successful ones.

Nevertheless, identifying whether samples are near T πψ is also
difficult. If we consider a stationary agent, we might discard samples
that allow M to better predict transitions due to their distance to
the πψ states alone. But, if we consider whole trajectories, it might
be difficult to identify middling trajectories needed to close the gap
between T πθ and T πψ , and better generalise [8]. Therefore, CILO
needs a function that (i) simplifies comparisons between trajectories
and (ii) allows M to receive suboptimal samples.

For the first problem, previous work [19] dealt with the issue of
trajectory length by using the average of all states up to a point in
time to account for the trajectory changes. Conversely, we use path
signatures [2], which are fixed-length feature vectors that are used
to represent multi-dimensional time series (i.e., trajectories). A path
signature is computed by the function β comprehensively defined in
Section 3 of Yang et al. [29], succinctly summarised in the definition
below (see Supplementary Material for more detail).1

Definition 2. Let a trajectory τ of a countable length between [1, n]
(n ∈ N), where each state is a vector in Rd with dimensions indexed
by a collection of indices i1, · · · , ik ∈ {1, · · · , d}. Let the recur-
sively computed path signature β for a trajectory τ for any k ⩾ 1
and time t (1 ⩽ t ⩽ n) be:

β(τ)
i1,··· ,ik
1,t =

∫
1<s⩽t

β(τ)
i1,··· ,ik−1
1,s dτ iks . (6)

Then, the signature of a trajectory τ : [1, n] → Rd is the collection
of all the iterated integrals of τ :

β(τ)
1,...,ik
1,n =

(
1, β(τ)11,n, · · · , β(τ)d1,n, β(τ)1,11,n, · · · ,

β(τ)1,d1,n, β(τ)
2,1
1,n, . . . , β(τ)

i1,i2,··· ,ik
1,n

)
,

(7)

where the zero-th term is conventionally equal to 1, and k is defined
as the k-th level of the signature, which defines the finite collection of
all terms β(τ)

i1,··· ,ik
1,n for the multi-index of length k. For example,

when k = d, the last term would be β(τ)d,d,··· ,d1,n .

1 In our experiments, β (Line 9, Algorithm 1) was computed using the im-
plementation provided by [14].



Path signatures allow CILO to solve the issue of comparing two
trajectories and encoding different characteristics that may be rele-
vant when classifying how close a new trajectory is from T πψ . By
using path signatures generated from trajectories in T πθ and T πψ ,
CILO benefits from: (i) a common signature size, regardless of the
original length of trajectories, helping the discriminator not to dis-
criminate against longer trajectories; (ii) independence of environ-
ment characteristics embedded in the data (avoiding the need for re–
parametrisation for each environment); and (iii) the preservation of
the uniqueness of trajectories via the non-linearity of the signatures.

The use of signatures still requires some manual intervention in
CILO to define how close a trajectory needs to be before adding it to
Is (i.e., an appropriate similarity threshold). To prevent the need for
manually defining this threshold, CILO uses a discriminator model
D to discriminate between πθ and πψ trajectories, which optimises
Eq. 3. This yields a non-greedy sampling mechanism by using a
model to classify expert and non-expert trajectories.

In summary, CILO’s goal-aware function works by computing a
signature β(τ) of a trajectory τ and feeds it into the discriminator
model D, which classifies whether the source of the trajectory is πθ
or πψ . If D classifies the source of an agent’s trajectory as the expert,
then CILO appends the trajectory into Is, helping M better under-
stand how the transition function T works in the environment.

3.3 Sample efficiency

Besides approximating the expert policy, IL methods focus on effi-
ciently using expert samples. This focus happens since expert sam-
ples are hard to obtain. Thus, creating more efficient methods, i.e.,
that require fewer samples, allows for more useable approaches.
Some recent strategies [13, 30] minimise the number of required
samples but depend on strong assumptions (see Section 4.2) or man-
ual intervention for each new environment. For comparison, CILO
uses 10 expert episodes – a number similar to Zhu et al. [30] and Ki-
dambi et al. [13], but without requiring manual intervention for each
environment. CILO relies on up-scaling T πψ to increase the number
of observations πθ sees before interacting with the environment. Al-
though trivial, this strategy works because CILO is self-supervised
and has an exploration mechanism. This strategy helps in two ways:
(i) for each epoch all pseudo-labels differ in all transitions due to
the exploration mechanism (Line 4, Algorithm 1); and (ii) increasing
the number of samples πθ receives allows for more updates before
sampling new experiences from the environment. By applying its ex-
ploration mechanism to each observation individually and sampling
exploration values from a distribution, CILO ensures that each obser-
vation has unique action values, reducing the risk of misrepresenting
the ground-truth action distribution.

4 Experimental Results

We compared CILO’s results against three key related methods. Be-
havioral Cloning from Observations (BCO) [27], which is usually
used as a baseline, and two of the most efficient LfO methods:
Off-Policy Imitation Learning from Observations (OPOLO) [30],
and Model-Based Imitation Learning From Observation Alone (Mo-
bILE) [13]. We experimented with five commonly used environ-
ments: Ant, Half Cheetah, Hopper, Swimmer, and Pendulum.2 Each
method was run for 50 episodes, with the environment reset when the

2 The Supplementary Material briefly describes these environments and the
neural networks topology.

agent falls or after 1, 000 steps. Each episode was run using random
seeds to test the agent’s ability to generalise.

4.1 Implementation and Metrics

We used PyTorch to implement our agent and optimise the loss func-
tions in Eq. 1-3 via Adam [15] and Imitation Datasets [9] to collect
the expert data. As for the exploration mechanism in Eq. 5, we use
p = 1 for ε due to all environments actions being in the interval
[−1, 1], and using p > 1 would significantly diminish the gap be-
tween predicted and ground-truth actions (as defined in Definition 1).
In the supplementary material, we provide all learning rates and dis-
cuss hyperparameter sensitivity in more detail, but we note that CILO
is not very sensitive to precise hyperparameters.

We evaluated all approaches using the Average Episodic Reward
(AER) metric (Eq. 8) and use Performance (P) (Eq. 9). AER is
the average accumulated reward for a policy π over n number of
episodes in t number of steps:

AER(π) =
1

n

n∑
i=1

t∑
j=1

γtr(sij , π(sij)). (8)

On the other hand, P normalises between random and expert poli-
cies rewards, where performance 0 corresponds to random policy πξ
performance, and 1 is for expert policy πψ performance.

Pτ (π) =
AER(π)−AER(πξ)

AER(πψ)−AER(πξ)
(9)

Note that a negative value for P indicates a reward for the agent
lower than a random agent’s and a value higher than 1 indicates that
the agent’s reward is higher than the expert’s. All results in Table 1
are the average and standard deviation in five different experiments.
We do not report accuracy since achieving high accuracy does not
necessarily translate into a high reward for the agent.

4.2 Results

We trained all methods using 10 expert trajectories. Table 1 shows
how each method performed in the five environments. CILO had
the best overall results in all environments. It consistently achieved
results similar to the expert, surpassing it on Ant and Swimmer
and achieving the maximum reward for the Pendulum environment.
CILO’s performance was close to the expert’s in Hopper but a little
lower in HalfCheetah – likely due to the higher standard deviation
from the ground-truth actions in both environments. In the Swim-
mer environment, BCO and OPOLO achieved AER and performance
similar to the expert, while CILO outperformed it by 0.29 points. The
same happened in the Ant environment, where CILO surpassed the
expert by ≈ 484 reward points. We hypothesise this is due to CILO’s
explorative nature and its ability to acquire new samples that the dis-
criminator judges to come from the expert.

Comparing CILO to other methods, we see that OPOLO had the
closest performance to CILO’s in almost all environments. We at-
tribute CILO’s better performance than OPOLO’s due to the fact
that OPOLO’s problem formulation assumes that the environment
follows an injective MDP, which cannot be guaranteed with random
seeds. For this work, we believe that it is more important for an agent
to be able to correct its initial states into a successful trajectory than
to be optimal in a single setting. Moreover, we notice that for the Pen-
dulum environment, OPOLO only achieved the optimal reward when
clipping the actions between [−1, 1], which CILO does not require.



Table 1. CILO and baselines AER and P results for all environments. All results are the average of 50 trajectories.Algorithm Metric Ant Pendulum Swimmer Hopper HalfCheetah

Random AER −65.11 ± 106.16 5.70 ± 3.26 0.73 ± 11.44 17.92 ± 16.02 −293.13 ± 82.12
P 0 0 0 0 0

Expert AER 5544.65 ± 76.11 1000 ± 0 259.52 ± 1.92 3589.88 ± 2.43 7561.78 ± 181.41
P 1 1 1 1 1

CILO AER 6091 ± 801.2 1000 ± 0 334.6 ± 3.45 3589 ± 178.2 7100.6434 ± 90.1775
P 1.0974 ± 0.1372 1 ± 0 1.2901 ± 0.0128 0.9998 ± 0.0487 0.9413 ± 0.0115

OPOLO AER 5508.6807 ± 930.7590 1000 ± 0 253.3297 ± 3.4771 3428.6405 ± 420.3285 7004.65 ± 568.66
P 0.9935 ± 0.1659 1 ± 0 0.9761 ± 0.0134 0.9549 ± 0.1177 0.9291 ± 0.0724

MobILE AER 995.5 ± 25.65 111.7 ± 31.25 130.7 ± 24.36 2035 ± 192.95 4721.5 ± 364.5
P 0.1891 ± 0.0047 0.1066 ± 0.0313 0.5022 ± 0.0968 0.5647 ± 0.0531 0.5647 ± 0.0454

BCO AER 1529 ± 980.86 521 ± 178.9 257.38 ± 4.28 1845.66 ± 628.41 3881.10 ± 938.81
P 0.2842 ± 0.1724 0.5675 ± 0.1785 0.9917 ± 0.0166 0.5177 ± 0.1765 0.5117 ± 0.1217

When the actions are not clipped, OPOLO accumulates ≈ 9.55 re-
ward points, a performance similar to the random policy. We opted
not to clip CILO’s actions, so that the method would not require any
previous environment knowledge.

BCO requires more expert trajectories to achieve better results. In
its original work, BCO used 5 × 105 samples for M and more than
1, 000 expert trajectories for its policy, which may be unrealistic for
many domains. Nevertheless, BCO achieved almost expert results
in the Swimmer environment and higher rewards than MobILE in
almost all other environments, with the exception of HalfCheetah.
We believe BCO outperforms MobILE because the latter assumes
that each environment has a fixed initial state, which does not hap-
pen since the gym suite alters each initial state according to some
parametrised intervals and its current seed.

As for MobILE, we used the same number of trajectories as in
its original work. We observe that MobILE suffers from three differ-
ent issues: (i) it is ensemble; (ii) has domain knowledge embedded
into the algorithm (not publicly available); and (iii) its results are
difficult to reproduce, because of the large number of hyperparame-
ters on which they depend. During our experimentation, we observed
that some approaches underperform when using an expert with strict
movement constraints. To some extent, when obtaining T πψ , all en-
vironments are susceptible to this, but MoBILE was especially im-
pacted. We believe that this strict movement pattern is difficult for all
methods to learn since the impact of the variations cannot be imme-
diately perceived. The lack of reproducibility is a major drawback
of MobILE, from which CILO does not suffer. By using path sig-
natures, which is a non-parametric encoding technique, CILO is left
with only two different parameters: the network size and the learn-
ing rate. We used Smith’s work (2017) as a guide for finding optimal
values for these parameters.3

Finally, in environments with broadly distributed expert actions
like Ant, Pendulum, and Hopper, CILO matches expert performance
in fewer iterations than the other methods. However, in environments
where actions are more concentrated (Swimmer and HalfCheetah),
CILO takes longer to match the expert.

5 Discussion

In this section, we consider some key aspects of CILO’s behaviour:
(i) how CILO learns with different sample amounts; (ii) how it ap-
proximates predictions to the ground-truth actions of the expert;
(iii) how similar each signature becomes to all trajectories over time;
(iv) how different action distributions affect CILO; and (v) how Is

behaves over time.

3 We followed the original network topology for a fair comparison.

5.1 Sample Efficiency

In order to understand CILO’s sample efficiency, we experimented
with three different amounts of expert episodes in the Ant environ-
ment. Ant provides an ideal setting due to its balanced learning com-
plexity and shorter training times. Table 2 shows the AER and P
results using 1, 10, and 100 trajectories. As expected, CILO does not
achieve good results when using a single trajectory. This is because
πθ has no information regarding different initialisation and trajectory
deviations. This behaviour is intrinsic to behavioural cloning where,
without sufficient information, the policy tends not to generalise [16].

Interestingly, CILO achieves 65 fewer reward points when using
100 trajectories than when it uses 10. We attribute this to the follow-
ing: (i) when used in a LfO scenario, BC methods usually fail to scale
according to the number of samples due to compounding error [26];
and (ii) increasing the number of expert samples decreases the de-
viation from πψ trajectories, resulting in overfitting and a worse πθ .
Since it achieves expert results for almost all environments, we do
not consider this behaviour a limitation of CILO. Nevertheless, we
hypothesise that using different strategies might result in an increase
in performance when its data pool is increased. We also hypothesise
that using incomplete or faulty trajectories might help CILO since it
would not have so much data for all points in a trajectory, reducing
overfit. Fine-tuning the exact number of expert trajectories requires
some experimentation for each environment.

5.2 Ground-truth error over time

A concern for self-supervised IL methods is how to approximate
pseudo-labels to ground-truth actions from the expert. However, ap-
proximating Is samples to those from the experts is not always best.
There might be samples that are between the experts’ and Ipre that
can help M smoothly close the gap between equally distributed and
the ground-truth distribution [10]. Since CILO uses exploration to
learn and this exploration mechanism relies on M’s error, achieving
lower error margins early might lead to less exploration and poorer
results. It would therefore be better to have a consistent stream of new
samples, to maintain the error marginally high but not a significant
number of new samples since this could keep M’s error too high or
even collapse the network, i.e., updating all weights drastically and
requiring a higher learning rate.

Table 3 shows that using two different procedures and achieving
two different policies with different error margins and weights yields

Table 2. CILO’s AER and P values for different Ant dataset sizes.Trajectories AER P
1 1003± 1999 0.18

10 6091± 801.2 1.1
100 6026± 725.86 1.09



0 200 400 600 800 1000 1200
Epochs

0.058

0.06

0.062

0.064

0.066

0.068

Er
ro

r

0.2

0.4

0.6

0.8

1.0

Pe
rfo

rm
an

ce

error
performance

(a) πθ trained with a scheduler.

0 200 400 600 800
Epochs

0.055

0.06

0.065

0.07

0.075

Er
ro

r

0.2

0.4

0.6

0.8

1.0

Pe
rfo

rm
an

ce

(b) π∗
θ trained with no scheduler.

0 50 100 150 200
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Si
gn

at
ur

e 
Di

ffe
re

nc
e

Random agent

e

(c) Signature difference in Ant-v3.
Figure 2. (a) and (b) show ground-truth error forM and P . (c) shows the normalised difference between πe, πθ and random signatures: 0 is equivalent to
expert, and ⩾ 1 means equal or worse than random policy signature.
similar results for the error margins in both methods but not per-
formance and AER. Figure 2a shows the learning results (error and
performance) for πθ , which uses weight decay and a scheduler dur-
ing training, and Figure 2b shows π∗

θ , with no weight decay and a
learning rate scheduler. We observe that both policies achieve a simi-
larly consistent error margin. However, when comparing the average
performances in a single episode, πθ achieves 29 more reward points
with a lower variation. While using different strategies for classify-
ing the action might help CILO with this behaviour, we use a similar
topology to the one used by the models compared.

Table 3. M’s ground-truth error and policy’s AER and P for Ant.Method Error AER P
πθ 0.0571 5610 1.0116
π∗
θ 0.0556 5581 1.0065

5.3 Signature approximation over time

Given Definition 2, trajectories that are similar should be closer in the
feature space, while those that do not share any states should be far-
ther apart. Figure 2c shows the Manhattan distance between πθ and
πψ trajectories during the first 200 iterations. The difference is nor-
malised between trajectories from random and expert agents. Hence,
a difference greater than 1 means that the agent’s signature path is
farther from πψ than a random agent’s. As expected, during early
iterations, CILO produces episodes that are farther than the random
agent since M has to learn state transitions before πθ can learn how
to behave in the environment. We see similar behaviour from the dis-
criminator D. In the initial iterations, it allows multiple trajectories
to be appended to Is due to its poor performance in discriminating
between generated and expert trajectories. Once D learns to classify
correctly, it is only ‘fooled’ by ≈ 18% of trajectories.

As πθ increases its performance, the distance between πθ and πψ
signatures decreases. Similarly, D has a harder time distinguishing
from expert and πθ . We observe that D’s results are as expected. By
allowing these early trajectories to append into Is, which had not
achieved any goals, it allows M to learn from samples outside its
randomly distributed ones. Since it only allows a few samples, M
does not stop to predict actions due to skewed samples. But as D
improves its classification performance, it forces πθ indirectly to be
closer to the expert behaviour, therefore, achieving higher rewards.
Using the gradient signal from D is likely to improve πθ’s perfor-
mance further, but this adaptation would require the policy also to
predict the next state, e.g., in a mechanism similar to the one used in
Edwards et al.’s work [5].

5.4 Effects of Gaussian exploration

Since we observed that CILO has a different behaviour for envi-
ronments with different action distributions, we analyse Ant and
HalfCheetah to understand the disparities between πθ and πψ ac-
tion predictions. Figure 3 displays all distributions for 50 trajectories
from the expert and trained policies. Note that for these actions, πθ
is not using its exploration mechanism, that is, the policy is greedy.
In all environments, the distribution from πθ actions differs from the
expert ones. However, we observe that πθ actions have a higher intra-
cluster variance than the expert ones. We believe this behaviour is due
to CILO’s exploration mechanism sampling from a Gaussian distri-
bution, making it learn to have a higher variance around the aver-
age of an action (considering the error rate from Table 3). Therefore,
the exploration mechanism makes it difficult to approximate distri-
butions that do not follow this pattern, such as HalfCheetah.

We also note that CILO has more difficulty achieving better re-
sults in environments with sparse action distributions. If we compare
Figures 3c and 3d, it is evident that CILO achieves actions near both
limits, i.e., −1 and 1; however, it has a harder time predicting ac-
tions near the limit. In contrast, although both distributions from Fig-
ures 3a and 3b are unequal, we observe a more concentrated action
cluster around 0, which helps πθ achieve better results. We see this
behaviour as a limitation of CILO since selecting a new sampling
distribution would require knowing beforehand how an expert be-
haves. However, we also hypothesise that training for a period with-
out exploration and fine-tuning πθ with M’s pseudo-labels would
minimise this impact. Further training πθ with no exploration, we
observe an increase in all environments, although not significantly.

5.5 Is size over time

The use of the discriminator D allows CILO to start with fewer ran-
dom samples since it appends samples on almost every iteration.
However, increasing Is on each epoch can create issues if the number
of samples grows exponentially. Therefore, we plot in Figure 4 the
size of Is for each environment and epoch for the first 450 epochs.
It is important to note that CILO usually reaches expert performance
before its first 100 epochs. We observe that for most environments,
CILO has a lower slope for appending Ipos into its dataset. This be-
haviour is excellent since it means that CILO is less likely to create
data pool sizes that would transform it to be inefficient. Furthermore,
when we consider that in Torabi et al.’s work [27], 5 × 105 transi-
tions are needed to learn the inverse dynamic model (≈ 50 epochs),
this behaviour allows for less preparation when learning an agent.
Nevertheless, Figure 4 also present two other behaviours.

For the InversePendulum environment, CILO gets almost no sam-
ple variation when compared to the other methods in the early stages.
However, after approximately 150 epochs, πθ yields trajectories
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Figure 3. Distribution of expert actions for Ant and HalfCheetah environments.

more similar to the expert, which deteriorates D accuracy and in-
creases Is quite substantially. In this environment, we use this be-
haviour as a form of signal to stop since the reward does not im-
prove. Figure 4 has an inset graph showing the first 150 epochs for
the InvertedPendulum environment. In it, we observe during its first
epochs, CILO appends samples in a lower rhythm.

For both HalfCheetah and Ant environments, we observe a linear
pattern from the samples added into Is. This behaviour is not de-
sired, resulting in a training procedure that takes around 3 and 1.5
times longer to finish than all the other environments for HalfChee-
tah and Ant. To mitigate this problem, CILO could implement a for-
getting mechanism to get rid of some samples in each epoch either
by random selection or using the chronological order of insertion.
However, it should not keep its initial sample pool size, considering
it has a smaller dataset and changing it could make M susceptible to
covariate shift. We hypothesise that adding samples up until an up-
per limit would be a better approach, eliminating samples from Is in
each epoch as needed to keep the pool size within the limit.

6 Related Work

The simplest form of imitation learning from observation is Behav-
ioral Cloning (BC) [20], which treats imitation learning as a super-
vised problem. It uses samples (st, a, st+1) from an expert consist-
ing of a state, action and subsequent state to learn how to approx-
imate the agent’s trajectory to the expert’s. However, such an ap-
proach becomes costly for more complex scenarios, requiring more
samples and information about the action effects on the environment.
For example, solving Atari requires approximately 100 times more
samples than CartPole. Generative Adversarial Imitation Learning
(GAIL) [11] solves this issue by matching the state-action frequen-
cies from the agent to those seen in the demonstrations, creating a
policy with action distributions that are closer to the expert. GAIL
uses adversarial training to discriminate state-actions either from the
agent or the expert while minimising the difference between both.

Recent self-supervised approaches [27, 7] that learn from obser-
vations use the expert’s transitions (s

πψ
t , s

πψ
t+1) and leverage random

transitions (st, a, st+1) to learn the inverse dynamics of the environ-
ment, and afterwards generate pseudo-labels for the expert’s trajec-
tories. Imitating Latent Policies from Observation (ILPO) [5] differs
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Figure 4. Size of Is× epochs for all environments.

from such work by trying to estimate the probability of a latent ac-
tion given a state. Within a limited number of environment steps,
it remaps latent actions to corresponding ones. More recently, Off-
Policy Learning from Observations (OPOLO) [30] uses a dual-form
of the expectation function and an adversarial structure to achieve
off-policy LfO. Model-Based Imitation Learning from Observation
Alone (MobILE) [13] uses the same adversarial techniques, which
rely on an objective discriminator coupled with exploration to di-
verge from its actions when far from the expert.

7 Conclusions and Future Work
In this paper, we proposed Continuous Imitation Learning from Ob-
servation (CILO), a new LfO method combining an exploration
mechanism and path signatures. CILO (i) does not require prior do-
main knowledge or information about the expert’s actions; (ii) has
sample efficiency superior or equal to the state-of-the-art LfO alter-
natives; and (iii) approximates (sometimes surpassing) expert per-
formance. CILO achieves these results due to two key contributions.
Firstly, the use of a discriminator paired with path signatures, allows
CILO to acquire more diverse state transition samples while increas-
ing sample quality. Secondly, the exploration mechanism, which uses
the model’s error rate to sample from a normal distribution, allows
for a more dynamic exploration of the environment. As a result, the
exploration ratio decreases as the model learns to approximate from
the ground-truth labels. More importantly, these two innovations are
completely model-agnostic, allowing them to be used in other IL
methods without requiring major changes. We would argue that the
innovations we proposed pave the way for IL models that generalise
better and require less expert training data.

Our next step is to investigate different exploration mechanisms to
better fit the policy needs of specific environments. We would also
like to experiment with different forms of adversarial learning to em-
bed CILO’s current discriminator into the policy loss function. Con-
sidering the path signatures are differentiable, it would be possible
to backpropagate the gradients from the discriminator into the pol-
icy. This change would allow us to see if a direct signal from the
enhanced loss function could improve the action prediction of the
inverse dynamic model.
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A Environments and samples
In this work, we experiment with five different environments. We
now briefly describe each environment and how the expert samples
were gathered. We used Stable Baselines 3 [22] coupled with RL
Zoo3 [21] to gather expert samples and its weights loaded from Hug-
gingFaces 4. We believe this will facilitate reproducibility by allow-
ing future work to use the exact same experts. All expert results are
displayed in Table 1 in Section 4.2 of the paper. We used a random
sample pool of 50, 000 states for all environments (partitioned into
35, 000 states for training and the remaining 15, 000 for validation).
It is important to note, that in each environment, a dimension d of
these state vectors #»v represents an internal attribute of the robot.
Therefore, although they might share a similar number of dimen-
sions, they may carry different meanings. Since Is grows in size in
each iteration, unlike Torabi et al.’s work [27], CILO does not rely on
higher sample pools. Figure 5 shows a frame for each environment.

A.1 A note about the expert samples

During our experiments, we observed that not all experts are created
equally. Although most experts trained or loaded from HuggingFace
share similar results, the behaviour of each expert varies drastically.
One could argue that humans also deviate for each trajectory, but us-
ing episodes with a more human-like trajectory (less hectic) yielded
better results for all IL approaches. By presenting less hectic and
more constant movements, we think each policy receives trajectories
that vary more and generalise better. All samples used in this work
are available in https://github.com/NathanGavenski/CILO.

A.2 Ant-v2

Ant-v2 consists of a robot ant made out of a torso with four legs
attached to it, with each leg having two joints [23]. The goal of this
environment is to coordinate the four legs to move the ant to the right
of the screen by applying force on the eight joints. Ant-v2 requires
eight actions per step, each limited to continuous values between −1
and 1. Its observation space consists of 27 attributes for the x, y and
z axis of the 3D robot. We use Stable Baselines 3’s TD3 weights.
The expert sample contains 10 trajectories, each with 1, 000 states
consisting of 111 attributes.5 Ant-v2 shares distribution behaviour
with InvertedPendulum-v2, and Hopper-v2, having action spaced in
a bell-curve.

A.3 InvertedPendulum-v2

This environment is based on the CartPole environment from Barto
et al. [1]. It involves a cart that can move linearly, with a pole attached
to it. The agent can push the cart left or right to balance the pole by
applying forces on the cart. The goal of the environment is to prevent
the pole from reaching a particular angle on either side. The con-
tinuous action space varies between −3 and 3, the only one within
the five environments outside of the −1 to 1 limit. Its observation
space consists of 4 different attributes. We use Stable Baselines 3’s
PPO weights. The expert sample size is 10 trajectories, which consist
of 10, 000 states (with their 4 attributes) and actions (with a single
action value per step). The invertedPendulum-v2 environment is the
only one that has an expert with the environment’s maximum reward.
Therefore achieving P higher than 1 is impossible.

4 https://huggingface.co/
5 With their 111 different attributes - MuJoCo implementation has 27 posi-

tions with values and the rest with 0).

A.4 Swimmer-v2

This environment was proposed by [3]. It consists of a robot with s
segments (s ⩾ 3) and j = s − 1 joints. Following [30], in our ex-
periments we use the default setting s = 3 and j = 2. The agent
applies force to the robot’s joints, and each action can range from
[−1, 1] ∈ R. A state is encoded by an 8-dimensional vector rep-
resenting the angle, velocity and angular velocity of all segments.
Swimmer distributions present the same distribution of HalfCheetah-
v2 (centred around the lower and upper limits). We used Stable Base-
lines 3’s TD3 weights. The expert sample contains 4 trajectories,
with 1, 000 states each plus actions for the j = 2 joints. The goal
of the agent in this environment is to move as fast as possible to-
wards the right by applying torque on the joints and using the fluid’s
friction.

A.5 Hopper-v2

Hopper-v2 is based on the work done by [6]. Its robot is a one-
legged two-dimensional body with four main parts connected by
three joints: a torso at the top, a thigh in the middle, a leg at the
bottom, and a single foot facing the right. The environment’s goal is
to make the robot hop and move forward (continuing on the right tra-
jectory). A state consists of 11 attributes representing the z-position,
angle, velocity and angular velocity of the robot’s three joints. We
used Stable Baselines 3’s TD3 weights and 10 expert episodes, each
with 1, 000 states and actions for the three joints. Each action is lim-
ited between [−1, 1] ∈ R.

A.6 HalfCheetah-v2

HalfCheetah-v2’s environment was proposed in [28]. It has a 2-
dimensional cheetah-like robot with two “paws”. The robot contains
9 segments and 8 joints. Its actions are a vector of 6 dimensions,
consisting of the torque applied to the joints to make the cheetah run
forward (“thigh”, “shin”, and “paw” for the front and back parts of
the body). All states consist of the robot’s position and angles, veloc-
ities and angular velocities for its joints and segments. HalfCheetah-
v2’s goal is to run forward (i.e., to the right of the screen) as fast
as possible. A positive reward is allocated based on the distance tra-
versed, and a negative reward is awarded when moving to the left of
the screen. We used Stable Baselines 3’s TD3 weights. The expert
sample size is 10 trajectories, each consisting of 1, 000 states and
actions. Each action is limited between the interval of [−1, 1] ∈ R.

B Network Topology
We followed the same network topologies employed in the original
works. Each model (M and πθ) are MLP with 4 fully connected
layers, each with 512 neurons, with the exception of the last layer
whose size is the same as the number of environment actions, Table 4
displays the topologies alongside the input and output sizes of each
layer. Following the implementation in [7], we used a self-attention
module after the first and second layers. We experimented with nor-
malisation layers during development, which did not increase the
agents’ results but helped with weight updates. Although we un-
derstand that having more complex architectures could increase our
method’s performance, for consistency we used the same original ar-
chitecture to show that CILO achieves expert results and does not
rely on the architecture. The implementation of our method can be
found within https://github.com/NathanGavenski/CILO.

https://github.com/NathanGavenski/CILO
https://github.com/NathanGavenski/CILO


Ant HalfCheetahHopperSwimmerPendulum
Figure 5. A single frame for each environment used in this work.

Table 4. Layers for each neural network used in this work, where d is the number of dimensions for each state, | a | is the number of actions, and | β | is given
by Eq. 15. M πθ D

Layer Name Input × Output Layer Name Input × Output Layer Name Input × Output
Input 2d× 512 Input d× 512 Input | β | ×512
Activation (Tanh) - Activation (Tanh) - Activation (Tanh) -
Fully Connected 1 512× 512 Fully Connected 1 512× 512 Fully Connected 1 512× 512
Activation (Tanh) - Activation (Tanh) - Activation (Tanh) -
Self-Attention 1 512× 512 Self-Attention 1 512× 512 Dropout 0.5%
Fully Connected 2 512× 512 Fully Connected 2 512× 512 Fully Connected 2 512× 512
Activation (Tanh) - Activation (Tanh) - Activation (Tanh) -
Self-Attention 2 512× 512 Self-Attention 2 512× 512 Dropout 0.5%
Fully Connected 3 512× 512 Fully Connected 3 512× 512 Output 512× 2
Activation (Tanh) - Activation (Tanh) -
Fully Connected 4 512× 512 Fully Connected 4 512× 512
Output 512× | a | Output 512× | a |

C Training and Learning Rate

For training, we used a Nvidia A100 40GB GPU and PyTorch. Al-
though we used this GPU, such hardware is not strictly required since
CILO uses ≈ 2GB to train with a 1024 mini-batch size. The learn-
ing rates for M and πθ are shown in Table 5. We note that CILO is
robust to different learning rates for πθ . However, M is more sensi-
tive since Is changes at almost every iteration, assuming there is at
least one agent’s trajectory that D classifies as expert. Having a high
learning rate can make M’s weights update too harshly and result in
CILO never learning how to label the T πψ properly.

Table 5. Different learning rates forM and πθ for all environments.Environment M πθ Signature k

Ant 1× 103 1× 103 2

InvertedPendulum 1× 103 1× 103 4

Swimmer 3× 103 7× 104 4

Hopper 5× 103 1× 103 4

HalfCheetah 1× 103 7× 104 4

D Path Signatures

In this work we rely on several path signature definitions to discrim-
inate over agent and expert trajectories. In Section 3.2 of our paper,
we briefly defined a trajectory τ , in which each state is a vector #»v in
Rd, and how to compute the path signature β(τ)

i1,··· .ik
1,n , where n is

the length of the trajectory, and i1, · · · , ik ∈ {1, · · · , d} (k > 1) are
indices to elements in #»v . Here, we provide some additional informa-
tion on the process of computing a path signature and the intuition
behind it.

D.1 Computing the Path Signature

Given a trajectory τ and a function f that interpolates τ into a con-
tinuous map f : R → R, the integral of the the trajectory against f
can be defined as:∫ n

1

f(τt)dτt =

∫ n

1

f(τt)τ̇tdt, (10)

where τ̇t = dτt
dt

for any time t ∈ [1, n]. Note that f(τt) is a real-
valued path defined on [1, n], which can be considered the integral
of a trajectory τ . Moreover, if we consider that f(τt) = 1 for all t ∈
[1, n], then the path integral of f against any trajectory τ : [1, n] →
R is simply the increment of τ :∫ n

1

dτt =

∫ n

1

τ̇ dt = τn − τ1. (11)

Therefore, by assuming that β is a function of real-valued paths,
we can define the signature for any single index ik ∈ {1, · · · , d} as:

β(τ)
ik
1,n =

∫
1<s⩽n

dτ iks = τ ikn − τ
ik
1 , (12)

which is the increment of the ik-th dimension of the path. Now, if we
move to any pair of indexes ik, jk ∈ {1, · · · , d}, we have to consider
the double-iterated integral:

β(τ)
ik,jk
1,n =

∫
1<s⩽n

β(τ)
ik
1,sdτ

jk
s =

∫
1<r⩽s⩽n

dτ
ik
t dτ jks , (13)

where β(τ)
ik
1,s is given by Eq. 12. Considering that β(τ)ik,jk1,n con-

tinues to be a real-values path, then we can define recursively the
signature function for any number of indexes k ⩾ 1 in the collection
of indexes i1, · · · , ik ∈ {1, · · · , d} as:

β(τ)
i1,··· ,ik
1,n =

∫
1<s⩽n

β(τ)
i1,··· ,ik−1
1,s dτ iks , (14)



which in our paper is Eq. 6. It is important to note that k is the depth
up to which the signature is generated (not its length). At each level
i ⩽ k, “words” of length i are generated from the alphabet D ac-
cording to Eq. 6 (main work) to produce the terms of the signature.
Figure 6c shows all possible terms for a trajectory τ : [1, n] → Rd
for different depths. For example, a signature with depth 2 will have
all the terms in the levels i = 0, 1, 2. In an alphabet with d letters,
we can construct one word of length 0, d words of length 1, and d2

words of length 2, giving 1 + d+ d2 words in total (i.e., the number
of terms in the signature). In general, the length of a signature with
alphabet size d and depth k is:

k∑
i=0

di =
dk+1 − 1

d− 1
. (15)

We observe that signatures can be computed for any depth k, and are
not restricted to k ⩽ d.

We give two examples to illustrate how the terms in a signature
are computed (we omit the level 0 whose single value 1 is fixed).
Figure 6a shows how to generate a signature of depth 1 (with the
terms in the first and second columns of Figure 6c). Considering that
the length of a signature grows exponentially with the depth k de-
sired ( d

k+1−1
d−1

), Figure 13 only shows how to calculate the terms of
a signature of depth 2 for a 2-dimensional dictionary, with the first
index fixed in 2.

D.2 A Numerical Example

Let us consider a trajectory τ with two two-dimensional states
{τ1
t , τ

2
t }, and the set of multi-indexes W = { (i1, · · · , ik) | k ⩾

1, i1, · · · , ik ∈ {1, 2} }, which is the set of all finite sequences of
1’s and 2’s. Given the trajectory τ : [1, 10] → R2 illustrated in Fig-
ure 7, where the path function for τ is computed according to the
function:

τt = {τ1
t , τ

2
t } = {5 + t, (5 + t)2 | t ∈ [1, 10]} (16)

For the depth k desired, the computation of the signature would be
computed as shown in Figure 8. For example, given that states in τ
are two-dimensional (d = 2), the path signature for τ with depth k =

2 will have the dk+1−1
d−1

= 23−1
1

= 7 terms in the vector β(τ)1,10 =
[ 1, 9, 189, 40.5, 970.5, 730.5, 17860.5 ].

D.3 Signature Properties

We now describe properties of path signatures that are most relevant
to our work. The description is not comprehensive. We recommend
the work from Yang et al. [29] and Chevyrev and Kormilitzin [2] for
a more in-depth approach to path signatures.

Uniqueness: This property relates to the fact that no two trajecto-
ries τ and τ ′ of bounded variation have the same signature unless
the trajectories are tree-equivalent. In light of the invariance under
reparametrisations [17], we note that path signatures have no tree-
like sections to monotone dimensions, such as acceleration.

Generic nonlinearity of the signature: The second property refers
to the product of two terms β(τ)i1,··· ,ik and β(τ)j1,··· ,jk , which can
also be expressed as:

β(τ)11,n · β(τ)21,n = β(τ)1,21,n + β(τ)2,11,n or,

β(τ)1,21,n · β(τ)11,n = β(τ)1,1,21,n + β(τ)1,2,11,n .
(17)
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Figure 6. Illustration of path signature.
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Figure 7. Trajectory τ : [1, 10]→ R2.Thus, the nonlinearity of the signature in terms of low-level terms
can be expressed by the linear combination of higher-level terms,
which adds more nonlinear previous knowledge to the feature vector.
This behaviour is better exemplified in the second level of signatures
where for any β(τ)

ik,ik
1,n , the result will be

(
τ
ik
n −τik1

)2

/2.

Fixed dimension under length variations: The last property refers
to the path signature’s length invariance under different trajectory
lengths. In Section D.1, we showed that the signature length is a
function of the signature depth (k) and the number of dimensions in a
state (d). Therefore, path signatures become practical feature vectors
for trajectories in machine learning tasks, requiring different inputs



β(τ)1,1,11,10 =

∫∫∫
1<t1⩽t2⩽t3⩽10

dτ1
t1dτ

1
t2dτ

1
t3 =

∫ t1

1

[∫ t2

1

[∫ t3

1

dt1

]
dt2

]
dt3 = 121.5

...

β(τ)1,11,10 =

∫∫
1<t1⩽t2⩽10

dτ1
t1 , dτ

1
t2 =

∫ 10

1

[∫ t2

1

dt1

]
dt2 = 40.5

β(τ)1,21,10 =

∫∫
1<t1⩽t2⩽10

dτ1
t1 , dτ

2
t2 =

∫ 10

1

[∫ t2

1

dt1

]
2(5 + t2)dt2 = 970.5

β(τ)2,11,10 =

∫∫
1<t1⩽t2⩽10

dτ2
t1 , dτ

1
t2 =

∫ 10

1

[∫ t2

1

2(5 + t)dt1

]
dt2 = 730.5

β(τ)2,21,10 =

∫∫
1<t1⩽t2⩽10

dτ2
t1 , dτ

2
t2 =

∫ 10

1

[∫ t2

1

2(5 + t)dt1

]
2(5 + t)dt1 = 17, 860.5

β(τ)11,10 =

∫
1<t⩽10

dt = τ1
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1 = 9
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dt = τ2
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Figure 8. Step-by-step computation of a path signatureto share the same size without recurrent neural networks.

D.4 Motivation for Signatures

Given the nature of deep learning methods operating on vectorial
data, which requires the input data to be of a predetermined fixed
length, many techniques, such as word embeddings (where a word
is represented by a vector), are used to circumvent this length re-
quirement. Moreover, imitation learning tasks, by definition, have to
effectively represent expert demonstrations to capture relevant infor-
mation for learning a desired behaviour. Path signatures provide a
solution to represent sequential or trajectory-based expert demon-
stration in a principled and efficient manner.

In imitation learning, expert demonstration often takes the form
of trajectories or sequences of states over time. Path signatures of-
fer a way to encode these trajectories into high-dimensional feature
representations that capture the expert behaviour in a geometric and
analytic way. Furthermore, the uniqueness property ensures that es-
sential information about the expert demonstrations is preserved in
the path signature representation, enabling accurate discrimination
over different trajectories’ signatures. Lastly, path signatures provide
a single hyperparameter (the number of desired collections k). By
adjusting k, we can control the trade-off between representational
quality and computational complexity, allowing for efficient learning
and generalisation. However, we observe that increasing k leads to
an exponential increase in the length of the signature, which imposes
a limit to agents with limited computation resources.

D.5 Signature Time Complexity

We now briefly discuss the upper-bound complexity for computing
path signatures and compare it to Pavse et al.’s work [19], which
computes the averages of the trajectory states. Given Eq. 14 and
Fig. 6, it should be easy to see that path signatures can be computed
in time O(t · dk), where t is the number of samples in a trajectory,
d is the number of dimensions, and k is the depth/length of the sig-
nature. In contrast, Pavse et al.’s work [19] uses the average over the
current and previous states. This does not work well when different
trajectories average to the same value, but it is not an issue for sig-
natures due to their uniqueness. Using averages is not an issue in
Pavse et al.’s work (or in IRL in general), which computes an arti-
ficial reward signal at each timestep. However, this also quickly be-
comes costly because trajectories are traversed multiple times since
the method computes the average of all sub-trajectories t times at
each epoch (O(d · t3)). The cost of computing signatures increases

linearly with respect to the episode length, whereas the cost of com-
puting the averages increases exponentially for Pavse et al.. More-
over, path signatures increase exponentially according to the number
of dimensions d, which is constant for all environments. Therefore,
the main parameter CILO has to be concerned about is the depth k,
for which Fig. 9 provides a comparison in Ant-v2 — the environ-
ment with the largest state representation. Fig. 9 shows that the cost
of computing signatures is lower than that of computing averages for
k ⩽ 5 in episodes containing 1, 000 timesteps (the total length for
all MuJoCo environments used in this work).
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Figure 9. Upper-bound time complexity for signature computation and av-
erage.
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