
Implementation of a Port-graph Model for
Finance

Nneka Ene

King’s College London, UK

Abstract. In this paper we examine the process involved in the design
and implementation of a port-graph model to be used for the analysis of
an agent-based rational negligence model. Rational negligence describes
the phenomenon that occurred during the financial crisis of 2008 whereby
investors chose to trade asset-backed securities without performing in-
dependent evaluations of the underlying assets. This has contributed to
motivating the search for more effective and transparent tools in the
modelling of the capital markets.
In this paper I propose to use a visual declarative language, based on

strategic port-graph rewriting, as a visual modelling tool to analyse an
asset-backed securitisation market.

Keywords: graph rewriting systems, strategy languages, simulation, se-
curitisation

1 Introduction

In this paper we examine the process involved in the design and implementation
of a port-graph model to be used for the analysis of an agent-based rational
negligence model. Rational negligence describes the phenomenon that occurred
during the financial crisis of 2008 whereby investors chose to trade asset-backed
securities without performing independent evaluations of the underlying assets.
This proposal is motivated by the interest an analyst or policy-maker might have
in analysing whether or not the purchase of a particular class of asset-backed
security ought, going forward, to be subjected to a full due-diligence.

By replacing more traditional Dynamic Stochastic General Equilibrium mod-
els1 with heterogenous, proactive, agent-based models able to produce more
realistic representations, a system that supports rapid prototyping, is able to
run system simulations, and, thanks to its formal semantics, also reason about
system properties, can be produced. Turning to a declarative port-graph trans-
formation system, able to model the dynamic behaviour of complex systems,
given that its declarative nature and visual aspects produces a shorter distance
between mental picture and implementation, facilitate the analysis of processes
of interest. Such a tool is able to convert a black box model into a white box
and also greatly provide a platform of extensive flexibility as shall be seen later.

1 https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1468-0106.2012.00579.x



There are non-visual elements, such as an inbuilt strategy language, but details
of the states produced by resulting strategy programs are highlighted in a visual
trace/derivation tree.

In addition the rewrite rules that drive graph transformation systems are an
intuitive and natural way of expressing dynamic, structural changes which are
generally more difficult to model in traditional simulation approaches where the
structure of the model is usually fixed [1]. Port-graphs are in addition partic-
ularly useful in the development of more concise graph models given support
of both topology and data at the same time. Over many of the extant declara-
tive languages used within agent-based simulation tools, this approach, given its
visual declarative nature, provides more conceptualization support. The port-
graph structure allows users to more easily describe node relationships, and
given the aforementioned dual-natured support, port-graph transformation sys-
tems are able to offer a lot of flexibility in the structuring of rules, rule strategies
and model starting positions to obtain desired results.

Contributions. We outline the typical specification of a graph program that can
be used to represent the workings of a small agent-based system and include
broad implementation details highlighting design choices and alternatives that
could otherwise have guided our approach. We also carry out a thorough valida-
tion of the model with respect to its equational specification producing a base
case that provides an effective platform for incrementally increasing the com-
plexity and scope of the model. In our previous work; [2], [3] and [4], we have
focused on the details of general approach (as opposed to our current evaluation
of specification, design and implementation), a hierarchical port-graph extension
and a more realistic model extension respectively.

Overview. This paper is organised as follows: We briefly examine the general
structure of a simple Port-graph Transformation System and equational seman-
tics of the chosen Rational Negligence model in Section 2. Details of actual
implementation can be found in Section 3 and Section 4 examines the results
of key tests and checks on the system. We finally conclude and briefly outline
future plans in Section 5.

2 Background

2.1 Port-graph Transformation Systems

A port graph is a graph where nodes have explicit connection points, called
ports, and edges are attached to ports. Nodes, ports and edges are labelled by a
set of attributes describing properties such as rule side, colour, shape, etc. Port
graphs are transformed by applying port graph rewrite rules. We refer to [6]
for a formal definition of labelled port graphs, where labels are records, i.e.,
lists of pairs attribute-value. The values can be concrete (numbers, Booleans,
etc.) or abstract (expressions in a term algebra, which may contain variables).
A port graph rewrite rule L ⇒C R can itself be seen as an attributed port

2



graph consisting of two port graphs L and R together with an “arrow” node.
The pattern, L, is used to identify subgraphs (redexes) in a given starting graph
which should be replaced by an instance of the right-hand side, R, provided the
condition C holds. The arrow node may itself have ports and edges that connect
it to L and R; these edges outline a partial morphism between the ports in L and
R, following the single push-out approach [7] to graph rewriting. More precisely:

Definition 1 (Port-graph Rewrite Rule). [8] A port graph rewrite rule
L ⇒C R is a port graph consisting of two subgraphs L and R together with
a node (called arrow node) that captures the correspondence between the ports of
L and the ports of R, and includes a condition C that will be checked at matching
time. More precisely, each of the ports in the arrow node has an attribute Type,
which can have three different values: bridge, wire and blackhole, values that in-
dicate how a rewriting step using this rule should affect the edges that connect
the redex to the rest of the graph and that satisfy the following conditions:

1. A port of type bridge must have edges connecting it to L and to R (one edge
to L and one or more to R).

2. A port of type blackhole must have edges connecting it only to L (at least
one edge).

3. A port of type wire must have exactly two edges connecting to L and no edge
connecting to R.

Let X and Y be two port graphs over the same signature ∇. A port graph
morphism g : X → Y maps nodes, ports and edges of X to those of Y such
that the attachment of ports and the edge connections are preserved, and all
attributes are preserved except for variables in X, which must be instantiated in
Y. Intuitively, the morphism identifies a subgraph of Y that is equal to X except
at positions where X has variables (at those positions Y could have any value).

Definition 2 (Port Graph Morphism). [8] Given two labelled port graphs
X = (VX , PX , EX ,LX) and Y = (VY , PY , EY ,LY ) over the same signature ∇,
a morphism f from X to Y, denoted f : X → Y , is a family of injective functions
〈fV : VX → VY , fp : PX → PY , fE : EX → EY 〉 and instantiation functions
f1 : XA → ∇A, f2 : XV → ∇V such that:

1. fV : VX → VY is a mapping from the set of nodes of X to the set of nodes
of Y such that if n ∈ VXthenf1(f2(LX(n))) = LY (fV (n))

2. fP : PX → PY is a mapping from the set of ports of X to the set of ports of Y
such that if p ∈ PG then f1(f2(LX(p))) = LY (fP (p)) and fV (LX(p).Attach) =
LY (fP (p)).Attach

3. fE : EX → EY is a mapping from the set of edges of X to the set of edges of Y
such that if e ∈ EG then f1(f2(LX(e))) = LY (fE(e)) and fP (LX(e).Connection) =
LY (fE(e)).Connection (i.e., the morphism preserves the edge connections)

We denote by g(X) the subgraph of Y consisting of the set of nodes, ports
and edges that are images of nodes, ports and edges in X. This definition ensures
that each corresponding pair of nodes, ports and edges between X and Y have

3



the same set of attribute labels and associated values, except at positions where
there are variables. When using this definition to define matching, we will only
allow the use of variable labels on one of the graphs: X will be the graph on the
left-hand side of the rewrite rule, which may include variable labels, and Y will
be the graph to be rewritten, without variables.

Let G be a port graph. A rewrite step G ⇒ H via the port graph rewrite
rule L⇒C R is obtained by replacing in G a subgraph g(L) by g(R), where g is
a morphism from L to G satisfying C. More precisely:

Definition 3 (Match). [8] Let L ⇒ R be a port graph rewrite rule and G a
port graph. We say a match g(L) of the left-hand side (i.e., a redex) is found
if: there is a port graph morphism g from L to G (hence g(L) is a subgraph of
G), C holds, and for each port in L that is not connected to the arrow node,
its corresponding port in g(L) must not be an extremity in the set of edges of
G − g(L). This last point ensures that ports in L that are not connected to the
arrow node are mapped to ports in g(L) that have no edges connecting them with
ports outside the redex, thus ensuring that there will be no dangling edges when
g(L) is replaced by g(R).

For a given graph, several outcomes on application of a rule may be possible
(due to the intrinsic non-determinism of rewriting). Strategies in rewriting sys-
tems are a means of controlling the creation of rewriting steps and improving
rewriting opportunities. A sequence of rewriting steps is called a derivation. A
derivation tree is a collection of derivations with a common root. Intuitively,
the derivation tree is a representation of the possible evolutions of the system
starting from a given initial state (each derivation provides a trace, which can be
used to analyse and reason about the behaviour of system). In Porgy [8], the
strategy language allows us to control the way derivations are generated. The
strategy expression setPos(crtGraph) sets the position graph as the full cur-
rent graph. If T is a rule, then the strategy one(T ) randomly selects one possible
occurence of a match of rule T in the current graph G, which should superpose
the position subgraph P but not superpose the banned subgraph Q. This strat-
egy fails if the rule cannot be applied. Id and Fail denote success and failure,
respectively. The strategy expression match(T ) is used to check if the rule T
can be applied (i.e., if there is a match for the left hand side of the rule in the
current graph) but does not apply the rule. (S)orelse(S′) tries strategy S and
if it fails then tries to apply S′. If both strategies fail then the whole statement
fails. ppick(T1, . . . , Tn, Π) selects one of the transformations T1, . . .Tn according
to the given probability distribution Π. while(S)[(n)]do(S′) executes strategy
S′ (not exceeding n iterations if the optional parameter n is specified) while S
succeeds. repeat(S)[max n] repeatedly executes a strategy S, not exceeding n
times. It can never fail (when S fails, it returns Id).

2.2 The Rational Negligence Model.

As defined in [9] “Securitisation is the process of converting cash flows arising
from underlying assets or debts/receivables (typically illiquid such as corporate

4



loans, mortgages, car loans and credit cards receivables) due to the originator
into a smoothed liquid marketable repayment stream” and this ensures that the
originator can raise asset-backed finance through loans or the issuance of debt
securities also known as assets. An originator is any financial intermediary with
a portfolio of assets on its balance sheet. In a securitisation, assets are selected,
pooled and transferred to a tax neutral, liquidation-efficient (i.e bankruptcy
avoiding), Special Purpose Vehicle (SPV), who funds them by issuing securities.

In the core rational negligence model [10], the profit Uw expected by an
agent (e.g., a bank) w from trading an asset depends on whether or not w
follows the negligence rule, i.e., the rule of not performing independent risk
assessment. Let z be a binary variable indicating whether or not the agent is
following the negligence rule, then Uw(z) can be characterised by the following
equations, where p is the probability of asset toxicity, Z is the average of all
z’s in the domain, c is the cost of purchasing an asset (note that the payoff
from successfully reselling the asset is normalised to unity), xw is the cost of
performing a complete risk analysis, k is the number of trading partners of the
seller bank and Ni is the set of agents.

– Expected profit for w when following the negligence rule, i.e., when z(w) = 1,
if w buys an asset and then tries to sell it to w′:

Uw(1) = −p(1− z(w′))c+ [1− p(1− z(w′))](1− c) = 1− p(1− Z)c

This is because if the asset is toxic then w will loose c if w′ checks, and will
have a profit of 1 − c if w′ does not check. Of course w does not know a
priori whether w′ will or not follow the rule, but it can estimate z(w′) as the
average of all the values of z in the system, Z. Note that when p = 0 the
profit is 1 as expected.

– Similarly, the expected profit for w when the rule is not followed, i.e., z(w) =
0, is defined by:

Uw(0) = (1− p)(1− c)− xw
This is because if the asset is toxic, then w will not buy it (losing only xw),
but if it is not toxic then it will resell it with a profit of 1− c− xw.

So the best response of agent w to a buying request is determined by:

U(1)− U(0) = p(Z − c) + xw = p

1

k

∑
j∈N i

zj − c

 + xw

Following [10], we implement a model that mimicks the transactions that follow
the trading of one asset since this is sufficient to perform validations against
equivalent DSGE analyses. The goal of the model is to study the evolution of
the system till fixed point or stable state is reached i.e., in this case, a state
such that all potential buyers in the universe of discourse no longer alternate
between diligent and non-diligent behaviour in their handling of the purchase of
a particular asset.

5



3 Implementation

Following a design process similar to that outlined in [11], we chose to model
asset-transfer transactions using a combination of global and local data, and
a global state, the Z node (an indicator of market behaviour obtained as the
average value of each individual bank’s approach, represented by the local lower-
case attribute z and not to be confused with the global value Z). A Change
indicator node is used within a rule to detect whether the market has reached a
stable state. Tables 2 and 3 contain a description of the nodes used. Alternative
designs are possible, highlighting the flexibility of the approach: For example,
local copies of the z-attribute could be used to propagate negligent/diligent
behaviour using propagation algorithms borrowed from social network models
whereby information is transmitted, or in this case received, based on the actions
of neighbours or neighbours-of-neighbours or other clusters [12]. The details of
this alternative model shall be contained in the full paper and we adhere to
current design in order to arrive at a base case that most accurately matches
the details of that provided in the equational model.

We represent the full ABS universe hierarchically as several initial graphs.
Port graph rewriting rules and strategies are used to control the step-wise evo-
lution of the graphs and to create a derivation tree that can be used for plotting
and analysing parameter values. The asset trading model sits at the top level
of the model hierarchy and it is non-deterministic in nature. Below this system,
also able to handle asset pricing and valuation issues, lie several deterministic
subsystems that model origination, structuring of the deal, SPV transfers and
profitability of the sale.

Fig. 1. All Tiers Flattened and Condensed

Tables 2 and 3 describe the nodes in the system and their ports respectively:

After the creation of a comprehensive set of rules, reduction strategies were
created that defined the sub-graphs to be selected for evaluation and which rules
should be applied to the starting state of the model and it is from this point that
the derivation tree begins to undergo construction as the execution strategy calls

6



Name of Rule Description

requesttobuy

Sends a request-to-buy message to a random bank B changing
the name of this node to PB (PotentialBuyer)
A copy of the rule (Other rules can be found in the Appendix)

beginanalysis
Computes profitability U(1), U(0) of PB, generating
a node Theta with attribute DeltaU1U0 = U(1)− U(0)

updatez
Updates the attribute Z in node Z. The new value in
Z is (Z ∗ (k − 1) + z(PB))/k

followresult
Applies if DeltaU1U0 ≥ 0.
As additional visualisation support, it generates a follow node
if more profitable to not do a full risk analysis

deviationresult
Applies if DeltaU1U0 < 0
As additional visualisation support, it generates a
deviation node if more profitable to do a full risk analysis

followdecision
Transfers asset and prepares for a new transaction (i.e. cleans up
after the decision negligence rule), updating bank’s attribute z,
updating the Change counter if necessary

deviationdecision
Transfers asset and prepares for a new transaction (i.e. cleans
up after the decision to deviate from the negligence rule), updating
bank’s attribute z, updating the Change counter if necessary

change Sets the Change counter back to 0 if greater than 0
Table 1. Rewrite Rules

7



Entity Attribute Description

Buyer (B/PB)

Payoff (payoff) Returns from re-selling an asset
Bank/Potential

z Indicates whether or not,
as a rule, the institution
performs independent risk analyses

Bank ID (b id) Bank identifier

Asset

Current Value (c val) Cost of purchasing an asset
Probability An asset is toxic if the borrowers
of Toxicity (p tox) of the underlying loans are

likely to default or are in default
Actualised Toxicity Current toxicity level
(a tox)
Perception (pe) External rating of the asset

by rating agencies
Due Diligence Cost Full cost of an independent
(ddcost) risk assessment

Change
change Change in bank approach
Sum of change Sums all changes in a current cycle
(sumofchange)

z Represents the global average z
Number of Iterations Counter that keeps track of

Z (numofiterations) AllTrade iterations
Number of Agents Variable that keeps track of
(numofagents) number of banks

Theta
U1 Profitability of being negligent
U0 Profitability of being diligent
DeltaU1U0 Difference between U1 and U0

Table 2. Nodes and Attributes

Entity Ports Description

Bank
O (Owns) Edges attached to this port highlight

assets owned by the bank
C (Contacts) Communication channel with another bank

Asset OB (Owned by) Connects the asset to its current owner

Z EN (Environment) Global entity that tracks current average sentiment

PotentialBuyer
O (Owns) Links to assets owned by the bank
C (Contacts) Communication channel with another bank
GE (Generates) Declares a relationship with an analysis node

Change CH (change) Counter that keeps track of behaviour changes

Theta PB (Produced by) Entity that produces this computation helper

Table 3. Ports in each kind of node

8



1 #AllTrade#;
2 while(match(change))do(
3 one(change);
4 #AllTrade#)

Strategy 1: FixedPointSearch

1 setPos(crtGraph);
2 repeat(one(requesttobuy);
3 one(beginanalysis);
4 (one(deviationresult);one(deviationdecision)) orelse
5 (one(followresult);one(followdecision))
6 setPos(crtGraph);
7 one(updatez))(k)

Strategy 2: AllTrade

on rules that create step-wise transformations. Specifically, the asset transfer
processes are governed by the strategies AllTrade and FixedPointSearch (see
Strategies 1 and 2 below), using 8 rewrite rules summarised in Table 1 (see also
the diagrams in Figures 3 to 10 of the Appendix, omitted here due to space
constraints).

Also highlighting flexibility it is worth noting that a variant of strategy All-
Trade can simply replace the orelse operator by a ppick operator, and then
begin to model probabilistic choice of logit type between following or deviating
from the negligence rule. The probability distribution used in this case imple-
ments the stochastic “trembles” described in [14] and can be written within our
strategy environment as follows:

ppick(followResult, deviationResult, udfLogitModel)

where udfLogitModel is a function that reads the profitability of being negligent
or diligent (attributes U1 and U0 in the node Theta of the graph produced by
the relevant rule) and returns the following values as a list:

expBUi(z=1)

expBUi(z=1) + expBUi(z=0)
and 1− (

expBUi(z=1)

expBUi(z=1) + expBUi(z=0)
)

where i is the current agent number and B is the intensity of choice parameter
that controls the ease by which fixed point is reached (as specified in [14]).

4 Testing

A successful base case validation has seen test results (see Figure 2 where average
Z count value is plotted versus depth of the simulation) line up with results from
the more traditional ABM simulation given in [10]). In particular, for high values
of p (that is, high probability of toxicity), we observe the expected result when
the initial state contains a mixture of negligent and diligent agents: a sharp drop

9



in Z, corresponding to a sharp switch in average approach (i.e., more banks
decide to perform independent analysis), which in turn will generate stability.
An illustration of this can be seen in Figure 2(c) and notice that given high
due diligence costs Figures 2(b) and 2(e) highlight a negligent approach whereas
Figures 2(c) and 2(h) reflect the favouring of a diligent approach. However, even
for high toxicity, if the initial state is a set of negligent agents, the model reaches
equilibrium without switching approach as seen in Figure 2(l).

5 Some Related Work and Conclusion

Fundamentally, general purpose agent-based simulation tools and platforms2 like
JAS, Netlogo, AgentBuilder, Swarm, MASON, Repast, SeSAm, GAMA and IN-
GENIAS Development Kit, support an imperative object-oriented approach to
model development, facilitating the modular approach to coding. EMERALD
and JADE middleware integrate a declarative approach but without any visual-
ization support. Other tools and languages like Stratego, Maude and ELAN [5]
support a pure term-writing approach which in the case of Maude is augmented
by probabilistic features. The visual, declarative nature of graph transformation
systems are thus welcome in the cases where users seek to primarily focus on de-
scribing what the system should accomplish in terms of problem domain versus
the how, and maintain strong conceptualization support that can subsume the
details of spatial and topological constraints.

We have shown that strategic port-graph rewriting provides a basis for the
design and implementation of a multi-level graph model able to capture the inner
workings of the sub-prime secondary securitisation market in a manner that
reflects the aforementioned rational negligence phenomenon and that provides
optional operational support.

We observed that a declarative approach is much easier to program and
maintain, and the incremental manner in which development was approached
(e.g. coarse-grained rules tested before finer optimizations), in addition to the
modular nature of development, eliminated many coding bugs. Interacting with
the system was not convoluted in anyway and being able to view the states
generated by each rule within the derivation tree generated was useful.

In future, we hope to further develop the hierarchical model to be able to
capture all details of the full securitisation life-cycle and cater for more dynam-
ically to changing parameters.

References

1. de Lara, J., Guerra, E., Boronat, A., Heckel, R., Torrini, P.: Domain-specific
discrete event modelling and simulation using graph transformation. Software and
System Modeling 13(1) (2014) 209–238

2. Nneka Ene, M.F., Pinaud, B.: A graph transformation approach to the modelling
of capital markets. Submitted for publication.

2 http://jasss.soc.surrey.ac.uk/18/1/11.html

10



(a) Low Tox-
icity, High
Due Diligence
Cost,Mixture
of Diligent and
Negligent Banks

(b) High Toxi-
city, High Due
Diligence Cost,
Mixture of
Diligent and
Negligent Banks

(c) High Toxi-
city, Low Due
Diligence Cost,
Mixture of
Diligent and
Negligent Banks

(d) Low Toxi-
city, Low Due
Diligence Cost,
Mixture of
Diligent and
Negligent Banks

(e) High Toxi-
city, High Due
Diligence Cost,
Diligent Banks

(f) Low Toxicity,
High Due Dili-
gence Cost, Dili-
gent Banks

(g) Low Toxicity,
Low Due Dili-
gence Cost, Dili-
gent Banks

(h) High Toxi-
city, Low Due
Diligence Cost,
Diligent Banks

(i) Low Toxicity,
High Due Dili-
gence Cost, Neg-
ligent Banks

(j) High Toxicity,
High Due Dili-
gence Cost, Neg-
ligent Banks

(k) Low Toxicity,
Low Due Dili-
gence Cost, Neg-
ligent Banks

(l) High Toxicity,
Low Due Dili-
gence Cost, Neg-
ligent Banks

Fig. 2. Experiment Results. (y-axis: Count of the number of negligent banks. The
intersection of x and y axes in the case of a starting universe of purely diligent banks
corresponds to the co-ordinates (0,0) as opposed to (11,0) in the case where we begin
with negligent banks. Curves tending upwards reflect a negligent equilibrium result)

11



3. Ene, N.C., Fernández, M., Pinaud, B.: Attributed hierarchical port graphs and
applications. In: Proceedings Fourth International Workshop on Rewriting Tech-
niques for Program Transformations and Evaluation, WPTE@FSCD 2017, Oxford,
UK, 8th September 2017. (2017) 2–19

4. Ene, N.C.: Analysis of attributed hierarchical graphs. Submitted for publication.
5. Mart-Oliet, N., Meseguer, J., Verdejo, A.: Towards a strategy language for maude.

Electronic Notes in Theoretical Computer Science 117 (2005) 417 – 441 Proceed-
ings of the Fifth International Workshop on Rewriting Logic and Its Applications
(WRLA 2004).

6. Fernández, M., Kirchner, H., Pinaud, B.: Strategic Port Graph Rewriting: An
Interactive Modelling and Analysis Framework. Research report, Inria (January
2016)

7. Löwe, M.: Algebraic approach to single-pushout graph transformation. Theor.
Comput. Sci. 109(1&2) (1993) 181–224

8. Fernández, M., Kirchner, H., Pinaud, B.: Strategic Port Graph Rewriting: an
Interactive Modelling Framework. Research report (2017) https://hal.inria.fr/hal-
01251871.

9. Markose, S., Dong, Y., Oluwasegun, B.: An multi-agent model of rmbs, credit risk
transfer in banks and financial stability: Implications of the subprime crisis (2008)

10. Anand, K., Kirman, A., Marsili, M.: Epidemics of rules, rational negligence and
market crashes. The European Journal of Finance 19(5) (2013) 438–447

11. Depke, R., Heckel, R., Küster, J.M.: Formal agent-oriented modeling with {UML}
and graph transformation. Science of Computer Programming 44(2) (2002) 229 –
252 Special Issue on Applications of Graph Transformations (GRATRA 2000).

12. Vallet, J., Kirchner, H., Pinaud, B., Melançon, G.: A visual analytics approach to
compare propagation models in social networks. In Rensink, A., Zambon, E., eds.:
Proc. Graphs as Models, GaM 2015. Volume 181 of EPTCS. (2015) 65–79

13. Norling, E., Powell, C.R., Edmonds, B.: Cross-disciplinary views on modelling
complex systems. In: Multi-Agent-Based Simulation IX, International Workshop,
MABS 2008, Estoril, Portugal, May 12-13, 2008, Revised Selected Papers. (2008)
183–194

14. Farmer, J., Gallegati, M., Hommes, C., Kirman, A., Ormerod, P., Cincotti, S.,
Sanchez, A., Helbing, D.: A complex systems approach to constructing better
models for managing financial markets and the economy. The European Physical
Journal Special Topics 214(1) (2012) 295–324

12



A Appendix

A.1 Rewrite Rules

Diagrams in Figures 3 to 10 provide overviews on the rules described in the main
section without the red arrow-node edges in order to achieve a more user-friendly
viewing. Displaying the red arrow-node edges is optional in Porgy.

Fig. 3. Request to Buy. Sends a request-to-buy message to a random bank B changing
the name of this node to PB (PotentialBuyer)

Algorithm Tab:
Theta.U1 = 1− (A.p tox(1− Z.z)A.c val)
Theta.U0 = (1−A.p tox)(1−A.c val)−A.ddcost
Theta.DeltaU1U0 = Theta.U1− Theta.U0

Fig. 4. Begin Analysis. Computes profitability U1, U0 of PB, generating a node Theta
with attribute DeltaU1U0 = U1 - U0

13



Fig. 5. Follow Result. Applies if DeltaU1U0 ≥ 0. As additional visualisation support,
it generates a follow node if more profitable to not do a full risk analysis

C: If Theta.DeltaU1U0 ≥ 0

Algorithm Tab:
Change.change = 1− Change.change
Change.sumofchange = Change.sumofchange
+(1− Change.change)

B.z=1

Fig. 6. Follow Decision. Transfers asset and prepares for a new transaction (i.e. cleans
up after the decision to follow the negligence rule), updating bank’s attribute z, up-
dating the Change counter if necessary.

Fig. 7. Deviation Result. Applies if DeltaU1U0 < 0. As additional visualisation sup-
port, it generates a deviation node if more profitable to do a full risk analysis

C: If Theta.DeltaU1U0 < 0

14



Algorithm Tab:
Change.change = 1− Change.change
Change.sumofchange = Change.sumofchange
+(1− Change.change)

B.z=0

Fig. 8. Deviation Decision. Transfers asset and prepares for a new transaction (i.e.
cleans up after the decision to deviate from the negligence rule), updating bank’s
attribute z, updating the Change counter if necessary

Algorithm Tab:
Z.z =
((Z.z ∗ (Z.numofagents− 1)) + B.z)
/Z.numofagents

Fig. 9. Update Z. Updates the attribute Z in node Z. The new value in Z is (Z * (k -
1) + z(PB))/k

C: If Change.sumofchange ! = 0

Algorithm Tab:
Change.change = 0
Change.sumofchange = 0

Fig. 10. Change. Sets the Change counter back to 0 if greater than 0

15


