Predicting Pinterest: Automating a Distributed Human Computation

Changtao Zhong, Dmytro Karamshuk, Nishanth Sastry
King’s College London, UK
{changtao.zhong, dmytro.karamshuk, nishanth.sastry}@kcl.ac.uk

ABSTRACT

Everyday, millions of users save content items for future use on sites like Pinterest, by “pinning” them onto carefully categorised personal pinboards, thereby creating personal taxonomies of the Web. This paper seeks to understand Pinterest as a distributed human computation that categorises images from around the Web. We show that despite being categorised onto personal pinboards by individual actions, there is a generally a global agreement in implicitly assigning images into a coarse-grained global taxonomy of 32 categories, and furthermore, users tend to specialise in a handful of categories. By exploiting these characteristics, and augmenting with image-related features drawn from a state-of-the-art deep convolutional neural network, we develop a cascade of predictors that together automate a large fraction of Pinterest actions. Our end-to-end model is able to both predict whether a user will repin an image onto her own pinboard, and also which pinboard she might choose, with an accuracy of 0.69 (Accuracy@5 of 0.75).

Categories and Subject Descriptors

H.3.5 [Online Information Services]: Commercial Services, Data Sharing, Web-based services; I.4.9 [Image Processing and Computer Vision]: Applications; J.4 [Social and Behavioral Sciences]: Sociology

Keywords

Pinterest; Content Curation; Crowdsourcing; Image Analysis; Deep learning; User Behaviour; Supervised learning

1. INTRODUCTION

Following on the heels of the information glut created by the user-generated content revolution, an interesting new phenomenon that has been termed content curation has emerged: Rather than create new content, content curation involves categorising and organising collections of content created by others. For instance, on Pinterest, perhaps the most prominent content curation site, users can collect and categorise images (and the URLs of the webpages that contain them) by “pinning” them onto so-called “pinboards”. Similarly, delicious.com (formerly del.icio.us) allows users to categorise URLs by tagging them.

A crucial aspect of such sites is that content curated by one user is also (by default) made available to the rest of the users to curate. For instance, on Delicious, links of another user can be copied onto one’s own list, by tagging them. Users on Pinterest can copy images pinned by other users, and “repin” onto their own pinboards. Interestingly, such reapropriation and curation of content discovered by other users (termed as “repins”) is by far the most common activity on Pinterest, constituting about 90% of user actions, as compared to directly discovering and pinning new images, which constitutes only 10% of actions.

Even if curating a content item that has already been categorised, users typically have to re-adjust it for their own collections: For instance, in tagging systems, multiple studies [9, 23, 25] have recognised that inter-user agreement can be low, and different users may choose different tags for the same URL (although an overall consensus vocabulary may emerge per-URL, due to tag imitation or background knowledge [9]). Similarly, users’ pinboards are highly personal and idiosyncratic representations of their taste, and furthermore, users are free to choose to repin any image onto any pinboard. Consequently, curation on Pinterest remains a highly manual process as well.

Our goal is to make it easier to re-appropriate and re-categorise content for personal use. Consider an image which has been introduced into Pinterest by an original pinner. Several other users may want to repin this onto their own pinboards. We are interested in automating this latter task: Given a pin (image) and a user, we wish to predict whether the user would be interested in repinning the pin. Moreover, we wish to predict the pinboard onto which they would repin, and automatically suggest these to the user.

Towards this end, we revisit the notion of agreement in the context of Pinterest. Unlike traditional social bookmarking, pinning on Pinterest does not involve creating an explicit vocabulary of tags to describe the image. However, each pinboard may be associated to one of 32 categories defined globally for all users by Pinterest. Thus, even though each pinboard may be exclusive to a user, the act of pinning implicitly categorises the image. In other words, Pinterest users can be seen as performing a massive distributed human computation, categorising images found on the Web onto an extremely coarse-grained global taxonomy of 32 categories.

We find that this lower dimension approximation of Pinterest has several desirable properties: First, for a given image, a remarkable ≈75% of repins tend to agree on the majority category, although the level of agreement varies with the category. This enables us to

\[1\] According to our dataset, collected originally in Jan 2013. This dataset, together with new image content-related features, is being made available to researchers at http://bit.ly/pinterest-dataset.
robustly predict the category of an image. Second, users tend to specialise in a handful of categories; we use this to predict a personalised category, given the crowd “votes” for different categories. Third, most users appear to have one or two boards per category. Thus, given the category of an image, and the user, it is often trivial to predict the board to which the user would pin the image. Based on these observations, we are able to build classifiers that can predict the specific pinboard onto which the image would be repinned, if it is known that the user has pinned an image onto some pinboard.

Thus, the remaining problem is predicting whether the user would pay any attention to an image and repin it (onto some pinboard). We use the content of the image to build this predictor: we derive several thousands of image-content features (Table 1), ranging from basic visual and aesthetic features to features extracted from the layer right before the final classification layer of the state-of-the-art deep convolutional network in Caffe [18], and by recognising objects in the image, using the same convolutional neural network. Using these features, we construct a supervised machine learning model that is able to assign an image to the majority category. We also learn user preferences for these image features, and predict whether the image would be repinned by the user.

We compose these classifiers in a pipeline of three layers (Figure 1). The first layer predicts whether the user will pay attention to a pin; the second predicts the category that the user will choose for the pin; and the third predicts the pinboard chosen given the category. Together this pipeline or cascade of classifiers is able to predict curation actions on Pinterest with an accuracy of 69%. On these observations, we are able to build classifiers that can predict a specific pinboard onto which the image would be repinned, if it is known that the user has pinned an image onto some pinboard.

The properties of crowd agreement over item categories is a crucial element in our design. This has been studied widely in the context of social tagging (e.g., on delicious, citeulike, bibsonomy, etc.). Wetzer et al. [34] found that even if people share a common understanding about content, they may tag differently. It is known [11, 38] that tagging behaviour is driven by users’ motivation to either categorise content for global use and easier navigation, or to describe content for personal use and to improve its searchability. Users employ different kinds of vocabularies depending on their motivation: a more compact but also a more informative vocabulary for categorisation, and a more diverse, yet more fine-grained vocabulary for descriptions [31]. Drawing on these results, we use fine-grained features, obtained by recognising objects in images,
Emergence of consensus in Pinterest

Figure 2: (a) The category chosen by the ith pinner is independent of the category chosen by the previous $i - 1$ pinners, and is the same as the category chosen by the majority of repinners with a remarkably high probability (≈ 0.75). (b) The average fraction of pinners in the majority can vary across category, ranging from 91% (cars and motor cycles, or CAR), to 43% (Illustrations and Posters, or ILL). All except PRO (45%, Products) and ILL have a majority $> 50%$. (c) Cumulative distribution function (CDF) of the probability that the majority category that emerges at the ith pin remains the majority category after all repins have occurred. For over 60% of pins, the category of the very first pin determines the majority category; in over 90% of cases, a stable majority has emerged after just 5 repins (all pins have > 5 repins in our dataset).

4. PREDICTABILITY OF REPINS

Curation on Pinterest is currently a manual procedure: Users select images that they like, and categorise it amongst one of several thematic collections or pinboards that they curate. Over 85% of respondents in a previous user study considered their pinning activity to be highly personal, akin to personal scrapbooking [35].

This paper, however, aims to automate this procedure, as much as possible. To this end, we examine the extent to which properties of the pin, or the user, can assist in suggesting an appropriate pinboard of the user for the pin. We first take a pin-centric view, and ask whether repins of other users can help, and show that users tend to strongly agree on the category that they implicitly assign to a pin, via the category of the pinboard they choose. Next, we take a user-centric view, and show that users tend to be highly specialised in their choice of pinboards, focusing on a handful of categories, and also typically have very few boards within each category. We conclude by highlighting the implications of these findings, which we make use of in subsequent sections.

4.1 Pinterest users agree on image categories

Pinboards are personal to each user, and pinboards of different users typically share at most a handful of pins, if at all. However, each pinboard may be assigned to one of 32 categories which have been pre-determined by Pinterest. Therefore, we may regard a repin as implicitly assigning one-of-32 labels to an image, reminiscent of ESP game [32], a human computation task which greatly improved label prediction for images. We ask whether users agree on the category assignment for images in the context of Pinterest.

Formally, each repin by user u of a pin p to a pinboard b whose category is c is interpreted as an assignment of the category c to pin p by user u; we denote this as $\text{repin}_{\text{cat}}(p, u) = c$. After users $1..i$ have repinned a pin, one can define the count of the category assignments of c to p: $\text{count}_{i}(p, c) = \{k | \text{repin}_{\text{cat}}(p, k) = c, \forall 1 \leq k \leq i\}$. We define the majority category of an image or a pin as the category chosen by the maximum number of repinners 3. In other words, the majority category $\text{maj}_{i}(p)$ after users $1..i$ have repinned a pin is the category with the maximum count: $\text{maj}_{i}(p) = \arg\max_{c} \text{count}_{i}(p, c)$. The final majority category $\text{maj}_{\infty}(p)$ is the majority category after all repins have been made. The consensus or agreement level after r repins can be computed.

2This setting has been changed in April 2013.

3Note that we do not require $>50\%$ of pinners agree on a category, although this often happens.
puted as the fraction of pins in the final majority category after \(r \) repins:
\[\text{agreement}_r(p) = \frac{\text{count}_r(p, \text{maj}_\infty(p))}{r}. \]

Whereas other curation systems (such as social tagging on delicious.com) might push users towards agreement by suggesting tags \(\#9 \), in Pinterest, a pin does not come with a category of its own, and no category is suggested by the system or other users. Indeed, it is quite difficult on Pinterest to discover the category of a pinboard: Visitors to a pinboard’s webpage can only determine its category through a meta-property in the HTML source code.\(^4 \) Even the owner of the board is only shown the category on the page for editing a board’s details (not normally seen when the owner views her board). Because of this UI design decision in Pinterest, we expect that a user’s choice of the Pinterest category to associate with a pin is made independently of other users or the system itself. Furthermore, the category choice is made only implicitly, as a result of an explicit choice made on which pinboard to place the image in. Thus, we expect this decision to be influenced by, for instance, whether the image being pinned fits thematically with the other images in the pinboard, and not by other users.

We first test our expectation that users individually decide on an image’s category. We ask what is the probability \(P[\text{repin}_\text{cat}(p, i) = \text{maj}_\infty(p)] \), that the \(i \)th repinner of a pin agrees with the final majority category chosen for it. Confirming our intuition, Figure 2\(^3 \) shows that the \(i \)th repinner’s choice appears to be unaffected (either positively or negatively) by the choices of all the previous \(i-1 \) repinners. Furthermore, we see that there is a remarkably high chance (\(\approx 75\% \)) that the category implicitly chosen by a user agrees with the majority. Figure 2\(^3 \) shows that the average levels of agreement can vary across pins of various categories, from 91\% to 43\%; and in all categories except Illustrations and Products, the final majority category has a clear majority of \(> 50\% \) agreement.

Next, we ask how many pins it takes for the majority to emerge, and stabilise: Suppose we temporally order the pinners of a pin \(p \), starting with the first pinner as Repin 1. We wish to know the number of repins required (smallest pinner number \(a \)) at which the majority category is the final majority category, and the consensus on the majority is unchanged by all subsequent pins. Formally, we want the smallest pin \(a \) such that \(\text{maj}_k(p) = \text{maj}_\infty(p), \forall k \geq a \). Figure 2\(^3 \) shows the cumulative distribution of the number of repins \(a \) required for stable agreement to emerge. In over 60\% of images, this happens with the very first pin. After 5 repins, over 90\% of images have reached consensus on the final majority category.

4.2 Pinterest users specialise in few categories

Having looked at a pin-centric view on predictability, we now look for user-specific patterns that can aid us in categorising their content automatically. Again we focus on categories. We first look at the distribution of categories per user and find that users are highly specialised. Figure 4\(^3 \) considers the fraction of a user’s pins which are in the top-k categories of the user. This shows, for example, that about half the users have nearly half their pins in pinboards belonging to their top category, and 80\% users have all their pins in pinboards belonging to their top-5 categories. This indicates a high degree of specialisation.

We next consider how users choose to create pinboards. Figure 4\(^3 \) shows that most users have one or two pinboards in each category. Thus, it appears that users are mostly following the coarse-grained taxonomy developed by Pinterest, and are in fact simply categorising images in this space, rather than on highly personalised pinboards.

4.3 Implication: Board prediction is easy

The results of §4.1 strongly suggest that most repinners agree on the category to assign to a pin, and furthermore, this majority category can be deduced just by observing the first few (say 5) repins. Secondly, since users’ pins in different categories are highly skewed (Figure 3\(^3 \)), users’ own personal favourite categories can be predicted as a choice for the category used. In examining the corpus of repins, we find that, consistent with Figure 2\(^2 \), \(\approx 87\% \) of repins after the first five repins are made to the majority category. A further 4.7\% of repins are made to the majority category, but to the category in which the user has most of her pins. Thus, we expect that predicting the category of a particular pin based on these powerful signals can be an easy problem, and exploit these in §7.1.

Further, §4.2 suggests that users tend to have very few boards per category. Thus, once the category is predicted, we expect to be able to predict the actual pinboard chosen by the user as well. Finally, for the few cases when the user’s pins are not in the majority category, we propose to use the fact that users specialise in a few categories to predict the correct category and thereby the board used. We explore the above two strategies in §7.2.

We conjecture that the high levels of agreement seen for a pin’s category may in fact be a result of the high degree of user specialisation within categories: Since users choose to repin in very few categories, the fact that the user has paid any attention to a pin and repinned it is a strong indicator that the pin belongs to the given category. This may help explain the result of Figure 2\(^3 \) that nearly 8 out of 10 repinners agree on the category for a pin.
5. PREDICTING PINTEREST: AN OUTLINE

In the rest of this paper, we will use the notions of user category specialisation and agreement uncovered from the data, together with a number of user- and image-content related features to develop a model for predicting users’ repins. Our ultimate goal, as stated earlier, is to automatically suggest, given a user and an image, whether the user will repin the image, and which pinboard it will be repinned to. In this section, we describe the features used, and our outline model for predicting content curation actions as a cascade of predictors. Later sections will use the dataset described in §3 to validate the different parts of the model.

5.1 Curation as a cascade of predictors

We model the process of curation as a cascade of predictors (Figure 1). A content curation action involves a user u who “re-pins” a pin onto one of her pinboards. The first prediction problem (§5) is to take a user u and a pin p, and predict an action \(f_1 : (p, u) \rightarrow \{\text{no action}, \text{repin}\}\). Next, the repin involves a further user-specific decision as to which pinboard the pin should be placed in (§7). We may formulate this problem as a classification task where a machine learning classifier \(f_2\) is trained to recognise pinboard \(b\) to which user u is going to put repinned pin \(p\), i.e., \(f_2 : (p, u) \rightarrow b\). \(f_2\) is a set of user’s u pinboards. However, taking cue from §4.1 and §4.2, we split this task into two. First, we predict the category \(c\) that the user might implicitly choose for the image (§7.1), i.e., we train a classifier \(f_{2,1}\) to recognise the category \(c\), in which user u is going to put the repinned pin \(p\). Formally, we build a model to predict \(f_{2,1} : (p, u) \rightarrow c\), \(f_{2,2} : (c, u) \rightarrow b\) where \(\{b_1, b_2, ..., b_n\}\) is a set of user’s u pinboards. Then in §7.2 we train a classifier \(f_{2,2}\) to predict the pinboard given the category as selected by the user. Formally, we develop the model \(f_{2,2} : (c, u) \rightarrow b\). As expected from Figure 1 this turns out to be an almost trivial problem.

5.2 Features

We tackle the above classification problems by incorporating both image- and user-related features (summarised in Table 1). In addition, we also use a feature derived from the “crowd” of other users repinning the image: the consensus agreement (§4.1) around the category of the image, as measured from the first five repins, serves as a powerful indicator of the category that other users might choose for the same image.

5.2.1 User-related features

We employ several user-related features which measure both the preferences as revealed by a user’s repin history, and the user’s extent of involvement with Pinterest, based on her profile.

User Image Preferences.

To describe users’ preferences for particular types of content, we use two sets of features: Category Preferences and Object Preferences. The first set is a relatively coarse-grained approach wherein we measure how many images a user repins in each of the 32 different Pinterest categories. Object preferences are obtained by devising user-specific signatures from the visual features of those repins. We use the state-of-the-art approach in object recognition for images [6], deep convolutional networks [22], to extract a set of more fine-grained visual features. More specifically, we train a deep convolutional network using Caffe library [18] based on 1.3 million images annotated with 1000 ImageNet classes and apply it to classify Pinterest images. For each image, we can derive a 1000-long vector, representing Caffe’s confidence levels in recognising the 1000 ImageNet classes it has been trained on. Then, for each user in our dataset, we derive a vector of 1000 features which represents the centroid of the vectors for each of their previous repins. This can be taken as an approximation of the user’s preferences for different kinds of image objects.

User Profile Features.

We also take into account the extent of the user’s activity on Pinterest by measuring different statistics from their profiles: number of followers, number of boards, number of repins, etc.

5.2.2 Image-related features

Image-related features are derived based on the content of the images. A more traditional approach is to use various metrics of the quality of the image. This is complemented by drawing a range of features using state-of-the-art object recognition for images.

Image Quality Features.

Firstly, we define 14 image quality features (Image Quality-I and II in Table 1) to describe the content of an image. These include colour model-related basic visual features such as lightness, saturation, colourfulness, grey contrast, RMS contrast, naturalness, sharpness, sharp pixel proportion and left-right intensity balance. We also consider three aesthetics-related features that have been used previously in literature: simplicity, modified-simplicity and rule of thirds. Our goal is to assess how these image quality features can capture user preferences for a particular type of content.

We note that extraction of the majority of image quality features requires significant computational resources on the scale of 151K images. Therefore, we used a dataset of down-scaled images (i.e., with width equal to 200 pixels) to extract all image quality features, except lightness, saturation, colourfulness and naturalness for which performance was not an issue. Our experiment on a random subset of 1000 images showed that the Pearson’s correlation coefficients between the features extracted from the original and rescaled images were over 0.90 across all features, suggesting that the error introduced by using the down-scaled images is reasonably small (an average absolute error of 0.01).

Object Recognition Features.

As described above, we trained the Caffe library [18] using 1.3 million images annotated with 1000 ImageNet classes [6] and apply it to classify Pinterest images. Through this process, we extract two types of visual features: (1) Deep neural network features from the layer right before the final classification layer. These are known for a good performance in semantic clustering of images [7]; and (2) Recognised objects in the image, represented by a probability or confidence level for each of 1000 objects, as obtained from Caffe.

Pinner-related features.

In addition, we incorporate user-specific features of the original pinner of the image: Features such as number of followers are indicative of the status and reputation of the pinner, and might have a bearing on whether an image is repinned. Similarly, the taste and expertise of the original pinner may also indirectly influence the repinner, and are captured by the category preferences of the original pinner, and her activity levels (number of boards, repins etc.).

5.2.3 Crowd features

In addition to the above, driven by Figure 2c we extract a simple but powerful feature: the majority category as seen after the first five repins. We then use these to predict the user-specific categories for repins beyond the first five (§7).
<table>
<thead>
<tr>
<th>Features</th>
<th>dim</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Image Preference Features</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Category Preferences</td>
<td>32</td>
<td>Users preferences towards different Pinterest categories, described by the fraction of images users have (re)pinned into each category since they signed up on Pinterest.</td>
</tr>
<tr>
<td>Object Preferences</td>
<td>1000</td>
<td>User preferences for object classes as recognised by the Deep Neural Network Caffe [18] (see below for details) is computed as the centroid of the Caffe-generated object classes of all images (re)pinned by the user during a week-long training period in our dataset (3–9 Jan 2013).</td>
</tr>
</tbody>
</table>

User Profile Features		
Pinboard count	1	Represents the number of personal pinboards of a user.
Secret board count	1	Calculates the number of users’ private pinboards, only accessible by the owner.
Pin count	1	Represents the total number of pinned and repinned images.
Like count	1	Measures the number of images a user has liked.
Follower count	1	Accounts for the number of users who follow the user under consideration.
Following count	1	Represents the number of users who are followed by the current user.

Image Quality-I: Basic Visual Features				
Lightness	2	Derived directly from HSL colour space. The average and standard deviation of the lightness values of all the pixels in the image are derived as lightness features.		
Saturation	2	Derived directly from HSL colour space. The average and standard deviation of all the pixels are used.		
Colourfulness	14	A measure of a image’s difference against gray. It is calculated in RGB as: $	4\sqrt{\sigma_g^2 + \sigma_r^2 + \sigma_b^2 + 0.3(\mu_g^2 + \mu_r^2 + \mu_b^2)}	$, where $r_g = R - G$ and $y_b = \frac{R + G - B}{2}$, and μ, σ mean standard deviation respectively.
Gray contrast	1	This is measured as the relative variation of lightness across the image in HSL colour space. It is defined as the standard deviation of the normalised lightness $\frac{L(i, y) - L(i, yb)}{L_{max} - L_{min}}$ of all image pixels.		
RMS contrast	1	Defined by the standard deviation of all the pixel intensities relative to the mean image intensity.		
Naturalness	16	A measure of the degree of correspondence between images and human perception of reality. It is described by grouping the pixels with $20 < L < 80$ and $S > 0.1$ in HSL colour space according to their hue values into three sets: Skin, Grass and Sky. The naturalness score N_S, $S \in \{\text{Skin, Grass, Sky}\}$, and the proportion of pixels NP, are derived from the image as described in [16]. The final naturalness score is computed as the weighted average: $NS = \sum S_i NP_i$.		
Sharpness	50	A measure of the clarity and level of detail of an image. Sharpness can be determined as a function of its Laplacian, normalized by the local average luminance in the surroundings of each pixel.		
Sharp pixel proportion	1	Photographs that are out of focus are usually regarded as poor photographs, and blurriness can be considered as one of the most important features for determining the quality of the photographs. The photographs are transformed from spatial domain to frequency domain by a Fast Fourier Transform, and the sharp pixel proportion is the fraction of all pixels that are sharp.		
Intensity balance	1	This measures how different the intensity is on the left side of the image compared to the right. We use OpenMAJ [13], an open-source library for multimedia content analysis, to produce the intensity histograms of the left and right portions of the image and evaluate the similarities between them using Chi-squared distance.		

Image Quality-II: Aesthetic Features				
Simplicity-1	23	Simplicity in a photograph is a distinguishing factor in determining whether a photograph is professional. To compute this, the RGB channels are quantized respectively into 16 different levels and a histogram H of $4096 = 16^2$ bins are generated for each RGB combination, and each pixel is put into the appropriate bin. Simplicity is defined as: $	S	/4096 \times 100\%$, where $S = \{H(i) \geq \gamma_{\text{max}}\}$, where $H(i)$ is the count of pixels in the ith bin, γ_{max} is the maximum count in any bin, and $\gamma = 0.01$.
Simplicity-2	25	A modified version of Simplicity-1. Instead of evaluating the simplicity of the whole image, Simplicity-2 extracts the subject region of a photograph and what remains is the background region. The colour distribution of the background is used to evaluate simplicity as above.		
Rule of Thirds	4	This is a well-known photograph composition guideline. The idea is to place main subjects at roughly one-third of the horizontal or vertical dimension of the photograph. It is measured by how close the main subjects are placed near these “power points”.		

Object Recognition Features		
Deep Neural Network (DNN)	4096	We use Caffe [18], an open-source implementation of deep convolutional neural networks [22] to train an eight-layer convolutional network on 1.3 million images annotated with 1000 classes, taken from the ImageNet [13] image classification challenge. Then we extract 4096 features from the layer right before the final (following [7]), and use these as an abstract indication of objects in the image.
Recognised Objects	1000	We use the deep convolutional network described above to recognise object classes in Pinterest images and use them as 1000 Image Object features.

Table 1: List of features used in the cascade of classifiers used to predict user curation actions on Pinterest. The dimension (dim.) column gives the number of scalar values in a feature. User-specific features are used both to describe the user who is repinning the image (U) as well as the original pinner (P) who introduced the image on Pinterest. We also use the majority category as computed by the crowd of (the first 5) users pinning an image as a feature in [7]. Image features (I) are based both on indicators of image quality, as well as object recognition using a Deep Convolutional Neural Network. User preferences among the recognised object classes is also captured as the user-specific feature “Object Preferences”. |
6. PREDICTING USER ATTENTION

Here we develop the first step of the cascade pipeline described in §5.1. We analyse the features which drive user attention towards a given pinned image and predict whether the user will take an action on it or not. Specifically, we consider two classes of signals: those of the pinned image and the user. The user u is described by the set of features U in Table 1, which depend on her category and object preferences as well as statistics of her user profile on Pinterest. The pin p is described by the set of image features I in Table 1, which may be attributed to the content of the pinned image. These are augmented by a set of features drawn from the Pinner who published the image, as various characteristics of the original Pinner, such as her "taste" of images, and how influential a user she is on Pinterest, may affect repinnability of the image.

We formalise the problem of predicting user attention as a classification problem where we train a binary classifier $f_1: (p, u) \rightarrow \{\text{repin}, \text{noaction}\}$ to predict a binary output $\{\text{repin}, \text{noaction}\}$ for a given input (p, u). For the purpose of this analysis we have chosen a Random Decision Forest classifier\(^5\) known for a good prediction performance in image classification problems\(^2\).

6.1 Generating negative samples

One of the challenges in training a model for the system with the absence of explicit negative feedback (as there is no "dislike" button in Pinterest) is to generate realistic negative training samples. The fact that a pin was not repinned by a user does not necessarily mean they would not have liked to repin it. It might have been the case that a repin did not happen simply because the user didn’t have a chance to see the pin, and had she seen the pin, she might have taken an action on it. To account for this variance when generating negative samples, we assume that pins published just before the time a user is taking an action are more likely to have been noticed by the user. Thus, for a user u who had n repin actions, we randomly select n negative samples\(^6\) by choosing one pin published within one hour of the time of each of the actions, and which were not repinned by the user.

Note, that this approach is justified by the fact that over 80% of repins happen within one hour of the previous repin of the same image (Figure 5). A possible reason for this could be that pins which have not been curated recently are likely to be replaced on the Pinterest homepage (or category-specific pages) by more recent activities and would be less likely noticed by a user. We are not interested in the exact cause of this phenomenon; rather we wish to exploit it to generate negative samples of pins that may have been seen by a user but were not repinned. We also tried time windows of other sizes, ranging up to six hours before the time of repin. The precise window size does not appear to affect prediction results.

6.2 Validation

To assess the performance of the proposed model, we split the dataset into three consecutive time intervals: We use all pins from the first interval to learn users’ preferences; all repin activity from the second one to train the model and all repins from the third one to test the model. Further, we consider two different experimental settings: when only category preferences of a user are taken into account and when both category preferences and visual object preferences are considered together. The results of the experiments are summarized in Table 2 and feature importances in Table 3.

Firstly, we note that, consistent with §5.2, the prediction performance is high (e.g. Accuracy=0.66) even when only user category preferences are considered (i.e., user object preferences are not considered). From Table 2 we also note that Category Preferences of users along with the image-related DNN and Recognised Objects features are the most important to predict user attention in this scenario. However, when we add User Object Preferences, prediction performance improves by 7-18% across all considered metrics (Accuracy, Precision, Recall, F1-Score). In this scenario, only ImageNet-related features are required, and none of the other sets of features contribute to more than 0.5% of samples. This suggests that the fine-grained object-related preferences are much more ef-

\(^5\)We used the Random Forest implementation from the SKLearn package with $\sqrt{\text{features}}$ split and 500 estimators (other values from 10 to 1000 were also tested, but 500 showed the best tradeoff between speed and prediction performance).

\(^6\)This means there are the same number of the positive and negative samples in our training set. We also evaluate our model in imbalanced cases (with positive/negative $= 10/90$) and observe similar performance (accuracy and AUC).
effective at capturing user preferences than the coarse-grained category preferences.

7. CATEGORY AND BOARD PREDICTION

In this section we elaborate our model by introducing the pinboard classifier which aims to predict a user’s choice of a board for a repinned image. We recall that a Pinterest user may have several different pinboards each assigned to one of 32 globally defined categories. Each of the images in the datasets are thus implicitly labeled by users with one of the 32 categories. In this section, we first develop a model to predict which category a user will choose, given that she will repin the image. We then refine this and predict which pinboard is used, if the category chosen by the user is known. The latter problem is trivial, as users tend to have very few pinboards per category (Figure 3). The former problem is aided enormously by deriving a straightforward category indication from the actions of the crowd (7).

7.1 Category prediction

We design a multi-class Random Forest classifier\(^7\) to learn which category a user will repin an image into. Specifically, we consider three classes of signals:

User Because of user specialisation, we expect that most of the repin activities of the user is restricted to only a few categories, and furthermore, even amongst these categories, there may be a skewed interest favouring certain categories over others. Thus, given that the user has repinned an image, we can expect her underlying skew of interest amongst different categories to be a reasonable guess for the category chosen for the repinned image. Thus the user category preferences in Table 1 can be interpreted as the empirical probabilities \(p_u(c_1), p_u(c_2), \ldots, p_u(c_{32})\) that a user \(u\) will repin an image into categories \(c_1, c_2, \ldots, c_{32}\).

Image The decision of the repinner on which category to assign can be modulated by the features of the image, the objects in the image, and how closely the objects in the image match the interests of the user. Therefore, in this class of signals, we include all the Image features (I) (c.f. Table 1) as well as the matching object preferences of the user.

Crowd There is also a good agreement over category assignment amongst different users (c.f. §4.1). Thus, beyond any preferences that the user may have, the consensus or crowd vote on the category, e.g., as seen after the first five repins for the image, is a heuristic for the category that might be assigned by a given repinner.

As before, to evaluate performance of the proposed model, we split the dataset into three consecutive time intervals: We use all pins from the first interval to learn users’ object preferences (this is common to 6 and is not repeated). We train the model based on activities in the second interval, and all repins from the last one are used to test the model.

The results of the experiments are summarised in Table 4. Firstly, we note that the prediction performance is quite high even when only using users’ skew in their category preferences (Accuracy=0.42, compared with the baseline accuracy=0.19 obtained by randomly selecting a category among user’s categories). When we add deep learning-based image recognition and image quality features to modulate user preferences amongst different categories, we see a dramatic improvement in accuracy to 0.77. Further adding information about the crowd-indicated category gives us an extremely accurate model with an accuracy of 0.88.

Given that the image features we consider are based on a state-of-the-art deep learning library, it is interesting to compare the performance of image-related features with a similar signal derived from the crowd. Table 4 shows that even by just using the user preferences amongst categories together with crowd-derived category information, we can obtain an accuracy of 0.85 (compared with 0.77 for Image+User features), suggesting that crowdsourced image categorisation is more powerful than current image recognition and classification technology.

7.2 Pinboard prediction

Next, we look at the way users select pinboards under each category. From Figure 4 we observe that the vast majority of users (75%) has only one board under each category, suggesting that in the most of the cases the problem of choosing a pinboard for a repinned image is similar to that of choosing a category. Nevertheless, some users may have more than one pinboard per category. To account for this, we combine the empirical probabilities of a user choosing a given category for an image (previously computed in §4.1) with the empirical probability of the user putting any given image into that pinboard (computed as the fraction of the user’s images in the given pinboard).

This gives us a prediction score for each pinboard, allowing us to compute a ranked list of pinboards. We evaluate prediction power of our method by calculating accuracy at a given cut-off \(K\) of the top predicted categories (Table 5). Formally, we measure the performance using Accuracy@\(K\), defined as a fraction of the experiments in which the ground truth pinboard was successfully predicted among the top \(K\) of the prediction list.

Comparing the Accuracy@1 results of the random benchmark in Table 5 with the random benchmark in Table 4 we note that pinboard prediction is just a slightly more difficult problem than that of predicting categories. The accuracy results of board prediction reflect those of the category prediction with an accuracy decrease of 15% (from 0.88 for category alone, to 0.73 for the more fine-grained board prediction). We also note that prediction performance for the Top-5 pinboards achieves 94% accuracy, which suggests that recommending a small set of possible boards for each pin can be a feasible implementation route for our method.

8. END-TO-END PERFORMANCE

To test the end-to-end performance of the proposed methods, we devise a cascaded-predictor (Figure 1) which sequentially combines individual classifiers introduced in the previous sections, i.e.,

<table>
<thead>
<tr>
<th>Features</th>
<th>ACC</th>
</tr>
</thead>
<tbody>
<tr>
<td>User</td>
<td>0.42</td>
</tr>
<tr>
<td>Image+User</td>
<td>0.77(+)</td>
</tr>
<tr>
<td>Crowd+Image+User</td>
<td>0.88(+)</td>
</tr>
<tr>
<td>Crowd+User</td>
<td>0.85</td>
</tr>
<tr>
<td>Random</td>
<td>0.19</td>
</tr>
</tbody>
</table>

Table 4: Performance of Repin Category Prediction: Given a user and an image repinned by her, the task is to predict which category she will repin the image into. The table shows performance in terms of Accuracy (ACC). Stars (+) indicate \(\chi^2\) feature selection is applied to select 200 most relevant features for the classification.
the separately trained User Attention and Pinboard classifiers. We estimate the overall prediction performance of the system by calculating the accuracy, precision and recall of the proposed cascade predictor. These metrics are calculated as an outcome of an imaginary multi-class classifier \(f : (u, p) \rightarrow \{\text{noaction}, b_1, b_2, \ldots, b_n\} \) where \(b_1, b_2, \ldots, b_n \) denote users’ pinboards. We also measure Accuracy@K, Precision@K and Recall@K at different cut-offs \(K \) of the top@K pinboards predictions. We note that the testing set for these experiments is sampled such that the fraction of non-action and repin cases is set to 1:1, assuring that the number of positive and negative cases in attention prediction experiments are equal.

The results of the experiments presented in Table 6 suggest that the end-to-end performance remains on a high level of Accuracy@1 = 0.69 for the Top@1 pinboard prediction and further increases to Accuracy@5 = 0.75 for the Top@5 users’ pinboards. Since we need to predict among multiple users’ boards, we define precision and recall by distinguishing between correct or incorrect classification of a user’s board (defined as true/false positives) and correct or incorrect prediction of no action (defined as true/false negatives). From Table 6 we see that the end-to-end precision remains on a level of 0.60, and reaches 0.77 for predicting among the Top@5 users’ pinboards, suggesting an overall high level of predictability of individual curation actions on Pinterest.

<table>
<thead>
<tr>
<th>A@K</th>
<th>Crowd+Image+User</th>
<th>Random</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.73</td>
<td>0.15</td>
</tr>
<tr>
<td>2</td>
<td>0.84</td>
<td>0.27</td>
</tr>
<tr>
<td>3</td>
<td>0.89</td>
<td>0.37</td>
</tr>
<tr>
<td>4</td>
<td>0.92</td>
<td>0.46</td>
</tr>
<tr>
<td>5</td>
<td>0.94</td>
<td>0.53</td>
</tr>
</tbody>
</table>

Table 6: End-to-end results for the cascade of predictors (Figure 1).

9. DISCUSSION AND CONCLUSIONS

Social bookmarking and curation is becoming increasingly important to the Web as a whole; Pinterest for instance has become an important source of referral traffic, second only to Facebook amongst all the major social networks [29]. Furthermore, Pinterest referral traffic is valuable for e-commerce sites, being 10% more likely to result in sales, with each sale being on average $80, double the value of sales from Facebook referrals [15]. Therefore, understanding Pinterest can result both in fundamental insights into the nature of content curation, as well as commercially valuable applications such as recommending items that users are willing to buy, and optimising marketing campaigns for brand awareness and recall. Understanding what makes users curate an image could also help other applications such as more relevant image search.

This work takes first steps towards this research agenda by showing that although Pinterest users are curating highly personalised collections of content, they are effectively participating in a crowdsourced categorisation of images from across the web, by their choices of pinboards. By exploiting the fact that user pinboards can have an associated category, we reinterpret the act of pinning as a distributed human computation that categorises images from across the Web into the 32 categories recognised on Pinterest. When viewed through this perspective, it becomes readily apparent that there is overwhelming agreement among users on how to categorise images. Additionally, we see that users tend to specialise in a handful of categories, and tend not to have several boards in the same category. Furthermore, even within their favourite categories, their attention is skewed towards the top 1-5 categories.

Based on these observations, we developed a cascade of predictors, that, given a pin and a user, is able to predict whether the user would repin it, and if so, to which of her pinboards. The three layers of the cascade could be conceived as providing a possible mechanistic understanding of content curation on Pinterest. Although alternate constructions may be possible, the behaviour and performance of the predictors we built serve to illuminate some of the factors involved in content curation: As can be expected, the first decision of whether the user repins the pin at all, depends to a large extent on the visual features of the image. In particular, the fine-grained object-related preferences extracted using a state-of-the-art deep neural network were much more effective at capturing user preferences than coarse-grained category preferences, highlighting that object recognition may play a central role in understanding what a user is interested in. The next layer in the cascade, predicting what category a user is likely to assign to a pin, is dominated by one factor: that most users agree on the category. Indeed, by looking at the first five repins of an image, we are able to predict other repins with \(\approx 85\% \) accuracy, and although several other types of features, ranging from visual features of the image to features of the user were examined, only a marginal improvement of \(\approx 3\% \) could be made over this single feature. We also found that this crowdsourced category was more powerful than image object recognition, at predicting personalised user category choices.

The final layer of predicting the board given the category turned out to be an almost trivial problem, suggesting that users, rather than showing complicated behaviours, appear to be “operating” just in the 32-dimension approximation of Pinterest global categories.

Because of the collective efforts of large numbers of Pinterest users, we have amassed an extensive annotated set of images (over 1.2 million category annotations for 214K pins). Although there is a great deal of agreement in general, individual users may have slightly different views about categorisation, and similarly, the categories may not be mutually exclusive (e.g., one user might classify an image of the Eiffel tower into an “Art” pinboard while another might choose “Architecture”, both of which are standard Pinterest categories). We find that by incorporating user preferences, we are able to further improve the performance, evidence that users are “personalising” these categories by reinterpreting and reaggregating them through pinboards. Thus, this arrangement of allowing users the freedom to create pinboards suiting their own purposes, whilst at the same time associating the pinboards to a small number of standard categories appears to strike a good balance between the rigid taxonomies of an ontology and the free-for-all nature of so-called folksonomies [24], enabling a meaningful global categorisation (with enough power to predict image categories based on their visual features), whilst at the same time allowing user flexibility. We believe the image-based information in this dataset will be valuable in diverse other applications, and plan to make it available for researchers at http://bit.ly/pinterest-dataset.

Acknowledgements

This research was partially supported by the UK Engineering and Physical Sciences Research Council via Grant No. EP/K024914/1, and by the Henry Lester Trust.
10. REFERENCES

