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1 Introduction: Why String Theory?

Why are you taking this course? Why am I, or anyone else in the Theoretical Physics
Group, paid? What are we doing and why do we do it? Well here are some reasons.

The so-called Standard Model of Particle Physics is the most successful scientific
theory of Nature in the sense that no other theory has such a high level of accuracy
over such a complete range of physical phenomena using such a modest number of
assumptions and parameters. It is unreasonably good and was never intended to be so
successful. Since its formulation around 1970 there has not been a single experimental
result that has produced even the slightest disagreement. Nothing, despite an enormous
amount of effort. But there are skeletons in the closet. Let me mention just three.

The first is the following: Where does the Standard Model come from? For example it
has quite a few parameters which are only fixed by experimental observation. What fixes
these? It postulates a certain spectrum of fundamental particle states but why these? In
particular these particle states form three families, each of which is a copy of the others,
differing only in their masses. Furthermore only the lightest family seems to have much
to do with life in the universe as we know it, so why the repetition? It is somewhat
analogous to Mendelev’s periodic table of the elements. There is clearly a discernible
structure but this wasn’t understood until the discovery of quantum mechanics. We are
looking for the underlying principle that gives the somewhat bizarre and apparently ad
hoc structure of the Standard Model.

The second problem is that, for all its strengths, the Standard Model does not include
gravity. For that we must use General Relativity which is a classical theory and as such
is incompatible with the rules of quantum mechanics. Observationally this is not a
problem since the effect of gravity, at the energy scales which we probe, is smaller by
a factor of 10−40 than the effects of the subnuclear forces which the Standard Model
describes. You can experimentally test this assertion by lifting up a piece of paper with
your little finger. You will see that the electromagnetic forces at work in your little
finger can easily overcome the gravitational force of the entire earth which acts to pull
the paper to the floor.

However this is clearly a problem theoretically. We can’t claim to understand the
universe physically until we can provide one theory which consistently describes gravity
and the subnuclear forces. If we do try to include gravity into QFT then we encounter
problems. A serious one is that the result is non-renormalizable, apparently producing
an infinite series of divergences which must be subtracted by inventing an infinite series
of new interactions, thereby removing any predictive power. Thus we cannot use the
methods of QFT as a fundamental principle for gravity. Furthermore there is enormous
evidence for Dark Matter, which constitutes most of the mass in the Universe, but which
is not at all described by the Standard model.

The third problem I want to mention is more technical. Quantum field theories
generically only make mathematical sense if they are viewed as a low energy theory.
Due to the effects of renormalization the Standard Model cannot be valid up to all
energy scales, even if gravity was not a problem. Mathematically we know that there
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Figure 1.1: The running of the couplings

must be something else which will manifest itself at some higher energy scale. All we
can say is that such new physics must arise before we reach the quantum gravity scale,
which is some 1017 orders of magnitude above the energy scales that we have tested to
date. To the physicists who developed the Standard Model the surprise is that we have
not already seen such new physics many years ago. And we are all hoping to see it soon
at the LHC.

1.1 The Standard Model and Grand Unification

Let us take a slight detour into the modern field of the Standard Model of particle
physics. Physicists view this not as a fundamental description of Nature in terms of the
known particles but rather as an effective description which is only valid up to some
energy scale where new physics will appear. The interactions of the particles in the
Standard Model are described by a gauge theory based on SU(3)×SU(2)×UY (1). The
subscript Y indicates that UY (1) is not the same as the U(1) of electromagnetism which
is a linear combination of UY (1) and the Cartan subalgebra of SU(2). (Don’t worry if
these are just words to you.)

The first piece of evidence that there maybe something more and something simpler
is that the coupling constants ‘run’ with energy and all appear to meet at around
1015GeV , thats 1015 times the mass of the proton. If we plot the inverse couplings as a
function of the Log of the energy scale then they appear as straight lines (to first order):
see figure 1.1.

That two straight lines intersect is normal, but for all three to intersect is suspicious.
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It suggests that they all original from the same force. This is the idea behind a so-called
Grand Unified Theory.

Note also that the coupling constant for electromagnetism eventually diverges (cor-
responding to passing through zero in the above plot). This means that the theory
becomes infinitely strongly coupled. As I mentioned one must view the Standard Model
as an effective description. Electromagnetism (and also the Higgs’) cannot be viewed as
working to all energies due to such divergences (known as Landau poles). On the other
hand QCD and the electroweak theory can (their couplings get small at high energy
and the theory becomes free and well defined there). So something must replace this
theory at high energy, even without worrying about gravity. This is often phrased as
’finding a UV completion’ which simply means embedding the theory into a theory that
could, at least in principle, be valid up to arbitrarily high scales, even if gravity was
never included.

The known Fermions, matter particles, of the Standard Model are often written as:

!
u
d

" !
c
s

" !
t
b

"

!
ν̄e
e

" !
ν̄µ
µ

" !
ν̄τ
τ

"

These come in three generations which essentially only differ in that they have increasing
mass. You and I and everything we see is made of just the first generation. The rest
only exist for a short fleeting moment in some accelerator or Cosmic reaction.

In addition to these Fermionic particles there are 12 vector gauge Bosons: 8 gluons
for SU(3), W+,W−, Z0 for SU(2) and the photon γ for U(1). These are associated to
the adjoint representations of the Standard Model gauge group SU(3)×SU(2)×UY (1)
And last but not least the scalar Higgs h, which is a doublet of SU(2)× UY (1).

Let us look more closely at the first generation (the others will behave in the same
way). From a particle physicists point of view we actually think in terms of the following
particles:

qL =

!
uL

dL

"
∈ (3,2) , uR ∈ (3̄,1) , dR ∈ (3̄,1)

lL =

!
ν̄L
eL

"
∈ (1,2) , eR ∈ (1,1) , νR ∈ (1,1)?

Here the R/L refers to their chirality, i.e. their eigenvalue under γ5. Furthermore a 3
means that the field is a complex triplet that is acted by SU(3) where as a 2 means
that it is a complex doublet acted on by SU(2). A 1 indicates that it isn’t acted on at
all by SU(3) or SU(2). I’ve put a question mark next to the right-handed neutrino as
we believe they have a mass and hence a νR but it isn’t fully resolved yet. The particles
all also have a U(1) hypercharge charge but we won’t bother with that here. Indeed we
will be a little cavalier about the group theory in the interests of time.
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Note that only the left-handed fields interact with the weak force and hence only they
carry a non-trivial representation of SU(2) (as well as the Higgs’). Thus for example eL
is a different particle to eR.

We don’t know what lies beyond these particles in the Standard Model. We expect
at some higher scale new particles and new physics will emerge, even before we reach
the Planck scale. What is remarkable is that the chiral fermions actually fit together
into representations of a bigger group SU(5):2

dcR ⊕ lL = (3̄,1)⊕ (1,2) = 5̄

qL ⊕ uc
R ⊕ ecR = (3,2)⊕ (3̄,1)⊕ (1,1) = 10 (1.1)

νR = (1,1) = 1

Here we have had to take charge conjugates to get the chiralities to fit but thats okay. 5̄
is just a complex five-dimensional vector which is the anti-fundamental representation of
SU(5) and 10 is simply an anti-symmetric 5× 5 matrix which is another representation
of SU(5).

The Bosons can also be placed into representations of SU(5) but one needs to add
new particles. For example the gauge bosons fit into the adjoint of SU(5) but only the
block diagonal parts, roughly:

#

$$$$%

X X
Gluons X X

X X
X X X Z0 W−

X X X W+ A

&

''''(
(1.2)

Here the X’s are so-called X-Bosons which have yet to be seen. It is assumed that
they have been made massive by an additional Higgs’ mechanism which breaks SU(5)
to SU(3) × SU(2) × U(1), just as the discovered Higgs’ breaks SU(2) × U(1) → U(1).
Thus one would start with a Higgs’ H:

H =

!
h′

h

"
∈ 5 (1.3)

so that the breaking pattern is

SU(5)
h’−→ SU(3)× SU(2)× U(1)

h−→ U(1) (1.4)

The h′ Higgs’ is also not seen but as with the X-Bosons they are expected to have a
mass around the GUT scale of 1015GeV .

2For aficionados 2̄ = 2.
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1.2 Plan

With these comments in mind this course will introduce string theory, which, for good
or bad, has become the dominant, and arguably only, framework for a complete theory
of all known physical phenomena. As such it is in some sense a course to introduce the
modern view of particle physics at its most fundamental level. Whether or not String
Theory is ultimately relevant to our physical universe is unknown, and indeed may never
be known. However it has provided many deep and powerful ideas. Certainly it has had
a profound effect upon pure mathematics. But an important feature of String Theory
is that it naturally includes gravitational and subnuclear-type forces consistently in a
manner consistent with quantum mechanics and relativity (as far as anyone knows).
Thus it seems fair to say that there is a mathematical framework which is capable of
describing all of the physics that we know to be true. This is no small achievement.

However it is also fair to say that no one actually knows what String Theory really
is. In any event this course can only attempt to be a modest introduction that is aimed
at students with no previous knowledge of String Theory. There will be much that we
will not have time to discuss

We will first discuss the Bosonic string in some detail. Although this theory is
unphysical in several ways (it has a tachyon and no Fermions) it is simpler to study
than the superstring but has all the main ideas built-in. We will aim to show how
this leads to a theory of gravity. By including open strings we find D-branes and other
p-branes, objects with p extended spatial dimensions. These lead to Yang-Mills gauge
theories such as those found in the Standard Model of Particle Physics.

2 Classical and Quantum Dynamics of Point Parti-

cles

2.1 Classical Action

We want to describe a single particle moving in spacetime. For now we simply consider
flat D-dimensional Minkowski space

ds2 = −(dx0)2 + (dx1)2 + (dx2)2 + ...+ (dxD−1)2 (2.1)

A particle has no spatial extent but it does trace out a curve - its worldline - in spacetime.
Furthermore in the absence of external forces this will be a straight line (geodesic if you
know GR). In other words the equation of motion should be that the length of the
worldline is extremized. Thus we take

Spp = −m

)
ds

= −m

) *
−ηµνẊµẊνdτ

(2.2)
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Figure 2.1: A point particle worldline

where τ parameterizes the points along the worldline and Xµ(τ) gives the location of the
particle in spacetime, i.e. the embedding coordinates of the worldline into spacetime.

Let us note some features of this action. Firstly it is manifestly invariant under
spacetime Lorentz transformations Xµ → Λµ

νX
ν where ΛTηΛ = η. Secondly it is

reparameterization invariant under τ → τ ′(τ) for any invertible change of worldline
coordinate

dτ =
dτ

dτ ′
dτ ′ , Ẋµ =

dXµ

dτ
=

dτ ′

dτ

dXµ

dτ ′
(2.3)

thus

Spp = −m

) +
−ηµν

dXµ

dτ

dXν

dτ
dτ

= −m

) ,

−ηµν

!
dτ ′

dτ

"2
dXµ

dτ ′
dXν

dτ ′
dτ

dτ ′
dτ ′

= −m

) +
−ηµν

dXµ

dτ ′
dXν

dτ ′
dτ ′

(2.4)

Thirdly we can see why the m appears in front and with a minus sign by looking at the
non-relativistic limit. In this case we choose a gauge for the worldline reparameterization
invariance such that τ = X0 i.e. worldline ’time’ is the same as spacetime ’time’. This
is known as static gauge. It is a gauge choice since, as we have seen, we are free to take
any parameterization we like. The nonrelativistic limit corresponds to assuming that
Ẋ i << 1. In this case we can expand

Spp = −m

) *
1− δijẊ iẊjdτ =

)
−m+

1

2
mδijẊ

iẊjdτ + . . . (2.5)
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where the ellipses denotes terms with higher powers of the velocities Ẋ i. The second
term is just the familiar kinetic energy 1

2
mv2. The first term is simply a constant and

doesn’t affect the equations of motion. However it can be interpreted as a constant
potential energy equal to the rest mass of the particle. Thus we see that the m and
minus signs are correct.

Moving on let us consider the equations of motion and conservation laws that fol-
low from this action. The equations of motion follow from the usual Euler-Lagrange
equations applied to Spp:

d

dτ

#

% Ẋν

*
−ηλρẊλẊρ

&

( = 0 (2.6)

These equations can be understood as conservations laws since the Lagrangian is invari-
ant under constant shifts Xµ → Xµ + bµ. The associated charge is

pµ =
mẊµ

*
−ηλρẊλẊρ

(2.7)

so that indeed the equation of motion is just ṗµ = 0. Note that I have called this a charge
and not a current. In this case it doesn’t matter because the Lagrangian theory we are
talking about, the worldline theory of the point particle, is in zero spatial dimensions.
So I could just as well called pµ a conserved current with the conserved charge being
obtained by integrating the temporal component of pµ over space. Here there is no space
pµ only has temporal components.

Warning: We are thinking in terms of the worldline theory where the index µ labels
the different scalar fields Xµ, it does not label the coordinates of the worldline. In par-
ticular p0 is not the temporal component of pµ from the worldline point of view. This
confusion between worldvolume coordinates and spacetime coordinates arises through-
out string theory

If we go to static gauge again, where τ = X0 and write vi = Ẋ i then we have the
equations of motion

d

dτ

vi√
1− v2

= 0 (2.8)

and conserved charge

pi = m
vi√
1− v2

(2.9)

which is simply the spatial momentum. These are the standard relativistic expressions.
We can solve the equation of motion in terms of the constant of motion pi by writing

vi√
1− v2

= pi/m ⇐⇒ p2/m2 =
v2

1− v2
⇐⇒ v2 =

p2

p2 +m2
(2.10)
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hence

X i(τ) = X i(0) +
piτ-

p2 +m2
(2.11)

and we see that vi is constant with v2〈1.
Next we can consider a particle interacting with an external electromagnetic field.

An electromagnetic field is described by a vector potential Aµ and its field strength
Fµν = ∂µAν − ∂νAµ. The natural action of a point particle of mass m and charge q in
the presence of such an electromagnetic field is

Spp = −m

) *
−ηµνẊµẊνdτ + q

)
Aµ(X)Ẋµdτ (2.12)

For those who know differential geometry the vector potential is a connection one-form
on spacetime and AµẊ

µdτ is simply the pull-back of Aµ to the worldline of the particle.
The equation of motion is now

−m
d

dτ

#

% −ηµνẊ
ν

*
−ηλρẊλẊρ

&

(+ q
d

dτ
Aµ − q∂µAνẊ

ν = 0 (2.13)

which we rewrite as

m
d

dτ

#

% ηµνẊ
ν

*
−ηλρẊλẊρ

&

( = qFµνẊ
ν (2.14)

To be more concrete we could choose static gauge again and we find (for µ = i)

m
d

dτ

!
vi√
1− v2

"
= qFi0 + qFijv

j (2.15)

Here we see the Lorentz force magnetic law arising as it should from the second term
on the right hand side. The first term on the right hand side shows that an electric field
provides a driving force.

At this point we should pause to mention a subtlety. In addition to (2.15) there is also
the equation of motion for X0 = τ . However the reparameterization gauge symmetry
implies that this equation is automatically satisfied. In particular the X0 equation of
motion is

−m
d

dτ

!
1√

1− v2

"
= qF0iv

i (2.16)

2.2 Quantization

Next we’d like to quantize the point particle. This is made difficult by the highly non-
linear form of the action. To this end we will consider a new action which is classically
equivalent to the old one. In particular consider

SHT = −1

2

)
dτe

!
− 1

e2
ẊµẊνηµν +m2

"
(2.17)
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Here we have introduced a new field e(τ) which is non-dynamical, i.e. has no kinetic
term. This action is now just quadratic in the fields Xµ. The point of it is that it
reproduces the same equations of motion as before. To see this consider the e equation
of motion:

1

e2
ẊµẊνηµν +m2 = 0 (2.18)

we can solve this to find e = m−1

*
−ẊµẊνηµν . We now compute the Xµ equation of

motion

0 =
d

dτ

!
1

e
Ẋµ

"

= m
d

dτ

#

% Ẋµ

*
−ẊλẊρηλρ

&

( (2.19)

This is exactly what we want. Thus we conclude that SHT is classically equivalent to
Spp.

One way to think about this action is that we have introduced a worldline metric
γττ = −e2 and its inverse γττ = −1/e2 so that infinitesimal distances along the worldline
have length

ds2 = γττdτ
2 (2.20)

Note that previously we never said that dτ represented the physical length of a piece of
worldline, just that τ labeled points along the worldline. In particular the action takes
the form

SHT = −1

2

)
dτ

√
−γ

.
γττ∂τX

µ∂τX
νηµν +m2

/
(2.21)

which looks like D scalar fields on a space with metric γττ .
There is another advantage to this form of the action; we can smoothly set m2 = 0

and describe massless particles, which was impossible with the original form of the
action.

Now the action is quadratic in the fields Xµ we calculate the Hamiltonian and
quantize more easily. The first step here is to obtain the momentum conjugate to each
of the Xµ

pµ =
∂L

∂Ẋµ

=
1

e
ηµνẊ

ν

(2.22)

There is no conjugate momentum to e, it acts as a constraint and we will deal with it
later. The Hamiltonian is

H = pµẊ
µ − L

=
e

2

.
ηµνp

µpν +m2
/

(2.23)
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To quantize this system we consider wavefunctions Ψ(X, τ) and promote Xµ and pµ
to the operators

X̂µΨ = XµΨ p̂µΨ = −i
∂Ψ

∂Xµ
(2.24)

We then arrive at the Schrodinger equation

i
∂Ψ

∂τ
=

e

2

!
−ηµν

∂2Ψ

∂Xµ∂Xν
−m2Ψ

"
(2.25)

Lastly we must deal with e which we saw has no conjugate momentum. Classically its
equation of motion imposes the constraint

pµpµ +m2 = 0 (2.26)

which is the mass-shell condition for the particle. Quantum mechanically we realize
this by restricting our physical wavefunctions to those that satisfy the corresponding
constraint

− ηµν
∂2Ψ

∂Xµ∂Xν
+m2Ψ = 0 (2.27)

However this is just the condition that ĤΨ = 0 so that the wavefunctions are τ indepen-
dent. If you trace back the origin of this time-independence it arises as a consequence
of the reparameterization invariance of the worldline theory. It simply states that wave-
functions must also be reparameterization invariant, i.e. they can’t depend on τ . This
is deep issue in quantum gravity. In effect it says that there is no such thing as time in
the quantum theory.

This equation should be familiar if you have learnt quantum field theory. In partic-
ular if we consider a free scalar field Ψ in D-dimensional spacetime the action is

S = −
)

dDx

!
1

2
∂µΨ

T∂µΨ+
1

2
m2ΨTΨ

"
(2.28)

and the corresponding equation of motion is

∂2Ψ−m2Ψ = 0 (2.29)

which is the same as our Schrodinger equation (when restricted to the physical Hilbert
space).

Thus we see that there is a natural identification of a free scalar field with a quantum
point particle. In particular the quantum states of the point particle are in a one-to-
one correspondence with the classical solutions of the free spacetime effective action.
However one important difference should be stressed. The quantum point particle gave
a Schrodinger equation which could be identified with the classical equation of motion
for the scalar field. In quantum field theory one performs a second quantization whereby
particles are allowed to be created and destroyed. This is beyond the quantization of the
point particle that we considered since by default we studied the effective action on the

12
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Figure 3.1: A closed string worldsheet

worldline of a single particle: it would have made no sense to create or destroy particles.
Thus the second quantized spacetime action provides a more complete physical theory.
In short quantizing a point particle leads to a spacetime Klein-Gordon field but not
much more. To include interactions and the creation and annihilation of particles we
are required to add additional terms into the spacetime action, corresponding to local
interactions of particles. But the short distance singularities that these cause means
that we shouldn’t view this picture as fundamental. And also we lose predictive control
as a wide variety of interactions are possible with few guiding principles.

Here we also can see that the quantum description of a point particle in one dimen-
sion leads to a classical spacetime effective action in D-dimensions. This is an important
concept in String theory where the quantum dynamics of the two-dimensional worldvol-
ume theory, with interactions included, leads to interesting and non-trivial spacetime
effective actions.

3 Classical and Quantum Dynamics of Closed Strings

3.1 Classical Action

Having studied point particles from their worldline perspective we now turn to our main
subject: strings. Our starting point will be the action the worldvolume of a string, which
is two-dimensional. The natural starting point is to consider the action

Sstring =
1

2πα′

)
d2σ

*
− det(∂αXµ∂βXνηµν) (3.1)
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which is simply the area of the two-dimensional worldvolume that the string sweeps out.
Here σα,α = 0, 1 labels the spatial and temporal coordinates of the string: τ = σ0, σ =
σ1. By convention we take σ ∈ [0, 2π). Here

√
α′ is a length scale that determines the

size of the string. Or alternatively it’s tension: the energy contained in a length L of
string E = L/2πα′.

This action is invariant under spacetime Lorentz transformations:

Xµ → Λµ
νX

ν (3.2)

as ηµν = Λρ
µΛ

σ
µηρσ. Since we are considering a string in Minkowski space we also have

translational symmetries:
Xµ → Xµ + aµ (3.3)

where aµ is constant.
It is also invariant under worldsheet reparameterization invariance:

σα → σ′α(σβ) (3.4)

To see this we note that under such a change of coordinates

∂αX
µ =

∂σ′β

∂σα

∂Xµ

∂σ′β =
∂σ′β

∂σα
∂′
βX

µ (3.5)

so that, in a condensed matrix notation,

*
− det(∂Xµ∂Xνηµν) =

,

− det

!!
∂σ′

∂σ

"
∂′Xµ

!
∂σ′

∂σ

"
∂′Xνηµν

"

=

0000det
!
∂σ′

∂σ

"0000
*

− det(∂′Xµ∂′Xνηµν) . (3.6)

Whereas on the other hand we have
)

d2σ =

)
d2σ′

0000det
!
∂σ

∂σ′

"0000 (3.7)

and the factors of | det(∂σ/∂σ′)| and | det(∂σ′/∂σ)| will cancel.
Again we don’t want to work directly with such a highly non-linear action. We saw

above that we could change this by coupling to an auxiliary worldvolume metric. Thus
we instead introduce a worldsheet metric γαβ and consider

Sstring = − 1

4πα′

)
d2σ

√
−γγαβ∂αX

µ∂βX
νηµν . (3.8)

where γ = det(γαβ and γαβ is the matrix inverse of γαβ. This action leads to the same
classical equation of motion for Xµ and is reparameterization invariant (see the problem
sets).
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Problem: Show that by solving the equation of motion for the metric γαβ on a d-
dimensional worldvolume the action

SHT = −1

2

)
ddσ

√
−γ

.
γαβ∂αX

µ∂βX
νηµν −m2(d− 2)

/

one finds the equations of motion of the action

SNG = m2−d

)
ddσ

*
− det (∂αXµ∂βXνηµν)

for the remaining fields Xµ, i.e. calculate and solve the γαβ equation of motion and then
substitute the solution back into SHT to obtain SNG. Note that the action SHT is often
referred to as the Howe-Tucker form for the action whereas SNG is the Nambu-Goto
form. (Hint: You will need to use the fact that δ

√
−γ/δγαβ = −1

2
γαβ

√
−γ). If you have

not yet learnt much about metrics just consider the caseb of d = 1 where γαβ just has
a single component γττ .

There is also an equation of motion arising from γαβ:

Tαβ = ∂αX
µ∂βX

νηµν −
1

2
γαβγ

γδ∂γX
µ∂δX

νηµν = 0 (3.9)

Here one needs to use the fact that

δ
√
−γ

δγαβ
= −1

2

1√
−γ

γαβ . (3.10)

However this two-dimensional case is very special. First, in addition to reparame-
terizations, the action is conformally invariant. That means that under a worldvolume
Weyl transformation of the metric

γαβ → e2ϕγαβ (3.11)

(here ϕ is any function of the worldvolume coordinates) the action is invariant. In par-
ticular we see that the inverse metric transforms as γαβ → e−2ϕγαβ and the determinant
as

√
−γ → e2ϕ

√
−γ so that the combination

√
−γγαβ is invariant.

Secondly, using reparameterization, we can always choose the metric to take the
form γαβ = e2ρηαβ. To see this we note that under a reparameterization we have

γ′
αβ =

∂σγ

∂σ′α
∂σδ

∂σ′β γγδ (3.12)

Thus we simply choose our new coordinates to fix γ′
01 = 0 and γ′

00 = −γ′
11. This requires

that
∂σγ

∂σ′0
∂σδ

∂σ′1γγδ = 0 (3.13)

and
∂σγ

∂σ′1
∂σδ

∂σ′1γγδ +
∂σγ

∂σ′0
∂σδ

∂σ′0γγδ = 0 (3.14)
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These are two (complicated) differential equation for two functions σ0(σ′0, σ′1) and
σ1(σ′0, σ′1). Hence there will be a solution (at least locally).

These facts together imply that the worldvolume metric γαβ actually decouples from
the fields Xµ. This conformal invariance of two-dimensional gravity coupled to the
embedding coordinates (viewed as scalar fields) will be our fundamental principle. It
allows us to simply set γαβ = ηαβ. Thus to consider strings propagating in flat spacetime
we use the action

Sstring = − 1

4πα′

)
d2σηαβ∂αX

µ∂βX
νηµν (3.15)

subject to the constraint (3.23) which becomes

∂αX
µ∂βX

νηµν −
1

2
ηαβη

γδ∂γX
µ∂δX

νηµν = 0 (3.16)

We finish with some comments about gravity in two-dimensions. We have included a
dynamical metric in our string action but it does not have a kinetic term and so imposes
the constraint Tαβ = 0. Why don’t we try to include a derivative term for γαβ? The
reason is that in two-dimensions the Einstein equation is trivial as

Rαβ −
1

2
γαβR = 0 (3.17)

vanishes identically. The reason for this is that in two-dimensions there is only one
independent component for the Riemann tensor: R0101 = −R0110 = −R1001 = R1010.
Therefore

Rαβ = Rαγβδγ
γδ

=

!
R00 R01

R10 R11

"

= R0101

!
γ11 −γ01

−γ01 γ00

"
(3.18)

Now we note that !
γ00 γ01

γ01 γ11

"
=

1

det(γ)

!
γ11 −γ01
−γ01 γ00

"
(3.19)

and hence

Rαβ =
1

det(γ)
R0101γαβ (3.20)

On the other hand we have

R = 2R0101(γ
00γ11 − γ01γ01)

= 2R0101 det(γ
−1)

=
2

det(γ)
R0101 (3.21)
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and the result follows.
Thus Einstein’s equation

Rαβ −
1

2
γαβR = Tαβ (3.22)

will imply that Tαβ = 0. Hence even if we include two-dimensional gravity the γαβ
equation of motion imposes the constraint that the energy-momentum tensor vanishes

Tαβ =
∂L
∂γαβ

= 0 (3.23)

In particular the only term one could add which is reparameterization invariant and
conformal inavariant is the usual Einstein-Hilbert term

SEH =
1

4π

)
d2σ

√
−γR(γ) . (3.24)

But in two dimensions this a total derivative. Evaluating is on a curved spacetime leads
to a topological invariant known as the Euler-number. Thus the decoupling of the metric
from the matter degrees of freedom is a fundamental requirement of our theory.

3.2 Aside: Spacetime Symmetries and Conserved Charges

We should also pause to outline how the spacetime symmetries lead to conserved currents
and hence conserved charges in the worldsheet theory.

First we summarize Noether’s theorem. Suppose that a Lagrangian L(ΦA, ∂αΦA),
where we denoted the fields by ΦA, has a symmetry: L(ΦA) = L(ΦA + δΦA). This
implies that

∂L
∂ΦA

δΦA +
∂L

∂(∂αΦA)
δ∂αΦA = 0 (3.25)

This allows us to construct a current:

Jα =
∂L

∂(∂αΦA)
δΦA (3.26)

which is conserved

∂αJ
α = ∂α

!
∂L

∂(∂αΦA)

"
δΦA +

∂L
∂(∂αΦA)

∂αδΦA

= ∂α

!
∂L

∂(∂αΦA)

"
δΦA − ∂L

∂ΦA

δΦA

= 0

(3.27)

by the equation of motion. This means that the integral over space of J0 is a constant
defines a charge

Q =

)

space

J0 (3.28)
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which is conserved

dQ

dt
=

)

space

∂0J
0

= −
)

space

∂iJ
i

= 0

Let us now consider the action

Sstring = − 1

4πα′

)
d2σηαβ∂αX

µ∂βX
νηµν (3.29)

This has the spacetime Poincare symmetries: translations δXµ = aµ and Lorentz trans-
formations δXµ = Λµ

νX
ν . In the first case the conserved current is

Pα(aµ) = − 1

2πα′∂
αXµa

µ (3.30)

The associated conserved charge is just the total momentum along the direction aµ and
in particular there are D independent choices

pµ =
1

2πα′

)
dσẊµ (3.31)

We can also consider the spacetime Lorentz transformations which lead to the conserved
currents

Jα
Λ = − 1

2πα′∂
αXµΛ

µ
νX

ν (3.32)

The independent conserved charges are therefore given by

Mµ
ν =

1

4πα′

)
dσẊµXν −XµẊν (3.33)

The Poisson brackets of these worldsheet charges will, at least at the classical level,
satisfy the algebra Poincare algebra. In the quantum theory they are lifted to operators
that commute with the Hamiltonian.

3.3 Quantization

Next we wish to quantize this action. Unlike the point particle this action is a field
theory in (1 + 1)-dimensions. As such we must use the quantization techniques of
quantum field theory rather than simply constructing a Schrodinger equation. There
are several ways to do this. The most modern way is the path integral formulation.
However this requires some techniques that are presumably unfamiliar. So here we will
use the method of canonical quantization.
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Canonical quantization is essentially the Heisenberg picture of quantum mechanics
where the fields Xµ and their conjugate momenta Pµ are promoted to operators which
satisfy the equal time commutation relations

[X̂µ(τ, σ), P̂ν(τ, σ
′)] = iδ(σ − σ′)δµν

[X̂µ(τ, σ), X̂ν(τ, σ′)] = 0

[P̂µ(τ, σ), P̂ν(τ, σ
′)] = 0 (3.34)

as well as the Heisenberg equation

dX̂µ

dτ
= i[Ĥ, X̂µ]

dP̂µ

dτ
= i[Ĥ, P̂µ] (3.35)

In the case at hand we have

L̂ =
1

4πα′

)
dσηµν

˙̂
X

µ ˙̂
X

ν

− ηµνX̂
′µX̂ ′ν (3.36)

hence

P̂µ =
1

2πα′ηµν
˙̂
X

ν

(3.37)

and

Ĥ =

)
dσP̂µ

˙̂
X

µ

− L̂

=

)
dσ2πα′ηµνP̂µP̂ν −

)
dσ

1

4πα′ (2πα
′)2ηµνP̂µP̂ν +

1

4πα′ηµνX̂
′µX̂ ′ν

=

)
dσπα′ηµνP̂µP̂ν +

1

4πα′ηµνX̂
′µX̂ ′ν

(3.38)

We can now calculate

˙̂
Xµ(σ) = i[Ĥ, X̂µ(σ)]

= πα′i

)
dσ′ηλν [P̂λ(σ

′)P̂ν(σ
′), X̂µ(σ)]

= 2πα′i

)
dσ′ηλνP̂λ(σ

′)[P̂ν(σ
′), X̂µ(σ)]

= 2πα′
)

dσ′ηλνP̂λ(σ
′)δµν δ(σ − σ′)

= 2πα′ηµνP̂ν(σ)

(3.39)
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which we already knew. But also we can now calculate

˙̂
Pµ(σ) = i[Ĥ, P̂µ(σ)]

=
i

4πα′

)
dσ′ηλν [X̂

′λ(σ′)X̂ ′ν(σ′), P̂µ(σ)]

=
i

2πα′

)
dσ′ηλνX̂

′λ(σ′)[X̂ ′ν(σ′), P̂µ(σ)]

=
i

2πα′

)
dσ′ηλνX̂

′λ(σ′)
∂

∂σ′ [X̂
ν(σ′), P̂µ(σ)]

= − i

2πα′

)
dσ′ηλνX̂

′′λ(σ′)[X̂ν(σ′), P̂µ(σ)]

=
1

2πα′

)
dσ′ηλνX̂

′′λ(σ′)δνµδ(σ − σ′)

=
1

2πα′ηµνX̂
′′ν(σ)

(3.40)

or equivalently

− ¨̂
Xµ + X̂ ′′µ = 0 (3.41)

Of course this is just the classical equation of motion reinterpreted in the quantum
theory as an operator equation. In two-dimensions the solution to this is simply that

X̂µ = X̂µ
L(τ + σ) + X̂µ

R(τ − σ) (3.42)

i.e. we can split X̂µ into a left and right moving part.
To proceed we expand the string in a Fourier series

X̂µ = x̂µ + ŵµσ + α′p̂µτ +

+
α′

2
i
1

n ∕=0

!
aµn
n
e−in(τ+σ) +

ãµn
n
e−in(τ−σ)

"
(3.43)

Note that we have dropped the hat on the operators aµ and ãµ since they will appear
frequently. But don’t forget that they are operators! The various factors of n and α′

will turn out to be useful later on. We have also included linear terms since X̂µ need
not be periodic (more on this later). The factor of α′ in front of p̂µ is there so that the
total momentum of such a string is

1

2πα′

) 2π

0

dσ
˙̂
Xµ =

1

2πα′

) 2π

0

dσ

2
α′pµ +

+
α′

2

1

n ∕=0

aµne
−in(τ+σ) + ãµne

−in(τ−σ)

3

= p̂µ (3.44)

So pµ agrees with the spacetime momentum of the string calculated using the Noether
current.
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Or if you prefer

X̂µ
L = x̂µ

L +
1

2
(α′p̂µ + ŵµ)(τ + σ) +

+
α′

2
i
1

n ∕=0

aµn
n
e−in(τ+σ)

X̂µ
R = x̂µ

R +
1

2
(α′p̂µ − ŵµ)(τ − σ) +

+
α′

2
i
1

n ∕=0

ãµn
n
e−in(τ−σ)

(3.45)

Note also that we haven’t yet said what n is, e.g. whether or not it is an integer, we will
be more specific later. The aµn and ãµn have the interpretation as left and right moving
oscillators. Just as in quantum mechanics and quantum field theory these will be related
to particle creation and annihilation operators.

Since Xµ is an observable we require that it is Hermitian in the quantum theory.
This in turn implies that

(aµn)
† = aµ−n , (ãµn)

† = ãµ−n (3.46)

and (x̂µ)† = x̂µ, (ŵµ)† = ŵµ, (p̂µ)† = p̂µ. In this basis

P̂ µ =
1

2πα′
˙̂
Xµ

=
1

2πα′

2
α′pµ +

+
α′

2

1

−n ∕=0

aµne
−in(τ+σ) +

+
α′

2

1

n ∕=0

ãµne
−in(τ−σ)

3
(3.47)

We can work out the commutator. First we take xµ = wµ = pµ = 0

[X̂µ(τ, σ), P̂ν(τ, σ
′)] =

i

4π

1

n

1

m

1

n
e−i(n+m)τe−i(nσ+mσ′)[aµn, a

ν
m]

+
i

4π

1

n

1

m

1

n
e−i(n+m)τei(nσ+mσ′)[ãµn, ã

ν
m]

+
i

4π

1

n

1

m

1

n
e−i(n+m)τei(nσ−mσ′)[ãµn, a

ν
m]

+
i

4π

1

n

1

m

1

n
e−i(n+m)τe−i(nσ−mσ′)[aµn, ã

ν
m]

(3.48)

In order for the τ -dependent terms to cancel we see that we need the commutators to
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vanish if n ∕= −m. The sum now reduces to

[X̂µ(τ, σ), P̂ ν(τ, σ′)] =
i

4π

1

n

1

n
e−in(σ−σ′)[aµn, a

ν
−n]

+
i

4π

1

n

1

n
ein(σ−σ′)[ãµn, ã

ν
−n]

+
i

4π

1

n

1

n
ein(σ+σ′)[ãµn, a

ν
−n]

+
i

4π

1

n

1

n
e−in(σ+σ′)[aµn, ã

ν
−n]

(3.49)

Next translational invariance implies that the σ + σ′ terms vanish and hence

[aµn, ã
ν
m] = 0 (3.50)

A slight rearrangement of indices shows that we are left with

[X̂µ(τ, σ), P̂ ν(τ, σ′)] =
i

4π

1

n

1

n
e−in(σ−σ′)([aµn, a

ν
−n] + [ãµn, ã

ν
−n]) (3.51)

In a Fourier basis

δ(σ − σ′) =
1

2π

1

n

e−in(σ−σ′) (3.52)

Note that there is a contribution from n = 0 here that doesn’t come from the oscillators,
we’ll deal with it in a moment. Therefore we see that we must take

[aµn, a
ν
m] = nηµνδn,−m , [ãµn, ã

ν
m] = nηµνδn,−m (3.53)

Next it remains to consider the zero-modes (including the n = 0 contribution in (3.52)).

Problem: Show that the zero mode operators x̂µ, ŵµ, p̂µ ∕= 0 satisfy

[x̂µ, p̂ν ] = iηµν (3.54)

with the other commutators vanishing.

3.4 Classical Constraints

We also have to consider the constraint T̂αβ = 0. These are known as the Virasoro
constraints and lie at the heart of string theory. The components are

T̂00 =
1

2
˙̂
Xµ ˙̂

Xνηµν +
1

2
X̂ ′µX̂ ′νηµν

T̂11 =
1

2
X̂ ′µX̂ ′νηµν +

1

2
˙̂
X

µ ˙̂
X

ν

ηµν

T̂01 =
˙̂
X

µ

X̂ ′νηµν

(3.55)
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It is helpful to change coordinates to

σ+ = τ + σ
σ− = τ − σ

⇐⇒ τ = σ++σ−

2

σ = σ+−σ−

2

(3.56)

Problem: Show that in these coordinates

T̂++ = ∂+X̂
µ∂+X̂

νηµν

T̂−− = ∂−X̂
µ∂−X̂

νηµν

T̂+− = T−+ = 0

(3.57)

Let us now calculate T++ in terms of oscillators. We have

∂+X̂
µ =

+
α′

2

∞1

n=−∞
aµne

−in(τ+σ) (3.58)

where we have introduced

aµ0 =

+
α′

2
p̂µ +

+
1

2α′ ŵ
µ (3.59)

thus

T̂++ =
α′

2

1

nm

aµna
ν
me

−i(n+m)(τ+σ)ηµν

= α′
1

n

Lne
−in(τ+σ)

(3.60)

with

Ln =
1

2

1

m

aµn−ma
ν
mηµν (3.61)

where again we’ve dropped a hat on Ln, even though it is an operator but it too will
appear frequently. Similarly we find

T̂−− = α′
1

n

L̃ne
−in(τ−σ) (3.62)

with

L̃n =
1

2

1

m

ãµn−mã
ν
mηµν (3.63)

and

ãµ0 =

+
α′

2
p̂µ −

+
1

2α′ ŵ
µ (3.64)

23



It is instructive to compute the commutator of two components or

[Lm, Ln] =
1

4

1

pq

[aµm−pa
ν
p, a

λ
n−qa

ρ
q ]ηµνηλρ

=
1

4

1

pq

ηµνηλρ

4
[aµm−pa

ν
p, a

λ
n−q]a

ρ
q + aλn−q[a

µ
m−pa

ν
p, a

ρ
q ]
5

=
1

4

1

pq

ηµνηλρ

4
aµm−p[a

ν
p, a

λ
n−q]a

ρ
q + [aµm−p, a

λ
n−q]a

ν
pa

ρ
q

+aλn−qa
µ
m−p[a

ν
p, a

ρ
q ] + aλn−q[a

µ
m−p, a

ρ
q ]a

ν
p

5

=
1

4

1

p

ηµρ

4
paµm−pa

ρ
n+p + (m− p)aµpa

ρ
n+m−p

+paρn+pa
µ
m−p + (m− p)aρn+m−pa

µ
p

5

=
1

2

1

p

ηµρ

4
(p− n)aµm+n−pa

ρ
p + (m− p)aµpa

ρ
n+m−p ηµρ

5

(3.65)

Here we have used the identities

[A,BC] = [A,B]C +B[A,C] , [AB,C] = A[B,C] + [A,C]B (3.66)

and shifted the p=variable in the sum. Thus we find

[Lm, Ln] = (m− n)Lm+n (3.67)

This is called the Witt algebra. Similarly we find

[L̃m, L̃n] = (m− n)L̃m+n (3.68)

and also [Lm, L̃n] = 0, i.e. two commuting copies of the Witt algebra associated to the
left and right moving modes.

3.5 The Virasoro Algebra

How do we impose the constraints in the quantum theory? One issue is that, as defined,
Ln and L̃n are ambiguous due to the failure of the oscilators modes to commute. Recall
that we found the commutation relations

[aµn, a
ν
n
†] = nηµν [ãµn, ã

ν
n
†
] = nηµν n ≥ 0 , (3.69)

where aµ† = aµ−n, ã
µ† = ãµ−n. As is usual in quantum field theory we consider the vacuum

to be annhilated by aµn and ãµn :

aµn|0〉 = ãµn|0〉 = 0 n > 0 (3.70)
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we then use aνn
† and ãµ

†
to create elements of the Fock space (more on this later). Note

that the zero-mode oscilators are neither creation or annhilation operators. As such we
take the groundstate to be eigenstates of aµ0 and ãµ0 or equivalently pµ, wµ. Thus when
necessary we will denote the vacuum by |0; p, w〉.

Therefore we consider normal ordered operators, : Ln : and : L̃n :, where the annihi-
lation operators always appear to the right of the creation operators. For n > 0 there
is no problem with the definition as no pair of oscilators appears with m + n = 0 and
hence

: Ln : = :
1

2

1

m

aµn−ma
ν
mηµν :

=
1

2
aν0a

µ
nηµν +

1

2

1

m>0

aµn−ma
ν
mηµν +

1

2

1

m<0

aνma
µ
n−mηµν

= Ln (3.71)

and similarly for : L̃n :. We find the same for the negative Fourier modes (n > 0):

: L−n : = :
1

2

1

m

aµ−n−ma
ν
mηµν :

=
1

2
aµ−na

ν
0ηµν +

1

2

1

m>0

aµ−n−ma
ν
mηµν +

1

2

1

m<0

aνma
µ
−n−mηµν

= L−n (3.72)

and similarly for : L̃−n :. Note that one has

: L†
n :=: L−n : : L̃†

n :=: L̃−n : (3.73)

However for L0 and L̃0 one finds

: L0 : = :
1

2

1

m

aµ−ma
ν
mηµν :

=
1

2
aµ0a

ν
0ηµν +

1

2

1

m>0

aµ−ma
ν
mηµν +

1

2

1

m<0

aνma
µ
−mηµν

=
1

2
aµ0a

ν
0ηµν +

1

m>0

aµ−ma
ν
mηµν

: L̃0 : =
1

2
ãµ0 ã

ν
0ηµν +

1

m>0

ãµ−mã
ν
mηµν (3.74)
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However in this case

L0 =
1

2

1

m

aµ−ma
ν
mηµν

=
1

2
aµ0a

ν
0ηµν +

1

2

1

m>0

aµ−ma
ν
mηµν +

1

2

1

m<0

aµ−ma
ν
mηµν

=
1

2
aµ0a

ν
0ηµν +

1

2

1

m>0

aµ−ma
ν
mηµν +

1

2

1

m>0

aµma
ν
−mηµν

=
1

2
aµ0a

ν
0ηµν +

1

m>0

aµ−ma
ν
mηµν +

1

2

1

m>0

[aµm, a
ν
−m]ηµν

= : L0 : +
1

2

1

m>0

[aµm, a
ν
−m]ηµν (3.75)

The last term is an infinite divergent sum which can be thought of as sum over the
zero-point energies of the infinite number of harmonic oscillators. We must renormalize
by subtracting off this divergence. Clearly L̃0 has the same problem and this introduces
the same sum. Thus we have, at some formal level,

L0 =: L0 : −a L̃0 =: L̃0 : −a (3.76)

where

a =
1

2

1

m>0

[aµm, a
ν
−m]ηµν . (3.77)

Assuming that a is real then : L†
0 :=: &L0 :, L̃†

0 :=: L̃0 :. We will be more precise (but
still rather unrigorous) about this later in the section on light cone gauge.

Thus we want to consider the algebra satisfied by : Ln : (and clearly : L̃n : will
satisfy a commuting copy). It follows that the only effect this can have on the algebra
is in terms with an : L0 :. Furthermore since the effect on : L0 : is a shift by an infinite
constant (times the identity operator) it won’t appear in the commutator on the left
hand side. Thus any new terms can only appear with : L0 : on the right hand side and
hence the general form is

[: Lm :, : Ln :] = (m− n) : Lm+n : +C(n)δm −n (3.78)

The easiest way to determine the C(n) is to note the following (one can also perform a
direct calculation but it is notoriously complicated and messy). First one imposes the
Jacobi identity

[: Lk :, [: Lm :, : Ln :]] + [: Lm :, [: Ln :, : Lk :]] + [: Lm :, [: Ln :, : Lk :]] = 0 (3.79)

If we impose that k +m + n = 0 with k,m, n ∕= 0 (so that no pair of them adds up to
zero) then this reduces to

(m− n)C(k) + (n− k)C(m) + (k −m)C(n) = 0 (3.80)
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If we pick k = 1 and hence m = −n− 1 we find

− (2n+ 1)C(1) + (n− 1)C(−n− 1) + (n+ 2)C(n) = 0 (3.81)

Now we note that C(−n) = −C(n) by definition. Hence we learn that C(0) = 0 and

C(n+ 1) =
(n+ 2)C(n)− (2n+ 1)C(1)

n− 1
(3.82)

This is just a difference equation and given C(2) it will determine C(n) for n > 1
(note that it can’t determine C(2) given C(1)). We can look for a solution to this by
considering polynomials. Since it must be odd in n the simplest guess is

C(n) = c1n
3 + c2n (3.83)

In this case the right hand side becomes

(n+ 2)(c1n
3 + c2n)− (2n+ 1)(c1 + c2)

n− 1
=

c1n
4 + 2c1n

3 + c2n
2 − 2c1n− (c1 + c2)

n− 1

=
(n− 1)(c1n

3 + 3c1n
2 + (3c1 + c2)n+ c1 + c2)

n− 1
(3.84)

Expanding out the left hand side gives

c1(n+ 1)3 + c2(n+ 1) = c1n
3 + 3c1n

2 + (3c1 + c2)n+ c1 + c2 (3.85)

and hence they agree.
Finally we must calculate c1 and c2. To do this we consider the ground state with no

momentum or winding |0; 0, 0〉. This state is annihilated by : Ln : for all n ≥ 0 (why?).
Thus we have

〈0, 0; 0| : Ln :: L−n : |0; 0, 0〉 = 〈0, 0; 0|[: Ln :, : L−n :]|0; 0, 0〉
= 2n〈0, 0; 0| : L0 : |0; 0, 0〉+ (c1n

3 + c2n)〈0, 0; 0|0; 0, 0〉
= c1n

3 + c2n (3.86)

where we assume that the ground state has unit norm.

Problem: Show using the original definition in terms of oscilators that

〈0, 0; 0| : L1 :: L−1 : |0; 0, 0〉 = 0

〈0, 0; 0| : L2 :: L−2 : |0; 0, 0〉 =
D

2
(3.87)

This tells us that

c1 + c2 = 0

8c1 + 2c2 =
D

2
(3.88)
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From which we learn that c1 = −c2 = D/12 and hence

[: Lm :, : Ln :] = (m− n) : Lm+n : +
D

12
(m3 −m)δm −n (3.89)

Of course there is a similar expression for [: L̃m :, : L̃m :] and [: Lm :, : L̃m :] = 0. This
is called the central extension of the Witt algebra. Meaning that there is an extra term
on the right hand side which commutes with all the generators. However it much better
known as the Virasoro algebra and D is called the central charge which has arisen as
a quantum effect. The Virasoro algebra plays a central role in conformal field theories
with a central charge c that can be different from D, e.g. it need not be an integer.
From now on we will always take operators to be normal ordered and we will drop the
:: symbol, unless otherwise stated.

3.6 Fock Space and Physical Hilbert Space

As we have mentioned the vacuum state is taken to be annihilated by all positive moded
oscilators aµn, ã

µ
n:

aµn|0〉 = 0 , ãµn|0〉 = 0 , n > 0 (3.90)

The zero modes also act on the ground state. Since x̂µ and p̂µ don’t commute we can
only chose |0〉 to be an eigenstate of one of them, we take

p̂µ|0〉 = pµ|0〉 ŵµ|0〉 = wµ|0〉 (3.91)

when we want to be precise we label the ground state by |0; p, w〉. The Fock space
is constructed from the vacuum |0; p, w〉 by acting with arbitrary numbers of creation
operators:

|Fock state〉 = aµ1†
n1
. . . aµL†

nL
ãµ1

†
m1

. . . ˜aµR
†
mR

|0; p, w〉 . (3.92)

These elements should be familiar from the study of the harmonic oscillator and free
QFT. In a string theory each classical vibrational mode is mapped in the quantum
theory to an individual harmonic oscillator with the same frequency.

Let look more closely at our Fock space of states. It is built up out of the ground
state which we take to have unit norm 〈0|0〉 = 1. We sees that the one-particle state
aµ−1|0〉 has norm

〈0|aµ1a
µ
−1|0〉 = 〈0|[aµ1 , a

µ
−1]|0〉 = ηµµ (3.93)

where we do not sum over µ. Thus the state a0−1|0〉 has negative norm!

Problem: Show that the state (a0−1 + a1−1)|0〉 has zero norm.

Thus the natural innerproduct on the Fock space is not positive definite because
the time-like oscillators come with the wrong sign. This also occurs in other quantum
theories such as QED and doesn’t necessarily represent any kind of sickness. Rather it
is the indicator of a redundancy in the form of a gauge symmetry.
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However we still need to impose the constraints. We proceed by reducing to the
so-called physical Hilbert space of states. At first we might define this as those states in
the Fock space that are annihilated by T̂αβ and hence by Ln and L̃n. However this turns
out to be too strong a condition and would remove all states. Instead we define the
physical state space to be those states which are annihilated by the positive frequency
components of T̂αβ. In particular we impose3

Ln|phys〉 = L̃n|phys〉 = 0 , n > 0 (L0 − a)|phys〉 = (L̃0 − a)|phys〉 = 0 (3.94)

Here we have introduced a parameter a due to the renormalization of L0. For historical
reasons the parameter a is sometimes called the intercept and α′ the slope. However it is
not a parameter but rather is fixed by consistency conditions. Indeed it can be calculated
by a variety of methods (such as using the modern BRST approach to quantization).
We will see that the correct value is a = 1.

This is then sufficient to show that the expectation value of T̂αβ vanishes

〈phys|Ln|phys〉 = 〈phys|L̃n|phys〉 = 0 ∀n ∕= 0 (3.95)

since the state on the right is annihilated by the positive frequency parts where as by
taking the Hermitian conjugates one sees that the state on the left is annihilated by the
negative frequency part.

There are stranger states still. A physical state |χ〉 that satisfies 〈χ|phys〉 = 0 for
all physical states is called null. It then follows that a null state has zero norm (as it
must be orthogonal to itself).

There can be many such states. To construct an example just consider

|χ〉 = L−1|0; p〉 with p2 = 0 (3.96)

Note that the zero-momentum ground state satisfies Ln|0; 0〉 = 0 and for all n ≥ 0 and
this remains true if for |0; p〉 if p2 = 0. First we verify that |χ〉 is physical. We have, for
m ≥ 0

Lm|χ〉 = LmL−1|0; p〉
= [Lm, L−1]|0; p〉

= (m+ 1)Lm−1|0; p〉+
D

12
(m3 −m)δm1|0; p〉

(3.97)

The last term will vanish automatically whereas the first term can only be non-zero
for m = 0 (since Ln|0; p〉 = 0 for all n ≥ 0). Here we find L0|χ〉 = |χ〉 which is the
physical state condition for a = 1 which will turn out to be the case. Next we see that
〈χ|phys〉 = 〈0|L1|phys〉 = 0. Note that we could have used any state instead of |0; p〉
that was annihilated by Ln for all n ≥ 0 to construct a null state.

3Recall that all operators are understood to be normal ordered.
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Of course we need to consider states in both the left and right sectors:

Problem: Show that L−1ã
µ
−1|0; p〉 and L̃−1a

µ
−1|0; p〉 are null states if p2 = 0.

Thus if we calculate some amplitude between two physical states 〈phys′|phys〉 we can
shift |phys〉 → |phys〉+ |null〉 where |null〉 is a null state. The new state |phys〉+ |null〉
is still physical but the amplitude will remain the same - for any other choice of physical
state |phys′〉. Thus we have a stringy gauge symmetry whereby two physical states are
equivalent if their difference is a null state:

|phys〉 ∼= |phys〉+ |null〉 (3.98)

for any null state |null〉. This will turn out to be the origin of spacetime diffeomorphisms
and other gauge symmetries within string theory. And furthermore one can prove a no-
ghost theorem which asserts that the Hilbert space of physical states is positive definite
(provided that a ≤ 1 and D ≤ 26).

3.7 Spectrum

Let us now look in detail at the spectrum of states in the physical Hilbert Space of a
closed string. We will assume that a = 1. The constraints are

(L0 − 1)|phys〉 = (L̃0 − 1)|phys〉 = 0

Ln|phys = L̃n|phys〉 = 0 (3.99)

with n > 0. Typically the most telling constraints arise from L0 and L̃0. We will see
that these give rise to spacetime Klein-Gordon equations, from which we can read of the
mass of the corresponding particle. We will see the appearance of a gauge symmetry
from the null states. The remaining constraints give gauge fixing conditions.

Recall that (we will assume wµ = 0)

L0 =
α′

4
pµpνηµν +

1

n>0

αµ
−nα

ν
nηµν

L̃0 =
α′

4
pµpνηµν +

1

n>0

α̃µ
−nα̃

ν
nηµν (3.100)

Let us introduce the left and right-moving number operators N , Ñ

N =
1

n>0

ηµνa
µ
−na

ν
n Ñ =

1

n>0

ηµν ã
µ
−nã

ν
n (3.101)

It is not hard to see that for a Fock state of the form (3.92) we have

N |Fock state〉 = (n1 + . . .+ nL)|Fock state〉
Ñ |Fock state〉 = (m1 + . . .+mR)|Fock state〉 (3.102)
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i.e. they count the total number of oscilators weighted by their mode number. Then
the first conditions can be rewritten as

(pµp
µ +

2

α′ (N + Ñ − 2))|phys〉 = 0 (N − Ñ)|phys〉 = 0 (3.103)

The first equation is just a spacetime Klein-Gordon equation. Fourier transformed back
to coordinate space it becomes:

− ∂µ∂
µ +M2 = 0 M2 =

2

α′ (N + Ñ − 2) (3.104)

The second condition, N = Ñ , is called level matching. It arises as both the left and right
moving sectors have the same spacetime momentum. It simply says that any physical
state must be made up out of an equal number of left and right moving oscillators. It
is more or less the only time the two sectors talk to each other.

Let us consider the lowest modes of the closed string. At level 0 (which means level 0
on both the left and right moving sectors by level matching) we simply have the ground
state |0; p〉. This is automatically annihilated by both Ln and L̃n with n > 0. For n = 0
we find

p2 − 4

α
= 0 (3.105)

Since p2 = −E2 + ,p · ,p we see that

E2 = ,p · ,p− 4/α′ (3.106)

i.e. a tachyon! No one knows what to do with this. In the very least it represents an
instability: one finds tachyons in ordinary field theory if one expands about a maxi-
mum rather than a minimum of the potential. Most people today would say that the
Bosonic string is inconsistent although this hasn’t been demonstrated. The cure arises
by considering superstrings where it is projected out of the physical spectrum. So we
continuing by simply ignoring it, as our discussion of the other modes still holds in the
superstring.

Next we have level 1. Here the states are of the form

|Gµν〉 = Gµνa
µ
−1ã

ν
−1|0; p〉 (3.107)

Just as for the open string these will be massless, i.e. p2 = 0 (again only if a = 1). Next
we consider the constraints Lm|Gµν〉 = L̃m|Gµν〉 = 0 with m > 0.

Problem: Show that these constraints imply that pµGµν = pνGµν = 0

The matrix Gµν is a spacetime tensor. Under the Lorentz group SO(1, D− 1) it will
decompose into a symmetric traceless, anti-symmetric and trace part.

31



Problem: Show that under spacetime Lorentz transformations the tensors

hµν = G(µν) −
1

D
ηλρGλρηµν

bµν = G[µν]

φ = ηλρGλρ (3.108)

will transform into themselves.

Thus from the spacetime point of view there are three independent dynamical modes
labeled by hµν , bµν and φ.

3.8 Spacetime Diffeomorphisms and Gauge Symmetry

Next we should see what identifications the null states give us. In particular we have
that fact that ξµL−1ã

µ
−1|0; p〉 and ζµL̃−1a

µ
−1|0; p〉 are null states, provided that p2 = 0

(see a previous problem). Expanding out

L−1|0; p〉 =
1

2

1

m

ηλρa
λ
−1+ma

ρ
−m|0; p〉

=
1

2
ηλρ

.
aλ−1a

ρ
0 + aλ0a

ρ
−1

/
|0; p〉

= ηλρa
λ
0a

ρ
−1|0; p〉

=

+
α′

2
pλa

λ
−1|0; p〉 (3.109)

where all the other contributions in the infinite sum annihilate the vacuum. Similarly

L̃−1|0; p〉 =
+

α′

2
pλã

λ
−1|0; p〉 (3.110)

Thus

|Gµν〉 ∼= |Gµν〉+ i

+
α′

2
ξµpνa

ν
−1ã

µ
−1|0; p〉+ i

+
α′

2
ζµpνa

µ
−1ã

ν
−1|0; p〉 (3.111)

In terms of Gµν this implies that

Gµν
∼= Gµν + i

+
α′

2
pµξν + i

+
α′

2
pνζµ (3.112)

or, switching to coordinate space representations and the individual tensor modes, we
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find

hµν
∼= hµν +

1

2

+
α′

2
∂µ(ξν + ζν) +

1

2

+
α′

2
∂ν(ξµ + ζµ)

bµν ∼= Bµν +
1

2

+
α′

2
∂µ(ξν − ζν)−

1

2

+
α′

2
∂ν(ξµ − ζµ)

φ ∼= φ+ 2

+
α′

2
∂µ(ξ

µ + ζµ)

(3.113)

If we let vµ = 1
2

*
α′

2
(ξµ + ζµ) and Λµ = 1

2

*
α′

2
(ξµ − ζµ) and use ∂µξµ = pµζµ = 0 then we

find

hµν
∼= hµν + ∂µvν + ∂νvµ

bµν ∼= bµν + ∂µΛν − ∂νΛµ

φ ∼= φ

(3.114)

We should think of these fields are providing dynamical fluctuations away from the flat
space configuration. In particular the first term line gives the infinitesimal form of a
diffeomorphism, xµ → xµ − vµ and thus we can identify

gµν = ηµν + hµν (3.115)

to be a metric tensor. The second line gives a generalization of and electromagnetic
gauge transformation of a new field bµν . The analogue of the gauge invariant field
strength is

Hλµν = ∂λbµν + ∂µbνλ + ∂νbλµ (3.116)

Thus the massless field content at level 1 consists of a graviton mode hµν , an anti-
symmetric tensor field bµν and a scalar φ, subject to the gauge transformations (3.113).
Finally the massless condition p2Gµν = 0 leads to

∂2hµν = 0

∂2bµν = 0

∂2φ = 0

(3.117)

Note that

Gµν = bµν + hµν +
1

D
ηµνφ (3.118)

and hence pµGµν = pνGµν = 0 become

∂µbµν + ∂µhµν +
1

D
∂νφ = 0

∂νbµν + ∂νhµν +
1

D
∂µφ = 0 (3.119)
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or equivalently

∂µhµν = − 1

D
∂νφ

∂µbµν = 0 (3.120)

These can be viewed as gauge fixing conditions. The fields hµν , bµν and φ are known as
the graviton (metric), Kalb-Ramond (b-field) and dilaton respectively.

It is clear that as we go to higher and higher levels we obtain towers of massive
particle states. For example at level 2 we will find four possible tensor structures:

aµ−1a
ν
−1ã

λ
−1ã

ρ
−1|0〉 aµ−2ã

λ
−1ã

ρ
−1|0〉 aµ−1a

ν
−1ã

λ
−2|0〉 aµ−2ã

ρ
−2|0〉 (3.121)

These will be massive fields with
M2 = 4/α′ . (3.122)

It turns our that the growth in the number of independent states grows exponentially
with the level number: roughly speaking (without worrying about constraints) it is the
number of ways to write the level number N as a sum over D smaller intergers. This is a
signature of string theory: at low energy where only the massless modes are excited the
string is more or less rigid and behaves like a particle. But at high energies it becomes
increasingly floppy and softer. Once we look at strings scattering above the string scale
there are a large number of possible modes that can absorb the shock and redistribute
the energy. This is one reason behind its good UV behaviour.

It is worth noting here what would happen if a ∕= 1. In this case the mass formula
would be (taking into account level matching):

M2 =
4

α′ (N − a) . (3.123)

For a < 0 the groundstate is a massive scalar field and then all other states would also
be massive. For a = 0 the groundstate would be a single massless scalar field and then
all other states would be massive. If 0 < a < 1 then the ground state is a tachyon and
then all other states are massive. Lastly if a > 1 then the groundstate and at least the
level one states are tachyonic, possibly more levels if a > 2 etc.. Again, for any a, there
is always an exponentially large tower of increasingly massive states.

3.9 Strings in Curved Spacetime and an Effective Action

We have considered quantized strings propagating in flat spacetime. This lead to a spec-
trum of states that included the graviton as well as other modes. More generally a string
should be allowed to propagate in a curved background with non-trivial values for the
metric and other fields. Our ansatz will be to consider the most general two-dimensional
action for the embedding coordinates Xµ coupled to two-dimensional gravity subject to
the constraint of conformal invariance. This later condition is required so that the two-
dimensional worldvolume metric decouples from the other fields. We will consider only

34



closed strings in this section. The reason for this is that these days one views open
strings as description soliton like objects, called Dp-branes, that naturally sit inside the
closed string theory.

Before proceeding we note that

SEH =
1

4π

)
d2σ

√
−γR = χ (3.124)

is a topological invariant called the Euler number, i.e. the integrand is locally a total
derivative. Thus we could add the term SEH to the action and not change the equations
of motion.

With this in mind the most general action we can write down for a closed string is

Sclosed = − 1

4πα′

)
d2σα′√−γφ(X)R+

√
−γγαβ∂αX

µ∂βX
νgµν(X)+εαβ∂αX

µ∂βX
νbµν(X)

(3.125)
where φ is a scalar, gµν symmetric and bµν antisymmetric. These are precisely the correct
degrees of freedom to be identified with the massless modes of the string. One can think
of this worldsheet theory as two-dimensional quantum gravity coupled to some matter
in the form of scalar fields. More generally one can think of and conformal field theory
(with central charge equal to 26) as defining the action for a string.

Furthermore this action has the diffeomorphism symmetry Xµ → X ′µ(X)

∂αX
′µ =

∂X ′µ

∂Xν
∂αX

ν g′µν =
∂Xλ

∂X ′µ
∂Xρ

∂X ′ν gλρ b′µν =
∂Xλ

∂X ′µ
∂Xρ

∂X ′ν bλρ φ′ = φ .

(3.126)

Problem: Show that Sclosed is invariant under both worldsheet and spacetime diffeo-
morphisms.

It also incorporates the b-field gauge symmetry

b′µν = bµν + ∂µΛν − ∂µΛν (3.127)

however to see this we note that

δSclosed = − 1

2πα′

)
d2σεαβ∂αX

µ∂βX
ν∂µΛν

= − 1

2πα′

)
d2σ∂α(ε

αβ∂βX
νΛν)

= 0 (3.128)

where we used the fact that εαβ∂α∂βX
ν = 0 in the second to last line and the fact that

the worldsheet is a closed manifold in the last line, i.e. the periodic boundary conditions
Xµ(σ + 2π) = Xµ(σ).

As stated above our general principle is the conformal invariance of the worldsheet
theory, which ensures that the worldsheet metric γαβ decouples. The action we just
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wrote down is conformal as a classical action. However this will not generically be the
case in the quantum theory. Divergences in the quantum theory require regularization
and renormalization and these effects will break conformal invariance by introducing an
explicit scale: the renormalization group scale. It turns out that conformal invariance
is more or less equivalent to finiteness of the quantum field theory. This restriction
leads to equations of motions for the spacetime fields φ, gµν and bµν (which from the
worldvolume point of view are just fancy coupling constants). It is beyond the scope of
these lectures to show this but the constraints of conformal invariance at the one loop
level give equations of motion

0 = Rµν +
1

4
HµλρH

λρ
ν − 2DµDνφ+O(α′)

0 = DλHλµν − 2DλφHλµν +O(α′)

0 = 4D2φ+ 4(Dφ)2 −R− 1

12
H2 +O(α′) (3.129)

where Hµνλ = 3∂[µbνλ]. In general there will be corrections to these equations coming
from all orders in perturbation theory, i.e. higher powers of α′. However such terms will
be higher order spacetime derivatives and can be safely ignored at energy scales below
the string scale, i.e. for α′p2 << 1.

A string propagating in spacetime has an infinite tower of massive excitations. How-
ever all but the lightest (massless) modes will be too heavy to observe in any experiment
that we do. Thus in many cases one really just wants to consider the dynamics of the
massless modes. This introduces the concept of an effective action. This is a very gen-
eral concept (ubiquitous in quantum field theory) whereby we introduce an action for
the light modes that we are interested in (below some scale M). The action is con-
structed so that it has all the correct symmetries of the full theory and its equations
of motion reproduce the correct scattering amplitudes of the light modes that the full
theory predicts. In general effective actions need not be renormalizable and they are
not expected to be valid at energy scales above the scale M where the massive modes
we’ve ignored can be excited and can no longer be ignored. Often one says that the
massive modes have been integrated out. Meaning that one has performed the path
integral over modes with momenta larger than M and is just left with a path integral
over the low momentum modes.

In our case we have considered a string propagating in a curved spacetime that can
be thought of as a background coming from a non-trivial configuration of its massless
modes. In particular in our discussion we implicitly assumed that the massive modes
were set to zero. The result was that quantum conformal invariance predicted the
equations of motion (3.129). These are the on-shell conditions for a string to propagate
in spacetime as derived in the full quantum theory. Note that they pick up an infinite
series of α′ corrections and also an infinite series of gs corrections (where we allow the
splitting an joining of strings). In other words, at lowest order in α′ and gs these are
the equations of motion for the spacetime fields. Furthermore these equations of motion
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can be derived from the spacetime action

Seffective = − 1

2α′12

)
d26x

√
−ge−2φ

!
R− 4(∂φ)2 +

1

12
HµνλH

µνλ

"
+ . . . (3.130)

Problem: Show that the equations of motion of (3.130) are indeed (3.129). You may
need to recall that δ

√
−g = −1

2

√
−ggµνδg

µν and gµνδRµν = DµDνδg
µν − gµνD

2δgµν .

This is therefore the effective action for the massless modes of a closed string. It
plays a similar role to Klein Gordon equation played for the point particle (although
Seffective does not include the infinite tower of string states which isn’t there for the
point particle). The ellipsis denotes contributions from higher loops which will contain
higher numbers of derivatives and which are suppressed by higher powers of α′.

3.10 String Scattering and the Perturbation Expansion

As we have emphasized, string theory is really quantum gravity applied to the string
wolrdsheet. Thus when we consider the worldsheet we should also consider different
topologies. To do this we first Wick rotate to a Euclidean worldsheet. We will assume
that the worldsheet is orientatable (this isn’t always the case in string theory but it is
good enough for us).

To do this we Wick rotate τ → iτ so that

σ+ → σ + iτ = z σ− → σ − iτ = z̄ . (3.131)

The worldsheet metric in conformal frame takes the form

ds2 = e2ϕ(τ,σ)(−dτ 2 + dσ2) → e2ϕ(τ,σ)(dτ 2 + dσ2) = e2ϕ(z,z̄)dzdz̄ (3.132)

Consider a holomorphic change of variables

z = z(z′) z̄ = z̄(z̄′) (3.133)

then

ds2 = e2ϕ
dz

dz′
dz̄

dz̄′
dz′dz̄′

= exp

!
2ϕ+ ln

dz

dz′
+ ln

dz̄

dz̄′

"
dz′dz̄′

= e2ϕ
′
dz′dz̄′ (3.134)

Thus holomorphic coordinate transformations are conformal transformations (and vice-
versa).

A particular such transformation is

z′ = e−iz = e−iσ+τ . (3.135)
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Figure 3.2: Mapping the Cylinder to the Plane and Sphere

This maps the cylinder of the closed string worldsheet to the complex place C with the
origin {0} removed. In particular the origin corresponds to τ → −∞. Similarly τ → ∞
is mapped to infinity of C. To include these additional points, corresponding to the
string at minus/plus infinty, we can expand

C → C ∪ {∞} = CP 1 ∼= S2 (3.136)

which is the 2-sphere. Thus we can think of the freely propagating string worldsheet as
a two-sphere.

In a path integral formulation of the theory one would consider the partition function
or generating function to include a sum over topologies

Z =
1

topologies

)
DγDXe−Sclosed (3.137)

where Dγ and DX are the infinite dimensional integrals over the worldvolume metric
γαβ and embedding coordinates Xµ with Sclosed is given in (3.125).

Let us split the dilaton into its vacuum value φ0 and its fluctuation φ = φ0 + φ′ so
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Figure 3.3: The genus expansion

that

Z =
1

topologies

)

Σ

DγDXe−
φ0
4π

! √
−γR[γ]e−S′

closed

=
∞1

g=0

e(2g−2)φ0

)

Σg

DγDXe−S′
closed . (3.138)

Here we have used the fact that compact two-dimensional orientable manifolds are
classified by their genus g = 0, 1, 2, .. which is related to the Euler number χ by

2− 2g = χ(Σg) =
1

4π

)

Σg

√
−γR[γ] (3.139)

These are known as Riemann surfaces. The genus counts the number of ‘holes’ in the
surface: a sphere has g = 0 but a torus has g = 1 and a double torus g = 2 etc.. Next
we introduce the string coupling constant gs = e2φ0 so that

Z =
∞1

g=0

g2g−2
s

)

Σg

DγDXe−S′
closed (3.140)

Thus we find a natural perturbative expansion. For gs << 1 the dominant term in Z
comes from g = 0 with higher genus surfaces giving a power series in gs.

Here we find one of the miracles of string theory. The genus expansion represents
a splitting and re-joining of strings in an analogous form to how high loop corrections
form the perturbative expansion in QFT see figure 3.3

But wait there’s more! We can include ingoing and outgoing strings by modifying
the Riemann surfaces to include in/out going strings: see figure 3.4

Finally we can use worldsheet conformal transformations to map the asymptotic
‘legs’ to marked points (τi, σi) on a compact Riemann surface: see figure 3.5.

Furthermore if we prepare an incoming string into a particular state |in〉 this corre-
sponds to inserting operators V (τ, σ), commonly called a vertex operators, located at
the marked points that correspond to the incoming states. Likewise we can consider
out-going strings into a particular state 〈out|. This arises as a consequence of what is
called the state-operator map in a conformal field theory. This map tells us that there
is a one-to-one correspondence between states and operators. As a result the amplitude
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Figure 3.4: Strings Scattering
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Figure 3.5: Worldsheet correlation functions

for a set of Nin incoming strings and V1(τ1, σ1), ..., VNin
(τNin

, σNin
) to scatter into Nout

outgoing states V ′
1(τ

′
1, σ

′
1), ..., V

′
Nout

(τ ′Nout
, σ′

Nout
) can be mapped to a correlation function

in the worldsheet CFT:

〈out|in〉 = 〈0|V ′
1(τ

′
1σ

′
1)...V

′
Nout

(τ ′Nout
σ′
Nout

)V1(τ1, σ1)...VNin
(τNin

σNin
)|0〉 (3.141)

Thus the amplitude for computing string scattering is given by an (Nin + Nout)-point
correlation function of vertex operators in the worldsheet CFT. One of the most famous
results in string theory is that each term in this expansion is UV finite.

In particular the vertex operator for the tachyon with momentum pµ is simply
V (τ, σ) = eipµX

µ(τ,σ) and the level one modes (gravitons etc.) correspond to V µν =
∂+X

µ∂−X
νeipλX

λ(τ,σ) (all normal ordered of course).

Problem: Write out an expression for the normal ordered form of eikµX
µ
and show that

p̂µeikµX
µ |0, 0〉 = kµeikµX

µ |0, 0〉.
But note one additional thing: computing these amplitudes does not require new

physics beyond the known description of a single string. The reason is it that it is
possible to cut these diagrams in such a way that at any given time one only sees
individual strings. Thus, unlike point particles, a single string already knows how it
interacts with other strings. Our theory is unique: there is no arbitrariness in how we
define the interactions.

You might ask why stop at strings? Why not quantize higher dimensional objects?
As far as we know our luck runs out. Gravity is dynamical above 3 dimensions and not so
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easy to deal with (quantizing a (3+1)-dimensional object would require understanding
full quantum gravity in four-dimensions which was the problem we originally started
with). Furthermore a string has the nice feature that for a fixed length it has a fixed
energy. But for higher dimensional dimensional objects it is possible to stretch out in
one dimension and shrink in another so as to keep the volume fixed. This leads to
infinite valleys in its potential energy where the mass of the object remains constant as
it develops ‘spikes’. There is also no natural perturbative expansion in terms of Riemann
surfaces.

However we will see that higher dimensional objects, branes, do play a crucial role
in string theory, just not in the way that strings do. Indeed we do not think that string
theory is fundamentally about strings. Strings are just convenient, sometimes, when it
makes sense to form such a perturbative expansion.

4 Open Strings and D-Branes

Okay so by now I hope to have convinced you that looking at closed strings leads to
a theory of gravity along with a massless Kalb-Ramond field and dilaton, and then an
infinite tower of massive fields. All propagating in a spacetime of 26 dimensions. But we
need more than this. Where are the non-Abelian gauge interactions and matter fields
that make up the Standard Model?

4.1 Quantizing Open Strings

The answers lies in the fact strings come in two varieties: open and closed. Open strings
have two end points which traditionally arise at σ = 0 and σ = π. We must be careful to
ensure that the correct boundary conditions are imposed. In particular we must choose
boundary conditions so that the boundary value problem is well defined. This requires
that

ηµνδX
µ∂σX

ν = 0 (4.142)

at σ = 0, π.

Problem: Show this!

There are essentially two boundary conditions that one can impose. The first is
Dirichlet: we hold Xµ fixed at the end points so that δXµ = 0. The second is Neumann:
we set ∂σX

µ = 0 at the end points. The first condition implies that somehow the end
points of the string are fixed in spacetime, like a flag to a flag pole. At first glance
this seems unphysical and we will ignore it for now, although such boundary conditions
turn out to be profoundly important. So we will start by considering second boundary
condition, which states that no momentum leaks off the ends of the string. It is known
as an NN boundary condition meaning the Neumann condition is selected at both ends.
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Let us recall the general solution

X̂µ = x̂µ + ŵµσ + 2α′p̂µτ +

+
α′

2
i
1

n ∕=0

!
aµn
n
e−in(τ+σ) +

ãµn
n
e−in(τ−σ)

"
(4.143)

Note the extra factor of 2 in front of p̂µ. This arises as now σ ∈ [0, π] which affects the
the spacetime momentum (see below).

The condition that ∂σX̂
µ(τ, 0) = 0 implies that

wµ = 0 , aµn = ãµn (4.144)

i.e. the left and right oscillators are not independent. If we look at the boundary
condition at σ = π then we determine that

1

n ∕=0

aµne
inτ sin(nπ) = 0 (4.145)

Thus n is again an integer (this can change). The mode expansion is therefore

Xµ = xµ + 2α′pµτ +
√
2α′i

1

n ∕=0

aµn
n
einτ cos(nσ) (4.146)

(Note the slightly redefined value of pµ as compared to before.)
For the open string the physical states are constrained to satisfy

Ln|phys >= 0 , n > 0 and (L0 − 1)|phys >= 0 (4.147)

in particular there is only one copy of the constraints required since the L̃n constraints
will automatically be satisfied. The second condition is the most illuminating as it gives
the spacetime mass shell condition. To see this we note that translational invariance
Xµ → Xµ + xµ gives rise to the conserved current P̂ µ = 1

2πα′ Ẋ
µ. This is a worldsheet

current and hence the conserved charge (from the worldsheet point of view) is

pµ =
1

2πα′

) π

0

dσẊµ

=
1

2πα′

) π

0

dσ2pµ +
√
2α′

1

n ∕=0

aµne
inτ cos(nσ)

= pµ

(4.148)

where again we have abused notation and confused the operator p̂µ that appears in the
mode expansion of Xµ with its eigenvalue pµ which we have now identified with the
conserved charge. In any case we do this because we have shown that pµ is indeed the
spacetime momentum of the string. Note that this also explains why we put in the extra
factor of 2 in front of pµτ in the mode expansion.
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Again we introduce

N =
1

n>0

ηµνa
µ
−na

ν
n (4.149)

Which is the analogue of the number operator that appears in the Harmonic oscillator.
Of course this is an operator even though we are being lazy and dropping the hat.

Problem: Show that if N |n〉 = n|n〉 then Naµ−m|n〉 = (n+m)aµ−m|n〉
With this definition we can write the physical state condition (L0− 1)|phys >= 0 as

(pµp
µ +

1

α′ (N − 1))|phys >= 0 (4.150)

Thus we can identify the spacetime mass-squared of a physical state to be the eigenvalue
of

M2 =
1

α′ (N − 1) (4.151)

Of course as before we must not forget the other physical state condition Ln|phys >=
0 for n > 0. This constraint will take the form of a gauge fixing condition.

4.2 Spectrum and Chan-Paton Indices

Let us consider the lowest lying states.
At level zero we have the vacuum |0; p >. We see that the mass-shell condition is

p2 − α′−1
= 0 (4.152)

The other constraint, Ln|0; p >= 0 with n > 0, is automatically satisfied. As with the
closed string this problem goes away, or is well understood, in superstring theory. So
we just ignore it.

Next consider level 1. Here we have

|Aµ >= Aµ(p)a
µ
−1|0; p > (4.153)

Since these modes have N = 1 it follows from the mass shell condition that they are
massless (for a = 1!), i.e. the L0 constraint implies that p2Aµ = 0. Note that this
depends crucially on the fact that a = 1. If a > 1 then |Aµ > would be tachyonic
whereas if a < 1 |Aµ > would be massive.

But we must also check that Ln|A >= 0 for n > 0. Thus

Ln|Aµ > =
1

2
Aµ

1

m

ηνλa
ν
n−ma

λ
ma

µ
−1|0; p >

=
1

2
Aµηνλ

1

m≤1

aνn−ma
λ
ma

µ
−1|0; p >

=
1

2
Aµηνλ

1

n−1≤m≤1

aνn−ma
λ
ma

µ
−1|0; p >

(4.154)
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In the second line we’ve noted that if m > 1 we can safely commute aλm past aµ−1 where
it annihilates the vacuum. In the third line we’ve observed that if n−m > 1 then we can
safely commute aνn−m through the other two oscillators to annihilate the vacuum (recall
that for n > 0 aνn−m always commutes through aλm). Thus for n > 1 we automatically
have Ln|Aµ >= 0. For n = 1 we find just two terms

L1|A > =
1

2
Aµηνλ(a

ν
1a

λ
0a

µ
−1 + aν0a

λ
1a

µ
−1)|0; p >

= Aµa
µ
0 |0; p >

=
√
2α′pµAµ|0; p >

(4.155)

Thus we see that |Aµ > is represent a massless vector mode with pµAµ = 0. In position
space this is just ∂µAµ = 0 and this looks like the Lorentz gauge condition for an
electromagnetic potential.

Indeed recall that before we found the null state, with p2 = 0,

|Λ > = iΛ(p)L−1|0; p >

= iηµνΛa
µ
0a

ν
−1|0; p >

= i
√
2α′pµΛa

µ
−1|0; p >

(4.156)

provided that p2 = 0. Thus we must identify Aµ ≡ Aµ + i
√
2α′pµΛ which in position

space is the electromagnetic gauge symmetry Aµ ≡ Aµ +
√
2α′∂µΛ. Again this occurs

precisely when a = 1, otherwise L−1|0; p > is not a null state and their would not be a
gauge symmetry.

There is one more thing that can be done. Since and open string has two preferred
points, its end points, we can attach discrete labels to the end points so that the ground
state, of the open string carries two indices

|0; p, ab〉 (4.157)

where a = 1, .., N refers the σ = 0 end and b = 1, ..., N refers to the σ = π end. It then
follows that all the Fock space elements built out of |0; p, ab > will carry these indices.
These are called Chan-Paton indices. The level one states now have the form

|Aab
µ 〉 = Aab

µ aµ−1|0; p, ab〉 (4.158)

The null states take the form

|Λab〉 = iΛabL−1|0; p, ab〉 (4.159)

and the gauge symmetry is
Aab

µ ≡ Aab
µ +

√
2α′∂µΛ

ab (4.160)
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Figure 4.1: Splitting and Rejoining of Open Strings

These are the gauge symmetries of a non-Abelian Yang-Mills field with gauge group
U(N) (at lowest order in the fields).

To see why a matrix-multiplication might arise consider a process where a single
open string in a state |a, b〉 splits into an intermediate state of two strings. These will
have to have Chan-Paton labels |a, c〉 and |c, b〉. Furthermore these two intermediate
strings rejoin to form the original string later on (see Figure). In a quantum theory one
must sum over all the possible intermediate states. This means that the process can be
written schematically as

|a, b〉 →
1

c

|a, c〉 ⊗ |c, b〉 → |a, b〉 . (4.161)

In other words the splitting and joining interact behaves like matrix multiplication:

Aab
µ →

1

c

Aac
µ Acb

µ Aac
µ , Acb

µ →
1

c

Aac
µ Acb

µ . (4.162)

In fact it has been known since the earliest string theory days that the scattering of
open strings is indeed described by Yang-Mills gauge theories with gauge group U(N).
Perhaps you haven’t yet seen Yang-Mills theories yet. We will go over these issues next
when we reinterpret open strings in terms of D-branes.

4.3 Background Fields and the Effective Action

Next week need to understand how we can extend the open string to curved backgrounds
and also backgrounds that have a non-vanishing gauge field Aµ. This is an extension of
what we did above for closed strings. Let us start by not considering the Chan-Paton
indices.
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As we mentioned the end points of open strings are special and in a sense behave as
particles. Thus we can naturally take

Sopen = Sclosed +

)

σ=π

dτAµẊ
µ −

)

σ=0

dτAµẊ
µ (4.163)

where Sclosed is the closed string σ-model that we discussed above including the general-
ization to a curved background. This is an example of a so-called boundary conformal
field theory. Meaning that we still require conformal invariance, even in the presence
of the boundary. This breaks the separate left and right moving conformal algebras
generated by Ln and L̃n to a single copy.

Recall the b-field gauge symmetry of closed strings:

bµν → bµν + ∂µλν − ∂νλµ (4.164)

However if the worldsheet has a boundary then this is no-longer a symmetry:

δSopen = − 1

2πα′

)
d2σεαβ∂αX

µ∂βX
ν∂µλν

= − 1

2πα′

)
d2σ∂α(ε

αβ∂βX
νλν)

=
1

2πα′

)

σ=π

dτẊνλν −
1

2πα′

)

σ=0

dτẊνλν

(4.165)

which is non-zero. However we sees that it can be canceled by a shift

Aµ → Aµ −
1

2πα′λµ (4.166)

so that

Fµν = Fµν +
1

2πα′ bµν Fµν = ∂µAν − ∂νAµ (4.167)

is gauge invariant under both

bµν → bµν + ∂µλν − ∂νλµ

Aµ → Aµ + ∂µΛ− 1

2πα′λµ (4.168)

Problem: Convince yourself that classically Sopen still has all the other symmetries that
we want.

Introducing boundaries to the string world sheet also affects our counting of the
powers of gs = eφ0 in the perturbation expansion. In particular the formula for the
Euler number for a Riemann surface with b boundary components is

χ = 2− 2g − b (4.169)
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Thus with open strings the perturbation expansion contains all powers of gs (greater
than -2), not just even powers. In addition cutting the loop diagrams of open strings
will reveal closed strings. Put another way open stings can merge to form closed strings.
Thus we can’t just consider a theory of open strings, but we can add open strings into
a theory of closed strings.

Once again we expect a non-trivial conditions on conformal invariance to arise at
higher order in the α′ expansion. In general the answer is unknown. However in the
special case that Fµν is constant it is known that, to all orders in α′, the conditions on
F arise from the effective action

Sopen
eff = − 1

α′13

)
d26xe−φ

*
− det(gµν + 2παFµν) + . . . (4.170)

Here the ellipsis denote higher order terms that arise when ∂λFνλ ∕= 0. There will also
be corrections to the closed string conformal invariance conditions arising away from
the boundaries.

In the case of a flat background (with gµν = ηµν , bµν = 0 and φ = φ0 a constant) we
find

Sopen
eff = − 1

α′13

)
d26x

*
− det(ηµν + 2πα′Fµν) + . . . (4.171)

which is well-known as the Born-Infeld action for electrodynamics. In particular ex-
panding out the determinant and square-root to lowest non-trivial order gives. Now
because for us tr(Fµ

ν) = Fµ
µ = 0 we must expand to second order

Problem: Assuming det eA = etrA show that to second order

det(1 + A) = 1 + tr(A) +
1

2
(tr(A))2 − 1

2
tr(A2) + . . . (4.172)

Thus

det(1 + 2πα′Fµ
ν) = 1− 1

2
(2πα′)2Fµ

νFν
µ + . . . (4.173)

and hence

Sopen
eff = − 1

α′13 e
−φ0

)
d26x

+
1− 1

2
(2πα′)2FµνF νµ + . . .

= − 1

α′13 e
−φ0

)
d26x

!
1 +

1

4
(2πα′)2FµνF

µν + . . .

"
(4.174)

which looks just right for electromagnetism.
Next we need to consider the effect of Chan-Paton indices. These arise in the con-

formal field theory by adding labels to the boundaries to each boundary component.
The massless level one field is now a matrix-valued vector (one-form would be a better
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term): Aab
µ , a, b = 1, 2, .., N . The conformal invariance conditions are now very compli-

cated in general, leading to an α′ expansion in terms higher order corrections which are
in general unknown.

However to lowest order in α′ and in flat space it is known that the scattering of
open strings is captured by a U(N) Yang-Mills gauge theory. So lets look at the lowest
order term in the effective action:

Sopen
eff =

1

α′13

)
d26x

!
−Ne−φ0 − 1

4
(2πα′)2e−φ0tr(FµνF

µν) + . . .

"

= SYM (4.175)

here the constant term arises from taking N = tr1 and now tr is over the Chan-Paton
indices: tr(Xab) =

6
a X

aa for any matrix valued field Xab. Furthermore we have

F ab
µν = ∂µA

ab
ν − ∂νA

ab
µ − i

1

c

.
Aac

µ Acb
ν − Aac

ν Acb
µ

/

= ∂µA
ab
ν − ∂νA

ab
µ − i[Aµ, Aν ]

ab (4.176)

This action is now interacting since the gauge fields Aab
µ do not commute. As expected

the level one gauge symmetry arising from null states survives in a non-abelian form:

Problem: Show that the Yang-Mills action SYM is invariant under the gauge transfor-
mation

δAab
µ = DµA

ab = ∂µΛ
ab − i[Aµ,Λ]

ab (4.177)

4.4 D-branes

So what is the role of open strings. At first they were rather obscure. But we now
realise that open strings are always attached to something: a so-called D-brane. And
the dynamics of the D-brane are governed by the open strings. Thus we find a whole
new class of dynamical objects in string theory.

By definition a Dp-brane is a (p + 1)-dimensional worldvolume in spacetime upon
which open strings can end. In practice this means that within closed string theory
we include objects where open strings can end, i.e. we allow for Dirichlet boundary
conditions

δXI = 0 I = p+ 1, ..., 25 (4.178)

for the values of µ which are transverse the the D-brane. Along the D-brane directions
we impose

∂mX
µ = 0 m = 0, 1, 2, ..., p (4.179)

Such open strings therefore have NN boundary conditions for Xm and DD (i.e. Dirichlet
at both ends) for X i. In particular the open strings we looked at above have only NN
boundary conditions and therefore describe D25-branes, meaning spacetime filling D-
branes.
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To be precise consider a Dp-brane parallel to the x0, x1, ..., xp dimensions. This means
that it sits at a specific location in the xp+1, ..., x25 dimensions, say (xp+1, ..., x25) =
(ap+1, ..., a25). Thus one imposes Dirichlet boundary conditions on the fieldsXp+1, ..., X25.
However the X0, ..., Xp coordinates are freely allowed to move and hence and are sub-
jected to Neumann boundary conditions, i.e. ∂σX

m = 0 at σ = 0, π and m = 0, ..., p.
Thus the mode expansion for these fields is as before:

Xm = xm + 2α′pmτ +
√
2α′i

1

n ∕=0

amn
n
einτ cos(nσ) (4.180)

On the other hand for the transverse coordinates to the Dp-brane we have the boundary
condition that X i = ai at σ = 0, π. These are called DD boundary conditions. Starting
from the expansion

X̂I = xI + wIσ + α′piτ +

+
α′

2
i
1

n ∕=0

!
ain
n
e−in(τ+σ) +

ãin
n
e−in(τ−σ)

"
(4.181)

and setting σ = 0 we see that xI = aI and pI = 0. We also find aIn = −ãIn. Next we
consider the σ = π end. Here we find wI = 0 and

aine
−inπ + ãine

inπ = 0 (4.182)

Using the fact that aIn = −ãIn we see that we need sinnπ = 0. Thus once again we see
that the n are integers. In summary we find

XI = aI +
√
2α′

1

n ∕=0

ain
n
einτ sin(nσ) (4.183)

The main difference with the Xm coordinates are the lack of a momentum zero mode
pi. This means that the states of these open strings cannot move away from xI = aI ,
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but they can move parallel to the Dp-brane. We denote the ground state of this open
string by |D; p > to distinguish it from the ground state of other open strings or closed
strings.

What are the low lying states? Well they are very similar to before. Only now the
SO(1, 25) symmetry is broken to SO(1, p)×SO(25−p). There is still a tachyon |D; p >
at level 0 with mass-squared −1/α′ (which we continue to ignore). At level 1 there are
two types of massless states:

|Am >= Ama
m
−1|D; p > |Y I >=

1

2πα′Y
IaI−1|D; p > (4.184)

where we now have m = 0, 1, ..., p and I = p+ 1, ..., 25. And of course an infinite tower
of massive states. The extra factor of 1/2πα′ is to give Y I units of length.

Note that the gauge symmetry that we saw above is also suitably reduced. In
particular the null state that we used above is now

iΛL−1|0; p > =
i

2
Λ
1

m

ηµνa
µ
−1+ma

ν
−m|0; p >

= i
√
2α′pmΛa

m
−1|0; p >

(4.185)

The point to note here is that pµ is only nonvanishing for µ = 0, 1, 2, ..., p. Hence the
modes |Y I > are not subject to a gauge symmetry, however |Am > still plays the role
of a gauge Boson. The states |Y I > have the interpretation as 25 − p massless scalar
fields. They parameterize fluctuations of the Dp-brane in the transverse coordinates.

The importance of D-branes was not appreciated until 1994. Dp-branes should be
thought of as solitonic-like states that appear in the closed string theory. As such they
are like p-dimensional hypersurfaces in space, which are constant in time. In general
we can consider configurations made up of several types of Dp-branes lying in different
planes and intersecting with each other. The rules of string theory tell us that for each
pair of brane (or for a brane and itself) we must consider the open string that stretches
between the two. Each such string leads to additional particle like degrees of freedom.

We can also consider situations with N Dp-branes all parallel to each other. In
this case we must label the end points of the open strings by an index a = 1, ..., N to
indicate which Dp-brane they end on. Indeed one sees that this is a geometric origin for
the Chan-Paton factors that we discussed about and leads to a U(N) gauge symmetry.
The D-brane ground state can therefore be denote by |D; p, ab >, with one Chan-Paton
index for each end point. It follows that all the states in the Fock space created using
the string oscillators will carry ab indices and hence can be thought of as matrix valued.

The modern view on string theory is that one thinks of the bulk, 26-dimensional,
dynamics are governed by closed strings, whose massless modes are a graviton, Kalb-
Ramond field and dilaton. However in addition there are these soliton like D-brane
state. On the worldvolume of these D-branes one finds U(N) gauge vector fields, as
well as scalars. It may happen that in some cases the D-branes are spacetime filling,
meaning that they
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Figure 4.3: Two D-branes and their Open Strings

For example a D0-brane is essentially a point particle. The open strings are confined
to end at a particular point in space (but not time). One also has D1-branes which are
much like strings themselves. A D25-brane is simply the original notion of open strings,
but now these are viewed as a state within the closed string theory.

Problem: Draw a picture of three parallel D-branes located at xI = aI , xI = bI and
xI = cI and depict all their open strings. Give the corresponding mode expansions for
the scalars Xµ.

4.5 The Abelian D-brane Effective action

How can we include the open string massless modes in an effective action? Well if
we consider a 25-brane, that is a space-filling D-brane then this is essentially just the
original definition of open strings and there is a massless vector Aµ. For D-branes one
finds a vector field Am, living on a (p + 1) dimensional subspace, plus the scalars Y I .
The corresponding worldsheet action is

Sopen
Dp = Sclosed +

)

σ=π

dτ(AµẊ
µ +

1

2πα′Y
IX ′I)−

)

σ=0

dτ(AµẊ
µ +

1

2πα′Y
IX ′I) (4.186)

To obtain the effective action we simply notice that we just set pI = 0, that is ∂T = 0
in the effective action we found above. All this means is that Fµν splits up:

Fmn = ∂mAn − ∂nAm

FmI =
1

2πα′∂mY
I

FIJ = 0 (4.187)
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Thus to two derivative order, and in flat spacetime with constant dilaton and van-
ishing bµν , we find

SDp = −Tp

)
dp+1xe−φ

-
− det(ηmn + 2πα′Fmn + ∂mY I∂nY JδIJ)

= SBDI (4.188)

where Tp ∝ α′−(p+1)/2 is the tension of the Dp-brane (its exact coefficient can be com-
puted but by other methods).

Problem: Show that substituting (4.187) into (4.171) leads to SDBI (up to an overall
constant). Hint: there is a matrix identity

det

!
M A

−AT N

"
= detN det(M + ATN−1A) (4.189)

This action had been studied well before string theory and is known as the Dirac-
Born-Infeld action. It has two interesting special cases. If we set the transverse scalar
fields to zero we recover the Born-Infeld action on the brane,as we saw above but now
reduced to p+ 1 dimensions. If the gauge fields are set to zero then we obtain

SDp = −Tp

)
dp+1x

-
− det(ηmn + ∂mY I∂nY JδIJ) (4.190)

Problem: Show that this is a gauge fixed form of the Nambu-Goto action

SNG = −Tp

)
dp+1x

*
− det (∂mXµ∂nXνηµν) (4.191)

where we take Xm = xm if m = 0, ..., p and XI = Y I if I = p+ 1, ..., 25.
This describes an extended object in spacetime whose action is simply its volume

and indeed the Y I give the position of the Dp-brane in the transverse space. Thus
indeed we should think of a Dp-brane as a p-dimensional extended object in space,
that propagates through time and whose fluctuations are governed by the worldvolume
extremisation principle of the Nambu-Goto action.

Thus in general the total spacetime effective action is

S =
1

2α′12

)
d26x

√
−ge−2φ

!
R− 4(∂φ)2 +

1

12
HµνλH

µνλ

"
+
1

Dp

SDp (4.192)

where the second term is a sum over all the Dp-branes in the background. We emphasize
that this is just the lowest order term in an effective action with otherwise contains
contributions from higher powers of α′ and gs = eφ0 .
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4.6 Multiple D-Branes and Non-Abelian Gauge Theory

So now let us consider how to incorporate Chan-Paton indices and non-abelian dynamics.
This corresponds to having N Dp-branes all parallel to each other. For simplicity we
take the background spacetime to be flat Minkowski space.

If we now reduce the 26-dimensional Yang-Mills gauge theory, which simply means
setting ∂µ = 0 for µ = I we find

Fmn = ∂mAn − ∂nAm − i[Am, An]

FmI =
1

2πα′ (∂mY
I − i[Am, Y

I ]) =
1

2πα′DmY
I

FIJ = − i

(2πα′)2
[Y I , Y J ] (4.193)

We have dropped the matrix indices in the interest of not cluttering up the equations.
All fields should be understood to be matrix valued and carry ab indices which label
which Dp-brane each end lives on. In particular they are physical fields and so taken to
be hermitian:

A†
m = Am (Y I)† = Y I ⇐⇒ Aba∗

m = Aab
m Y Iba∗ = Y Iab (4.194)

To find the dynamics we simply dimensionally reduce the Yang-Mills action from 26
to p+ 1 dimensions:

SDp = −Tp

)
dp+1xe−φ

4
N + (πα′)2tr(FmnF

mn) +
1

2
tr(DmY

IDmY I)

− 1

16π2α′2

1

I,J

tr([Y I , Y J ][Y I , Y J ])
5

(4.195)

where Tp ∼ α′− p+1
2 is the tension of a Dp-brane i.e. the energy per unit p-volume.

Problem: Show that SDp is invariant under the gauge transformation

Am → ig∂mg
−1 + gAmg

−1 Y I → gY Ig−1 (4.196)

where g(xm) is worldvolume-dependent element of U(N).
Now we find a Yang-Mills gauge theory in p+1 dimensions coupled to 25− p scalar

fields which take values in the adjoint of U(N). Thus our stringy physics is getting more
interesting.

Note that the combination

(Aab
m , Y Iab) = δab(A0

m, Y
I0) (4.197)

i.e. matrices proportional to the identity matrix, will commute with everything and
therefore represent free degrees of freedom. The Y I components correspond to the
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centre of mass of the Dp-branes which is a free field due to the symmetries of Minkowski
space.

Finally let us consider the potential on the coordinates Y I

V = − Tp

16π2α′2

1

I,J

Tr
.
[Y I , Y J ]

/2
(4.198)

Note that since (Y I)† = Y I we have [Y I , Y J ]† = −[Y I , Y J ]. Thus the potential is minus
the sum of the square of an anti-Hermitian matrix. Therefore V ≥ 0. It follows that
the vacuum states of this action correspond to [Y I , Y J ] = 0 for all I, J . Therefore, up
to a gauge transformation, we can write

Y I = diag(aI1, . . . , a
I
N) (4.199)

We interpret the aIa as the location of the ath Dp-brane in the xI direction. In fact there
are further gauge transformations of the form

g =

#

$$$%

0 1 0 . . .
1 0 0 . . .
0 0 1 . . .
...

...
...

. . .

&

'''(
etc. (4.200)

i.e. the identity matrix with two rows interchanged. These generate the symmetric
group SN which act to swap aIa ↔ aIb for some pair a, b. This tells us that the individual
D-branes are indistinguishable, like particles. In particular the vacuum moduli space,
that is the space of solutions to V = 0 modulo gauge transformations, is is the N-th
symmetric product of R25−9:

MN = SymN(R25−9) = (R25−9)N/SN . (4.201)

Thus even though the open strings that stretch between N parallel D-branes carry
N2 degrees of freedom, the vacuum moduli space just consists of N independent vectors
(ap+1

a , ..., a25a ) which parameterize the position of the ath D-brane in the transverse space.
The other modes will generically be massive as a consequence of the Higgs’ effect. In
particular their masses will be of the form

m2
ab ∼

1
(aIa − aIb)(a

I
a − aIb) (4.202)

Personally I find this stringy interpretation of the Higgs’ mechanism very pleasing. The
Higgs’ mechanism is ubiquitous quantum field theory but this geometric interpretation
requires strings as only a string-like object will lead to a mass formula that grows with
separation, which is what the Higgs’ mechanism requires.

Problem: Find the masses of the scalar fields and gauge fields for the case of two D-
branes located at xI = aI and xI = bI . Show that indeed the fields proportional to the
identity matrix decouple as a free system.
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Geometrically this occurs because the open string that stretches between two sepa-
rated D-branes must have a non-zero length and hence is massive. However whenever
two or more D-brane coincide there is an enhanced symmetry and additional massless
fields arise.

4.7 D-Branes and Black Holes

Note that this discussion has only been at the level of the classical action. The existence
of a moduli space of vacua implies that we can place branes at any separation hence that
there is no force between them. However branes are massive objects and will gravitate
towards each other once gravitational effects are taken into account. Thus we expect
that in the quantum theory, and when the interactions of closed strings are taken into
account, the moduli space will be lifted.

In particular recall the action (4.192)

S =
1

2α′12

)
d26x

√
−ge−2φ

!
R− 4(∂φ)2 +

1

12
HµνλH

µνλ

"
+
1

Dp

SDp (4.203)

since the SDp terms involve the metric gµν they will contribute to the spacetime energy
momentum tensor obtained from

Tµν =
2√
−g

δS

δgµν
(4.204)

and therefore appear as a source in the Einstein equation in the form of a δ-function
localized to the brane worldvolume. The Dp-brane also acts as a delta-function source
for the dilaton equation of motion. For a Dp-brane localized at xI = aI the corre-
sponding solution to the closed string gravitation equations of motion will look like
Schwarzschild-like black hole but where the singularity is spread out along a p + 1 di-
mensional hypersurface. The dilaton will also have a non-trivial dependence on the
radial direction transverse to the Dp-brane. Such solutions are known as dilatonic black
branes, or black p-branes. As it stands we do not expect to find solutions where they sit
at arbitrary points in space since their gravitational attraction will pull them together.

In superstrings, where the Dp-brane worldvolume theory becomes a maximally super-
symmetric Yang-Mills theory, this classical description of the moduli space is preserved
in the quantum theory. Furthermore in superstring theories Dp-branes (as well as other
types of branes which are not described by open strings) carry a charge with respect to
p+ 1-form fields Cµ0...µp , in an analogous way to how Strings couple to bµν :

SDp → SDp + SWZ

SWZ =
Tp

(p+ 1)!

)
dp+1xεm0...mpCµ0...µp∂m0X

µ0 . . . ∂mpX
µmp , (4.205)
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where SWZ is known as the Wess-Zumino term. We have seen examples of these terms
in both the point particle:

SWZ = q

)
dτ∂τX

µAµ , (4.206)

and fundamental string:

SWZ = − 1

4πα′

)
d2σεαβ∂αX

µ∂βX
νbµν . (4.207)

Note that in these cases Tp is both the mass (well tension which is mass per unit volume)
and charge (or more precisely the charge per unit volume). It also introduces the notion
of an anti-Dp-brane with opposite charge. This corresponds to the opposite choice of sign
for SWZ which in turn can be thought of as a flip in the orientation of the worldvolume.

As with electromagnetism, the Cµ0...µp field leads to a repulsive force between Dp-
branes. In addition the gravitational attraction and this repulsive force are mediated
by massless fields and hence both have the same fall-off with distance:

Fgravity ∼ −
T 2
p

r23−p
FC ∼

T 2
p

r23−p
(4.208)

and these exactly cancel, leading to stable D-branes. And indeed it turns out that one
can find stable black hole like solutions in supergravity, the low energy description of
superstrings, which are interpreted representing the presence of branes.

We have also neglected the tachyon. Again in superstring theory this can be made
to go away. Although there are also very interesting situations where the open string
tachyon survives. For example it arises in the spectrum of open strings that stretch
between a Dp-brane and an anti Dp-brane. In this case the Cµ0...µp-field induces an
attractive force that adds to the gravitational one, rather than cancelling it. However
the resulting instability is relatively well understood. In this case the tachyon represents
the instability for the them to annihilate leaving nothing but closed string radiation.

5 The Worldsheet Revisited

So far we have quantized a string in flat D-dimensional spacetime. We have seen that
this leads to an infinite tower of states and among the massless modes we find a graviton
and diffeomorphism invariance (at least if a = 1). Including open strings leads to D-
branes as higher-dimensional extended objects whose dynamics are controlled at lowest
order by non-Abelian Yang-Mills gauge theories.

Apart from D we have the parameters a and α′. In fact α′ is not a parameter, it
is a dimensional quantity - it has the dimensions of length-squared - and simply sets
the scale. What is important are unitless quantities such as p2α′. For example small
momentum means p2α′ << 1. We are left with D and a but actually these are fixed:
quantum consistency demands that D = 26 and a = 1. Indeed we have seen that
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a = 1 is special. We have also described how these theories can be generalized to curved
spacetimes. But we haven’t been as precise as we might have liked.

Let us now go back and explore some aspects in more detail. Perhaps these easiest
way to do this requires us to go to a particular frame and thereby break manifest Lorentz
symmetry. But it has the benefit that only the physical states arise.

5.1 Light-cone gauge

The easiest way to see this is to introduce light-cone gauge. Recall that the action we
started with had diffeomorphism symmetry. We used this symmetry to fix γαβ = e2ρηαβ.
However there is still a residual symmetry. In particular in terms of the coordinates σ±

then under a transformation

σ′+ = σ′+(σ+) σ′− = σ′−(σ−) (5.209)

we see that γ′
αβ = e2ρ

′
ηαβ with

ρ′ = ρ+
1

2
ln

!
∂σ+

∂σ′+
∂σ−

∂σ′−

"
(5.210)

i.e. this preserves the conformal gauge. In terms of the worldsheet coordinates σ, τ we
see that

τ ′ =
1

2
(σ′+ + σ′−) (5.211)

and since σ′± are arbitrary functions of σ± we see that any τ that solves the two-
dimensional wave equation can be obtained by such a diffeomorphism. Therefore, with-
out loss of generality, we can choose the worldsheet ’time’ coordinate τ to be any of the
spacetime coordinates (since these solve the two-dimensional wave-equation). Of course
there are many choices but the usual one is to define

X+ =
1

2
(X0 +XD−1) X− =

1

2
(X0 −XD−1) (5.212)

and then take
X+ = x+ + α′p+τ (5.213)

This is called light cone gauge.
We observe that in these coordinates the spacetime ηµν is

η−+ = η+− = −2 ηij = δij (5.214)

Next we evaluate the worldsheet energy momentum tensor which was given by

T00 = T11 =
1

2
ẊµẊνηµν +

1

2
X ′µX ′νηµν

T01 = T10 = ẊµX ′νηµν

(5.215)

57



Thus we find that

T00 = T11 = −2α′p+Ẋ− +
1

2
Ẋ iẊjδij +

1

2
X ′iX ′jδij = 0

T01 = T̂10 = −2α′p+X ′− + Ẋ iX ′jδij = 0

(5.216)

where i, j = 1, 2, 3, ..., D − 2. This allows one to explicitly solve for X− in term of the
mode expansions for X i.

Problem: Show that with our conventions

X− = x̂− + α′p̂−τ + i

2
1

n ∕=0

a−n
n
e−inσ+

+
ã−n
n
e−inσ−

3
(5.217)

where

a−n =
1

2p+

1

m

ain−ma
j
mδij (5.218)

and the mass-shell constraint is

− 4α′p+p− + α′pipjδij + 2(N + Ñ) = 0 (5.219)

with

N + Ñ =
1

2
δij

1

n ∕=0

aina
j
−n + ãinã

j
−n (5.220)

and
N = Ñ (5.221)

. This last condition is just level matching and arises from demanding that X̂− is
periodic in σ.

To continue we note that in the quantum theory there is a normal ordering ambiguity
in the definition of N + Ñ and we must include our constant a again into the definition.
Hence we must take (temporarily putting in the :: symbols for normal ordering)

: N + Ñ := δij

∞1

n=1

ai−na
j
n + ãi−nã

j
n (5.222)

However since we have dropped an infinite constant, the intercept a will now show up
in the mass shell constraint as

− 4α′p+p− + α′pipjδij + 2(N + Ñ − 2a) = 0 (5.223)

Note that −4p+p−+pipjδij = ηµνp
µpν so this really just tells us that the mass of a state

is

M2 =
2

α′ (N + Ñ − 2a) (5.224)
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Where we have dropped the :: to indicate normal ordering.
Note that this breaks the SO(1, D − 1) symmetry of our flat target space since we

choose X0 and XD−1 whereas any pair will do (so long as one is timelike). Thus we
will not see a manifest SO(1, D − 1) symmetry but just an SO(D − 2) symmetry from
rotations of the X̃ i. However it is important to realize that the SO(1, D− 1) symmetry
is not really broken, we have merely performed a kind of gauge fixing (recall there was
this underlying gauge symmetry of the string spectrum). It is just no longer manifest.

5.2 D = 26, a = 1

On the other hand the benefit of this procedure is that the physical Hilbert space is
manifestly postive definite because we remove the oscillators a0n, ã

0
n, a

D−1
n , ãD−1

n . This is
often a helpful way to determine the physical spectrum of the theory.

For example we can reconsider the low lying states that we constructed above. The
ground states are unchanged as they do not involve any oscillators. For the open string
we find the D − 2 states at level one

|Ai〉 = ai−1|0; p〉 (5.225)

These are the transverse components of a massless gauge field. For the closed string we
find, at level one,

|Gij〉 = Gija
i
−1ã

j
−1|0; p〉 (5.226)

Again Gij splits into

Gij = gij + bij +
1

D − 2
δijφ (5.227)

with δijgij = 0. These correspond to the physical components, in a certain gauge, of the
metric, Kalb-Ramond field and dilaton. Note however that there is no remnant at all of
gauge symmetry which is a crucial feature that allowed us to indentify the dynamics.

Now formally a is given by

a = −1

2

∞1

m=1

[aim, a
j
−m]δij

= −D − 2

2

∞1

m=1

m . (5.228)

This is divergent however it can be regularized in the following manner. We note that

a = −D − 2

2
ζ(−1) , (5.229)

where ζ(s) is the Riemann ζ-function

ζ(s) =
∞1

m=1

1

ms
. (5.230)
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This is analytic for complex s with Re(s) > 1. Thus it can be extended to a holomorphic
function of the complex plane, with poles at a discrete number of points. Analytically
continuing to s = −1 one finds ζ(−1) = −1/12 and hence

a =
D − 2

24
. (5.231)

We have seen that in order to have a sensible theory we must take a = 1 (otherwise
there are no massless states or nice gauge invariances). Hence we must take D = 26.

Perhaps this is not a very satisfactory derivation of the dimension of spacetime. A
more convincing argument is the following. Light cone gauge is just a gauge. Therefore
although the manifest spacetime Lorentz symmetry is no longer present there is still an
SO(1, D− 1) Lorentz symmetry, even though only an SO(D− 2) subgroup is manifest.
In light cone gauge the spacetime Lorentz generators Mµ

ν (3.33) split into

M ij =
1

4πα′

)
dσẊ iXj −X iẊj

M+j =
1

4πα′

)
dσẊ+Xj −X+Ẋj

M−j =
1

4πα′

)
dσẊ−Xj −X−Ẋj

M−+ =
1

4πα′

)
dσẊ−X+ −X−Ẋ+ . (5.232)

The quantization procedure preserves SO(D− 2) so the commutators [M i
j,M

k
l] are as

they should be. However problems can arise with [M i
j,M

+
k] etc.. It is too lengthy a

calculation to do here, but one can show that the full SO(1, D − 1) Lorentz symmetry,
generated by these is preserved in the quantum theory, i.e. once normal ordering is taken
into account, if and only if a = 1 and D = 26. You are urged to read the section 2.3 of
Green Schwarz and Witten or section 12.5 of Zwiebach where this is shown more detail.

This provides a nice interpretation for a. In lightcone gauge, where only the physical
modes are present, each transverse dimension contributes 1/24 to the value of a. That is
to say that each transverse direction to the string acts as a free periodic bosonic degree
of freedom on the worldsheet and contributes 1/24 to the ground state energy:

E0 = 〈0|L0|0〉 = 〈0|L̃0|0〉 =
D − 2

24
. (5.233)

It can be thought of as the regularised sum of the ground state energies of all the
oscillators.

This is also useful if we encounter modes with other boundary conditions, i.e. modes
where n is not integer. For example consider a scalar with half-integer moding then the
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Figure 5.1: A Closed String Loop

ground state energy is

1

2

∞1

n=0

!
n+

1

2

"
= −1

4

∞1

n=odd

n (5.234)

= −1

4

2 ∞1

n=1

n−
∞1

n=even

n

3

= −1

4

2 ∞1

n=1

n−
∞1

m=1

2m

3

=
1

4

∞1

n=1

n

= − 1
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Problem: Determine the mode expansion for an open string that stretches between a
D1-brane located at x2 = ... = x25 = 0 and a D25-brane, which fills all of spacetime. By
considering light cone gauge (along the direction X0, X1) describe the lightest physical
states, what is their mass?

5.3 Modular Invariance (D = 26, a = 1 again)

Let us look at a particular one loop diagram corresponding to a closed string that travels
around in a loop: thus the world sheet is a torus with genus g = 1. In particular we
compactify worldsheet time τ ∼= τ +2πβ in addition to σ ∼= σ+2πα for two parameters
α, β which describe the geometry of the worldsheet.

Problem: Show that classically T00 = T++ + T−− and T01 = T++ − T−−
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It follows from this that the energy and momentum along the worldsheet are

E =
1

4πα′

)
dσT00 =

1

2
(L0 + L̄0)

P =
1

4πα′

)
dσT01 =

1

2
(L0 − L̄0) . (5.235)

Switching to the quantum theory the Hamiltonian generates translations in time τ :

i
d

dτ
|Phys〉 = H|Phys〉 = 1

2
(L0 + L̃0 − 2a)|Phys〉 (5.236)

where the −2a arises from normal ordering. While on the other hand L0− L̃0 generates
translations in σ

i
d

dσ
|Phys〉 = H|Phys〉 = 1

2
(L0 − L̃0)|Phys〉 (5.237)

Thus level matching can be thought of as the statement that the string is invariant along
σ.

Let us examine a open-loop closed string diagram corresponding to a closed string
that simply propagates straight up. However we identify the beginning and end closed
strings. This corresponds to a trace over all string states which have been propagated
around the torus:4

Zclosed =
1

states

〈State|e−2πβ(L0+L̃0−2a)+2παi(L0−L̃0)|State〉 (5.238)

where we have Wick rotated to imaginary worldsheet time. The full amplitude is

Aclosed =

)
dαdβ

β2
Zclosed (5.239)

and one can think of the integral over α as imposing level matching. The reason for
the β−2 in the measure is due to the Weyl-Petterson metric on the moduli space of
torus. In plain english that means that it is invariant under conformal transformations
(α, β) → λ(α, β) as well as the identification α ∼ α + 1.

This corresponds to torus worldsheet with no insertions (i.e. no scattering states).
Thus we are computing a one-loop vacuum diagram. It is natural to introduce

q = e2πiz z = α + iβ (5.240)

so that

Zclosed =

)
dD−2p

(2π)D−2

1

states

qL0−aq̄L̃0−a (5.241)

4 Note that unlike section 3.10 this the partition function of the worldsheet theory, not of the whole
string theory.
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where the sum is over all the physical states created from the oscillators (which are all
states in lightcone gauge) and the integral is over the continuous momentum zero-mode.

Consider first a single scalar with no zero-mode but just oscillators a−1, a−2, ... and
intercept E0

Z1 =
1

states

〈State|q
"

l a−lal−E0 |State〉

=
1

states

〈State|q−E0

∞7

l=1

qa−lal |State〉 (5.242)

Each oscillator a−l can be used k times and each a−lal contributes l to the exponent.
We also need to sum over all k and using

6∞
k=0 q

kl = (1− ql)−1 we find

Z1 = q−E0

∞7

l=1

1

1− ql
(5.243)

This is the partition function for a single scalar field (with no zero modes). It is es-
sentially just the product of partition functions for simple harmonic oscillators with
frequencies l = 1, 2, 3, . . .

Z1 =
∞7

l=1

Zsho(l)

Zsho(l) = 1 + ql + q2l + q3l + . . . =
1

1− ql
, (5.244)

where ql = e−2πilβ = (e−2πiβ)l. Each coefficient of (ql)
k counts the number of states with

energy kl. Since there is just one oscillator a−l one finds just one state for each kl:

|0〉 , a−l|0〉 , (a−l)
2|0〉 , (a−l)

3|0〉 . . . . (5.245)

The prefactor of q−E0 just represents an overall shift due to the ground state energy.
Having D − 2 scalar fields just means taking the (D − 2)-th power

ZD−2 = (Z1)
D−2 = q−(D−2)E0

∞7

l=1

!
1

1− ql

"D−2

. (5.246)

Returning to the closed string we find, putting in the zero-modes,

Zclosed =

)
dD−2p

(2π)D−2
e−πα′βp2(qq̄)−a

∞7

l=1

!
1

1− ql

"D−2 ∞7

m=1

!
1

1− q̄m

"D−2

=

!
1

2πβ

"(D−2)/2

(qq̄)−a

∞7

l=1

!
1

1− ql

"D−2 ∞7

m=1

!
1

1− q̄m

"D−2

. (5.247)
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Here we have used the fact that

)
dp

2π
e−πα′βp2 =

+
1

4π2α′β
. (5.248)

Let us introduce the Dedekind η-function

η(z) = q1/24
∞7

l=1

.
1− ql

/
, (5.249)

so that

Zclosed(z) =

!
1

4π2α′Im(z)

"D−2
2

(qq̄)
D−2
24

−a 1

(η(q)η(q̄))D−2
(5.250)

The η-function has the important property that

η(z + 1) = η(z) η(−1/z) =
√
−izη(z) (5.251)

The first identity is clear from the defintion of q = e2πiz. The second is highly non-trivial
and we won’t prove it here. Thus we find

Zclosed(z + 1) = Zclosed(z)

Zclosed(−1/z) =

!
zz̄

4π2α′Im(z)

"D−2
2

(q(−1/z)q̄(−1/z))
D−2
24

−a 1

(zz̄)
D−2
2 (η(q)η(q̄))D−2

= (q(−1/z)q̄(−1/z))
D−2
24

−aZclosed(z) (5.252)

Thus only if D − 2 = 24a do we find

Zclosed(−1/z) = Zclosed(z) . (5.253)

Thus since we can think of a = (D − 2)E0 we see that E0 = 1/24.

Problem: Show that our complete amplitude is

Aclosed =

)
dzdz̄

(Imz)2

!
1

4π2α′Im(z)

"12 !
1

η(q)η(q̄)

"12

, (5.254)

and verify that the integrand is invariant under the action z → z + 1 and z → −1/z.

Why is this important? The complex parameter z = α+ iβ parameterizes the shape
of the torus T2 = S1 × S1.5 Taking z → 2z doubles the size of both S1 factors but this
action is a Weyl transformation and hence is a symmetry. So one must integrate over z

5z is often called τ in the literature and should not be confused with the worldsheet time coordinate.
Similarly the z here should not be confused with the complexified worldsheet coordinate z = σ + iτ
that we briefly used earlier.
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Figure 5.2: A Fundamental Domain of SL(2,Z)

modulo Weyl transformations. As shown in the problem the measure factor dzdz̄/(Imz)2

is invariant and so is the rest of the integrand.
The actions z → z+1 and z → −1/z generate the so-called modular transformations.

For example modular transformation can map the two cycles of the torus into each other.
Furthermore the transformations z → z+1 and z → −1/z generate the group SL(2,Z)
which acts as a fractional linear transformation

z → az + b

cz + d
ab− cd = 1 , a, b, c, d ∈ Z (5.255)

Therefore when performing our integral over z to compute Aclosed we would find a
divergence due to the infinite number of copies related by modular transformations. So
rather than integrating α ∈ [0, 2π) and β ∈ [0,∞) we must restrict to the fundamental
domain of SL(2,Z).

This is known as modular invariance and it is a crucial property of the worldsheet
theory. Modular transformations are infact residual diffeomorphisms. They are called
large diffeomorphisms as they are not continuously connected to the identity i.e. they
cannot be reached by looking at infinitessimal reparameterizations of the the worldsheet.
As we have just seen modular invariance fixes the spacetime dimension (or equivalently
the intercept if you didn’t like the ζ-function approach above.) If D − 2 ∕= 24a then
the string theory has a gravitational anomaly: it is not invariant under large diffeo-
morphisms. Many other things go wrong as a result. This is also a crucial part of
the finiteness of string scatting amplitudes: the potentially divergent parts of the loop
integrands are removed by modular invariance which restricts the integrals to a smaller
range.

5.4 Open/Closed String Duality

Above we considered a torus partition function corresponding to a closed string that
propagates in a loop. We could do a similar amplitude for an open string. Here we just
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Figure 5.3: An Open String Loop

want to consider an open string that moves around in a closed loop making a cylinder:

Zopen =
1

states

〈State|e−2πiβ(L0−a)|State〉 . (5.256)

Using conformal invariance we keep the length of the string fixed at π. The appropriate
vacuum amplitude is therefore

Aopen =

) ∞

0

dβ

β
Zopen , (5.257)

where again the measure is such that it is invariant under Weyl transformations β → λβ.
Following the steps above it is quite easy to construct Zopen (and we take D = 26, a =

1) in lightcone gauge:

Zopen =

)
dp−1p

(2π)p−1
e−πα′βp2q−1

∞7

l=1

!
1

1− ql

"24

=

!
1

2πα′β

"(p−1)/2

η−24(q) , (5.258)

where q = e−πβ. Here we have considered the case of an open string ending on a Dp-
brane so that the momenta are p− 1-dimensional in light cone gauge (please excuse the
use of p as the brane dimension and also the momentum).

It is educational to expand this out for small q (large β):

Zopen =

!
1

2πα′β

"(p−1)/2 !
1

q
+ 24 + 324q + . . .

"
. (5.259)

By construction the sum in the brackets arises from the tachyon (q−1) plus the 24
polarization modes of the massless vector (q0) and then the massive modes which arise
at level 1 (q1) etc.
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Problem: Obtain (5.259). Identify the states and their degeneracies in term of oscil-
lators. Do the same expansion for the closed string (you need only look at the level-
matched terms up to qq̄).

There is no notion of modular symmetry for a cylinder but something else interesting
happens. For large β (small q) we have a short string moving around in a large circle.
The expansion above shows that the dominant contributions come from the light modes.
This makes sense as the heavier higher string modes have propagators that fall off very
quickly with distance.

What happens for small β (large q)? To perform the expansion we can make use of
the fact that (taking z = iβ in (5.249))

η(β) =
-

1/β η(1/β) . (5.260)

In other words for small β we introduce β′ = 1/β then

η−24(β) = β′−12η−24(β′)

= β′−12

!
1

q′
+ 24 + 324q′ + . . .

"
, (5.261)

where q′ = e−πβ′
<< 1 and hence

Zopen = (2πα′)13−p

!
1

2πα′β′

"(25−p)/2 !
1

q′
+ 24 + 324q′ + . . .

"
. (5.262)

What are these states? It is tempting to also view these as massless open string modes
but that can’t be as we expect the massive string modes to be important now. Further-
more the power of the prefactor indicates that these states are propagating in 25 − p
dimensions, not on the brane worldvolume.

The answer comes by looking at the cylinder diagram the other way around. Rather
than thinking of it as a very long open string in a small loop we could consider a small
closed string moving along a long interval. So now the diagram is dominated by the
lightest closed string states. The fact that we only see half the states arises from the
boundary conditions at the ends of the cylinder which require that the left-moving modes
are equal to the right moving ones. Thus we are seeing the closed string states (tachyon
along with the diagonal modes of the metric) propagating in the transverse space to the
Dp-brane!

This is a central feature of string theory. Loops of open strings can been seen as
tree level closed strings (but with boundary conditions that restrict the in and outgoing
states). In particular it suggests that the gauge theory dynamics of open string scat-
tering has a dual description in terms of gravitationally interacting closed strings in the
transverse space. This lies at the heart of much of our modern understanding of topics
such as gauge/gravity duality.
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Figure 5.4: A Closed String Propagating

5.5 T-Duality

Let us consider what happens when some spacetime direction, labelled by XT , is a circle:
XT ∼ XT +2πRT . Returning to our mode expansion we see that XT need not be single
valued but rather

XT (σ + 2π) = XT (σ) + 2πmRT , (5.263)

for some integers m. Such a string is wound around the XT dimension. Thus we see that
in our original mode expansion we can have wT = nRT for an integer n. Furthermore
the momentum around a circle must be quantised (so that the wavefunction is single
valued) and hence pT = m/RT . It then follows that

aT0 =

+
α′

2
mR−1

T +

+
1

2α′nRT ãT0 =

+
α′

2
mR−1

T −
+

1

2α′nRT , (5.264)

and

aµ0 =

+
α′

2
pµ , (5.265)

for the non-compact directions. Now that wT ∕= 0 we see that

L0 − 1 =
1

2
aµ0a

ν
0ηµν +N − 1

=
α′

4
p2 +

1

2

1
2
α′

2

!
m

RT

"2

+
1

2α′ (nRT )
2 + nm

3
+N − 1 . (5.266)

On the other hand we have

L̃0 − 1 =
1

2
aµ0a

ν
0ηµν +N − 1

=
α′

4
p2 +

1

2

1
2
α′

2

!
m

RT

"2

+
1

2α′ (nRT )
2 − nm

3
+ Ñ − 1 . (5.267)

Level matching is now slightly shifted to

(N − Ñ + nm)|phys〉 = 0 . (5.268)
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And the spacetime mass shell is p2 +M2 = 0 with

M2 =
1

2!
m

RT

"2

+
1

α′2 (nRT )
2

3
+

2

α′ (N + Ñ − 2) . (5.269)

You should notice an interesting symmetry. The spectrum is invariant under

n ↔ m RT ↔ α′/RT , (5.270)

i.e. under the interchange of momentum and winding quantum numbers along with an
inversion of the radii. In fact this symmetry extends to the full interacting theory and
is know as T-duality.

It implies that there is a sort of minimum length scale built into string theory as
a string on a circle of radius R is equivalent to a string on a circle of radius α′/R.
Physically, for distances smaller than

√
α′, the string behaves more and more like an

extended object and cannot resolve smaller distances.
We see that for each circular dimension there is a double tower of increasingly massive

states (in addition to the exponentially growing tower of states). In particular each
mode in the stringy tower of states now carries two extra integral charges. These are
the momentum and winding numbers about each compact dimension. It follows that
all but the zero-modes are massive, with a mass-squared of order α′−1. Therefore at low
energy only the zero-modes will be physically relevant.

Note that the momentum modes get heavier as we shrink the radii whereas the
winding mode will get lighter. However so long as the string length

√
α′ is small we can

ensure that all these extra massive momentum and winding modes are too massive to
observe.

5.6 D-branes and T-duality

How does T-duality affect open strings? For simplicity consider a D1-brane wrapped
on a circle direction that is along its worldvolume, call that direction xT . So the mode
expansion for XT is NN but with a discrete momentum (n ∈ Z)

XT = xT + α′ n

RT

τ +
√
2α′i

1

n

aTn
n
e−inτ cosnσ . (5.271)

T-duality therefore needs to map this to some kind of string with zero mode α′n/RT =
nR̃T . This is right for a winding zero-mode but this can only arise for D-branes if the
circle is transverse to the brane as NN boundary conditions exclude a winding term.
The only option is a D0-brane in the T-dual theory with associated mode DD expansion
(n ∈ Z)

X̃T = aT + nR̃Tσ +
√
2α′

1

n

aTn
n
e−inτ sinnσ

R̃T = α′/RT . (5.272)
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Here the integer n counts how many times the open string wraps around the compact
direction before ending on the D0-brane. Thus the momentum Fourier modes of the
D1-brane wrapped on an S1 are mapped to winding modes of open strings around the
dual S1 that is transverse to a D0-brane.

More generally we see that under T-duality a Dp-brane wrapped on a circle S1 is
mapped to a D(p − 1)-brane transverse to the dual circle S̃1 with radius R̃ = α/R.
Conversely a Dp-brane transverse to a circle S1 is mapped to a D(p+1)-brane wrapped
on the dual circle S̃1 with radius R̃T = α/RT .

In fact putting all these together, looking at the mode expansion in terms of left and
right movers, one has

XT
L =

1

2
xT
L +

1

2
(α′mR−1

T + nRT )(τ + σ) +

+
α′

2
i
1

n ∕=0

aTn
n
e−in(τ+σ)

XT
R =

1

2
xT
R +

1

2
(α′mR−1

T − nRT )(τ − σ) +

+
α′

2
i
1

n ∕=0

ãTn
n
e−in(τ−σ) , (5.273)

Note that for open strings if XT is a worldvolume (NN) direction then n = 0 whereas
if XT is a transverse (DD) direction m = 0. Thus under a T-duality transformation
(5.270) one sees that

XT
L ↔ XT

L XT
R ↔ −XT

R , (5.274)

so in particular the we can summarise things by noting that the T-dual scalar has is
X̃T = X̃T

L + X̃T
R with

X̃T
L =

1

2
xT
L +

1

2
(α′mR−1

T + nRT )(τ + σ) +

+
α′

2
i
1

n ∕=0

aTn
n
e−in(τ+σ)

X̃T
R = −1

2
xT
R − 1

2
(α′mR−1

T − nRT )(τ − σ)−
+

α′

2
i
1

n ∕=0

ãTn
n
e−in(τ−σ) . (5.275)

Note that changing the sign of x̂T
R and ãTn has no effect for closed strings. However

for Dp-branes it swaps NN and DD boundary conditions and replaces the momentum
with winding. Thus T-duality is just a symmetry where you swap the sign of the right
moving modes.

Let us see how this can be demonstrated on the worldsheet. We consider a simple
system where the metric and other fields are flat. Since the action is free we need only
look at the part concerning the compact coordinate XT . Starting with NN boundary
conditions we have

ST = − 1

4πα′

)
d2σR2

Tη
αβ∂αX

T∂βX
T +

)

σ=π

dτẊTAT −
)

σ=0

dτẊTAT , (5.276)

where we have used a spacetime metric with gTT = R2
T so that XT ∼ XT + 2π. Fur-

thermore AT is the XT component of Aµ which, since XT is periodic, we assume is
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independent of XT . Note that XT does not appear in the action undifferentiated.
Therefore let us write

∂αX
T = Fα , (5.277)

but we need to impose the identity εαβ∂αFβ = 0 that arises from [∂α, ∂β] = 0. Therefore
we introduce into ST a Lagrange multiplier term:

ST = − 1

4πα′

)
d2σ

4
R2

Tη
αβFαFβ + 2α′εαβX̃T∂αFβ)

5
+

)

σ=π

dτF0A−
)

σ=0

dτF0A

= − 1

4πα′

)
d2σ

4
R2

Tη
αβFαFβ − 2α′εαβ∂αX̃

TFβ)
5

+

)

σ=π

dτF0(AT − 2πX̃T )−
)

σ=0

dτF0(AT − 2πX̃T ) . (5.278)

If we use the X̃T equation of motion then from the first line we find

εαβ∂αFβ = 0 , (5.279)

which can be solved by writing Fα = ∂αX
T . Substituting back into the action leads to

our original action. On the other hand we can use the second line to evaluate the Fα

equation of motion:

2R2
Tη

αβFα = 2α′εαβ∂αX̃
T

=⇒ Fα = α′

R2
T
εαβ∂

βX̃T . (5.280)

Note that the NN boundary condition ∂1X = 0 corresponds to F1 = 0 and hence
∂0X̃

T = 0 at σ = 0, π, which is the required DD boundary condition. Substituting this
back into the action gives

ST = − 1

4πα′

)
d2σ

!
α′2

R2
T

ηαβ∂αX̃
T∂βX̃

T

"
(5.281)

− α′

R2
T

)

σ=π

dτ∂1X̃
T (A− 2πX̃T ) +

α′

R2
T

)

σ=0

dτ∂1X̃
T (A− 2πX̃T )

= − 1

4πα′

)
d2σ

!
α′2

R2
ηαβ∂αX̃

T∂βX̃
T

"
+

)

σ=π

dτ∂1X̃
TY −

)

σ=0

dτ∂1X̃
TY ,

where Y = 2πα′R−2
T X̃T − α′AT/R

2
T . This is the correct open string worldsheet action

for a coordinate X̃T with periodicity 2πR̃T = 2π
-

α′/RT but now with DD boundary
conditions. Furthermore we see that T-duality corresponds to

RT ↔ R̃T = α′/RT

∂αX
T ↔ εαβ∂

βX̃T , (5.282)
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which in terms of σ± coordinates indeed means

RT ↔ R̃T = α′/RT

∂−X
T ↔ ∂−X̃

T

∂+X
T ↔ −∂+X̃

T , (5.283)

i.e. the radius is inverted and the sign of the right movers is changed but the left movers
are unchanged.

Problem: Show that under the T-duality transformation AT ↔ Y T the Dp-brane Yang-
Mills action turns into the D(p− 1)-brane action.

6 Superstrings

In the final section let us try to extend the previous sections to the superstring. Con-
ceptually not much changes but there are several additional bells and whistles that need
to be considered.

6.1 Type II strings

The starting point for the superstring is include Fermions ψµ on the worldsheet so as to
construct a supersymmetric action

S = − 1

4πα′

)
d2σ∂αX

µ∂βX
νηµνη

αβ + iψ̄µγα∂αψ
νηµν (6.284)

where ψ̄ = ψTγ0 and γα are real 2×2 matrices that satisfy {γα, γβ} = 2ηαβ. A convenient
choice is γ0 = iσ2 and γ1 = σ1. This action is also conformally invariant and in addition
has the supersymmetry

δXµ = iε̄ψµ , δψµ = γα∂αX
µε (6.285)

for any constant ε.

Problem: Show this.

In analogy with the bosonic string this can be seen to arise from gauge fixing a full
two-dimensional supergravity theory on the worldsheet coupled to Xµ and ψµ. But we
don’t have time to consider that here.

The mode expansion for the Xµ remains as before with the aµn and ãµn oscillators.
When we expand the Fermionic fields we can allow for two types of boundary conditions
(let us just consider boundary conditions consistent with a closed string where σ ∼ σ+2π
and Xµ(τ, σ) = Xµ(τ, σ + 2π)):

R : ψµ(τ, σ + 2π) = ψµ(τ, σ)

NS : ψµ(τ, σ + 2π) = −ψµ(τ, σ)

(6.286)
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these are known as the Ramond and Neveu-Schwarz sectors respectively. Thus we find

R : ψµ(τ, σ + 2π) =
1

n∈Z

dne
−inσ+

+ d̃ne
−inσ−

NS : ψµ(τ, σ + 2π) =
1

r∈Z+ 1
2

bre
−irσ+

+ b̃re
−irσ−

(6.287)

One finds that these satisfy the anti-commutation relations

{dµm, dνn} = ηµνδm,−n {bµr , bνs} = ηµνδr,−s

{d̃µm, d̃νn} = ηµνδm,−n {b̃µr , b̃νs} = ηµνδr,−s

(6.288)

with all other anti-commutators vanishing.
One important consequence of supersymmetry is that the algebra of constraints

generated by Ln is enhanced to a super-Virasoro algebra with odd generators Gr and
Fn (depending on whether or not one is in the NS or R sector respectively). The super-
Virasoro algebra turns our to be (see the references)

[Lm, Ln] = (m− n)Lm+n +
D

8
m(m2 − 1)δm,−n

[Lm, Gr] =
4m
2
− r

5
Gm+r

{Gr, Gs} = 2Lr+s +
D

2

!
r2 − 1

4

"
δr,−s (6.289)

in the NS sector and

[Lm, Ln] = (m− n)Lm+n +
D

8
m3δm,−n

[Lm, Fn] =
4m
2
− n

5
Fm+n

{Fn, Fm} = 2Lm+n +
D

2
m2δm,−n (6.290)

in the R sector. Here all operators are normal ordered. Just as before this only affects
L0 and F0 however there is no associated intercept a for F0 since it is Fermionic (and in
addition this is not allowed by the {F0, F0} anti-commutator). Note that the Fermionic
generators are in effect the ‘square-root’ of Ln, as we expect in a supersymmetric theory.
We won’t go into more details here but we must impose the physical constraints for the
positive modded generators. Just as L0 gives a spacetime Klein-Gordon equation, F0

gives a spacetime Dirac equation.
Let us compute the intercept a. As before we go to light-cone gauge where we fix

two of the coordinates Xµ and their superpartners ψµ. We then compute the vacuum
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energy of the remaining D − 2 Bosonic and Fermionic oscillators. The result depends
on the boundary conditions we use. Noting that the sign of the Fermionic contribution
is opposite to that of a Boson one finds

aR = −D − 2

2

∞1

n=1

n+
D − 2

2

∞1

n=1

n

= −D − 2

2

!
− 1

12
+

1

12

"

= 0

(6.291)

The vanishing of aR is a direct consequence of the fact that there is a Bose-Fermi
degeneracy in the R-sector. In particular each periodic Fermion contributes − 1

24
to a.

In the NS sector we find (recall section 5.2)

aNS = −D − 2

2

∞1

n=1

n+
D − 2

2

∞1

r=0

!
r +

1

2

"

= (D − 2)

!
1

24
+

1

48

"

=
D − 2

16
(6.292)

Note that this shows that each anti-periodic Fermion contributes 1
48

to a. Having de-
termined the incepts we can now go out of Light cone gauge and consider the covariant
theory.

Let us now look at the lightest states. There is a different ground state for each
sector which we denote by |R; p〉 and |NS; p〉 where pµ labels the spacetime momentum.
As before we assume that these states are annihilated by any oscillator with positive
frequency.

We see that |R; p〉 is massless and hence all the higher level states created from it by
the action of a creation operator will be massive with a mass of order the string scale.
However the Ramond ground state |R; p〉 is degenerate. In particular we see that there
are Fermion zero-modes dµ0 which satisfy {dµ0 , dν0} = ηµν , µ, ν = 0, ..., D− 1 in light cone
gauge. This is a Clifford algebra and it is known that there is a unique representation
and it is 2[

D
2
]-dimensional. Thus the Ramond ground state is in fact a spinor with 2[

D
2
]

independent components.
Let us look at the Neveu-Schwarz ground state |NS, p〉. It is clear that since aNS > 0

this state is a tachyon. We can then consider the higher level states (for simplicity we
just consider open strings)

aµ−1|NS, p〉 M2 = 1− D − 2

16

bµ− 1
2

|NS, p〉 M2 =
1

2
− D − 2

16
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Thus the next lightest state is bµ− 1
2

|NS, p〉 and its mass-squared is M2 = −D−10
16

. Thus

if D < 10 then these states are also tachyonic. However as before the magic (that is
gauge symmetries from null states) happens when these states are massless, i.e. D = 10.
In this case the states aµ−1|NS, p〉 are massive. Thus we take D = 10 and aNS = 1/2.
Indeed as before this is forced upon us if we want the SO(1, D − 1) Lorentz symmetry
of spacetime to be preserved in the quantum theory. And also for modular invariance.

Nevertheless we are still left with some bad features. For one the Neveu-Schwarz
ground state is still a tachyon. There is also another puzzling feature: |NS, p〉 is a
spacetime scalar and hence it must be a Boson. We can then construct the spacetime
vector bµ− 1

2

|NS, p〉. From the spacetime point of view this state should be a Boson since it

transforms under Lorentz transformations as a vector. However it is created from |NS, p〉
by a Fermionic operator and thus will obey Fermi-statistics. This is contradictory.

The solution to both these problems is to project out the odd states and in particular
|NS, p〉. This is known as the GSO projection. More specifically we declare that |NS, p〉
is a Fermionic state. Mathematically we introduce the operator (−1)F which acts as
(−1)F |NS, p〉 = −|NS, p〉 and {ψµ, (−1)F} = 0, [Xµ, (−1)F ] = 0. We then project
out all Fermionic states, i.e. states in the eigenspace (−1)F = −1. Thus |NS, p〉 and
aµ−1|NS, p〉 are removed from the spectrum but the massless states bµ− 1

2

|NS, p〉 remain.

Let us now consider the Ramond sector states. We already saw that the ground
state here is massless but degenerate. Indeed it is a spinor of SO(1, 9), that is to say
it can be represented by a vector in the 32-dimensional vector space that furnishes a
representation of the Clifford algebra relation {dµ0 , dν0} = ηµν , µ, ν = 0, ..., 9. We need
to discuss how (−1)F acts here. There is a natural candidate where we take (−1)F =
±Γ11 = ±Γ0Γ1...Γ9, the chirality operator in the 10-dimensional Clifford algebra. Thus
after the GSO projection |R, p〉 is a chiral spinor with 16 independent components.
More generally in the Ramond sector we project out states with (−1)F = −1. The GSO
projection is also required to ensure modular invariance.

In the Ramond sector of the open superstring either choice of sign is equivalent to
the other, it is just a convention. Thus for the open superstring the lightest states are
massless and consist of a spacetime vector (and hence a Boson) bµ− 1

2

|NS, p〉 along with a

spacetime Fermion |R, p〉 which can be identified with a chiral spinor. Note that there is
a Bose-Fermi degeneracy: onshell, and gauged fixed we find 8 Bosonic and 8 Fermionic
states (Why? - you can see this in lightcone gauge).

Let us consider closed strings. Here the states are essentially obtained by taking a
tensor product of left and right moving modes and hence there are four possibilities:

|NS〉L ⊗ |NS〉R
|R〉L ⊗ |R〉R

|NS〉L ⊗ |R〉R
|R〉L ⊗ |NS〉L

(6.293)
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In this case the relative sign taken in the GSO projection is important. There are two
choices: either we chose the same chirality projector for the left and right moving modes
or the opposite. This leads to two distinction theories known as the type IIB and type
IIA superstring respectively. The states one find are of the form

|NS〉L ⊗ |NS〉R
|R+〉L ⊗ |R−〉R
|NS〉L ⊗ |R−〉R
|R+〉L ⊗ |NS〉L

(6.294)

for type IIA and

|NS〉L ⊗ |NS〉R
|R+〉L ⊗ |R+〉R
|NS〉L ⊗ |R+〉R
|R+〉L ⊗ |NS〉L

(6.295)

for type IIB. Here the ± sign corresponds to the different choice of GSO projector for
the left and right moving modes.

The spacetime Bosons come from either the NS-NS or R-R sectors whereas the
spacetime Fermions from the NS-R or R-NS sectors. One sees that in the type IIA
theory there are Fermionic states with both spacetime chiralities but in the type IIB
theory only one chirality appears.

Let us look more closely at the massless Bosonic states. The NS-NS sector is essen-
tially the same as the spectrum of the Bosonic string only now they are created from the
vacuum by bµ− 1

2

and b̃µ− 1
2

rather than aµ−1 and ãµ−1. In particular we still find a graviton,

Kalb-Ramond field and a dilaton. This sector is universal to all closed string theories.
However we also have R-R fields. These arise as a tensor product of a left and right

spinor ground state. As such they form a ‘bi-spinor’:

Fαβ = |R±〉Lα ⊗ |R±〉Rβ (6.296)

Any bi-spinor can be expanded in terms of the associated Γ-matrices:

Fαβ =
101

p=0

Fµ1...µp(Γ
µ1...µpΓ0)αβ (6.297)

Here we have used the fact that {1,Γµ,Γµ1µ2 , ...,Γµ1...µ10} form a basis of 32×32 matrices
and used C−1 = Γ0 to lower the spinor index. Next we note that

Γ11Γµ1...µp =
1

(10− p)!
εµ1...µpν1...ν10−pΓν1...ν10−p (6.298)
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Using the GSO projection on the left movers implies that (Γ11)γ
αFαβ = Fγβ and hence

we see that

F µ1...µp =
1

(10− p)!
εµ1...µpν1...ν10−pFν1...ν10−p (6.299)

This implies that only the fields with p ≤ 5 are independent of each other. In addi-
tion Fµ1...µ5 is self-dual. Finally the GSO projection on the right movers tells us that
Fαγ(Γ

11)γβ = ±Fαβ where the sign is − for type IIA and + for type IIB. This implies
that p = even for type IIA and p = odd for type IIB. The physical state conditions, in
particular the vanishing of F0 and F̃0, imply that ∂[µp+1Fµ1...µp] = 0 and ∂µ1Fµ1...µp = 0.

We motivated superstrings by considering a worldsheet action that was supersym-
metric. However it turns out that, after the GSO projection, these theories also have
spacetime supersymmetry with 32 supersymmetry generators, the maximum possible.
In particular the massless Fermionic states arising from the NS-R and R-NS sectors give
two gravitini and a dilatino.

6.2 Type I and Heterotic String

There are three other possibilities. For example one can introduce open strings. Since
open strings can combine into a closed string this theory must also contain closed strings.
From the modern perspective introducing open strings means introducing space filling
D9-branes in type IIB string theory. However it turns out that this is not consistent
(as the D9-branes carry a charge) but this can be cured by also introducing a so-called
‘orientifold’ of the type IIB string where one also mods out by a spacetime reflection
(which also changes the sign on the left-moving fermions on the worldsheet). The result
is type I string theory which contains unoriented open strings along with closed strings
and, as it turns out, a spacetime SO(32) gauge field coming from 16 D9-branes.

A more bizarre construction is to exploit the fact the left and right moving modes
sectors of the string worldsheet do not talk to each other (in a closed string). Thus one
could take the left moving modes of a superstring living in 10 dimensions and tensor
them with the right moving modes of a Bosonic string, which live in 26 dimensions.
Remarkably this can be made to work and leads to two types of string theories known
as the Heterotic strings. These theories contain E8 × E8 or SO(32) spacetime gauge
fields.

Thus the right moving sector contains 16 extra Bosons. A fact about two-dimensions
is that a right moving Boson is the same as a pair of right moving Fermions (since the
Lorentz group in two dimension splits into two commuting, Abelian, parts that act
on left and right movers respectively). This is known as Bosonization (or sometimes
Fermionization, depending on your point of view). Since a right moving Fermion is
more natural than a right moving Boson we will work with 10 scalarsXµ and left-moving
Fermions ψµ

−, µ = 0, 1, ..., 9 along with 32 right moving Fermions λA
+, A = 1, ..., 32. In

this case left and right moving means:

γ01ψ
µ
− = −ψµ

− γ01λ
A
+ = λA

+ (6.300)
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The worldsheet action of a Heterotic string is now given by

S = − 1

4πα′

)
d2σ∂αX

µ∂βXνηµν + iψ̄µ
−γ

α∂αψ
ν
−ηµν + iλ̄A

+γ
α∂αλ

B
+δAB (6.301)

This has (1, 0) supersymmetry:

Problem: Show that this action is invariant under

δXµ = iε̄+ψ
µ
−

δψµ
+ = γα∂αX

µε+

δλA
− = 0 (6.302)

provided that γ01ε+ = ε+.

Problem: Show that the action can be written as

S = − 1

4πα′

)
d2σ∂αX

µ∂βXνηµν + i(ψµ
−)

T (∂τ − ∂σ)ψ
ν
−ηµν + i(λA

+)
T (∂τ + ∂σ)λ

B
+δAB

(6.303)
So that ψµ

− and λA
+ are indeed left and right-moving respectively.

Quantization proceeds much as before, but with all the bells and whistles turned on.
The scalars are expanded in terms left and right moving oscillators aµn and ãµn. The ψµ

−
have NS and R sectors with left moving oscillators bµr and dµn. And λA

+ has an expansion

in terms of right moving oscillators b̃Ar and d̃An for NS and R sectors respectively. In the
left moving sector we have aNS = 1/2 and aR = 0, just as for the type II superstrings.
In the right moving sector we have (going to light cone gauge removes two Xµ fields but
none of the λA

+ fields)

ãNS = 8 · 1

24
+ 32 · 1

48
= 1

ãR = 8 · 1

24
− 32 · 1

24
= −1 (6.304)

In particular we see that the right moving Ramond vacuum is massive.
Again the GSO projection is need to give modular invariance and to get rid of the

tachyons. Let us look at the massless modes. For the left moving sector again we must
take states of the form bµ− 1

2

|NS〉L and |R〉L, where again |R〉L is a degenerate spinor

ground state with 8 physical states. However in the right moving sector we need only
consider the NS states of the form ãµ−1|NS〉R and bA− 1

2

bB− 1
2

|NS〉R.
Looking at the massless spacetime Bosons we find the metric, dilaton and Kalb-

Ramond field from bµ− 1
2

|NS〉L ⊗ ãµ−1|NS〉R. However we also obtain a vector state

bµ− 1
2

|NS〉L ⊗ bA− 1
2

bB− 1
2

|NS〉R. This vector state has index structure Aµ
AB and can in-

deed be identified with a 10-dimensional gauge field. The Fermionic states then give
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gravitini, dilitino and gauginos. The resulting theory has 16 spacetime supersymmetries:
half of the maximum of 32 that the type II theories enjoy.

Finally modular invariance and anomaly cancelation (the spacetime spectrum is
chiral and for a general gauge group has anomalies) fixes the possible gauge groups to
be either E8 × E8 or SO(32).

6.3 Supergravity as the Spacetime Effective Action

The superstrings have a spacetime supersymmetry and include gravity. Therefore their
low energy effective actions are those of a supergravity. Such theories are so tightly
constrained by their symmetries that, at least to lowest order in derivatives, their action
is unique and known. In particular the Bosonic section of these theories is given by

SIIA =
1

α′4

)
d10x

√
−g

!
e−2φ(R + 4(∂φ)2 − 1

12
H2

3 )−
1

4
F 2
2 − 1

48
F 2
4

"
+ . . .

SIIB =
1

α′4

)
d10x

√
−g

!
e−2φ(R + 4(∂φ)2 − 1

12
H2

3 )−
1

2
F 2
1 − 1

12
F 2
3 − 1

240
F 2
5

"
+ . . .

where the ellipsis denotes additional terms (known as Chern-Simons terms) and the
subscript n = 1, 2, 3, 4, 5 indicates the number of anti-symmetric indices of the field
strength Fn = Fµ1...µn . Note that in the SIIB case there is field strength Fµ = ∂µa which
can be thought of as arising from an additional scalar. In addition the equation of motion
that arises from SIIB must be supplemented by the constraint that the five-index field
strength Fµ1µ2µ3µ4µ5 is self-dual:

Fµ1µ2µ3µ4µ5 =
1

5!

√
−gεµ1µ2µ3µ4µ5ν1ν2ν3ν4ν5F

ν1ν2ν3ν4ν5 (6.305)

We can also construct (in limited detail) the effective action for the Heterotic and
type I superstrings. These are fixed by supersymmetry and gauge symmetry to be of
the form

SI =
1

α′4

)
d10x

√
−ge−2φ

!
R + 4(∂φ)2 − 1

12
H2

3 −
1

4
tr(F )2 + . . .

"

(6.306)

where again the ellipsis denotes Fermionic and Green-Schwarz terms that are crucial for
anomaly cancelation.

We saw that bosonic string, when compactified on a circle, admits a duality known
as T-duality. In the superstring case one finds that type IIA string theory on a circle
of radius R is equivalent to type IIB string theory on a circle of radius α′/R. However
one finds more remarkable dualities. It turns out that the type IIB supergravity has
a symmetry φ ↔ −φ.6 From the point of view of the string theory this is suggests a

6This is simplifying things if the R-R-scalar a is not zero but a more general statement is true in
that case.
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duality between strongly coupled strings with gs large and weakly coupled stings with
gs small. This self-duality of the type IIB string is known as S-duality.

What happens in the strong coupling limit, gs → ∞ of the type IIA superstring?
Well is it conjectured that

√
α′e2φ/3 can be interpreted as the radius of an extra, eleventh,

dimension. There is a unique supergravity theory in eleven dimensions and indeed the
type IIA string effective action comes from dimensional reduction of this theory on a
circle. However there is now a great deal of evidence that the whole of type IIA string
theory arises as an expansion of an eleven-dimensional theory about zero-radius (in on
of its dimensions). This theory is known as M-theory and is rather poorly understood.
However it’s existence does seem be justified. The lowest order term is in a derivative
expansion is fixed by supersymmetry to be

SM =
1

κ9

)
d11x

√
−g(R− 1

48
G2

4) + . . . (6.307)

where again the ellipsis denotes Chern-Simons and Fermionic terms. One also finds the
Heterotic E8 × E8 string by compactification of M-theory on a line interval.

Furthermore it promises to be very powerful as it controls not only the strong cou-
pling limit of the type IIA string but, as a consequence of duality, the strong coupling
limit of all the five known string theories. Thus one no longer thinks of there being
five separate string theories but instead one unique theory, M-theory, which contains
five different perturbative descriptions depending on what one considers to be a small
parameter.

6.4 Branes and M-theory

Appendix: Conventions

We work in D-dimensional spacetime with “mostly plus” signature

ηµν = ηµν =

#

$$$$$%

−1
+1

+1
. . .

+1

&

'''''(
(6.308)

We use Greek indices from the middle of the alphabet for D-dimensional spacetime xµ,
µ = 0, 1, , 2, ..., D − 1 and Roman ones for space alone xi, i = 1, 2, ..., D − 1. We use
Greek letters from the beginning of the alphabet for worldsheet coordinates σα, α = 0, 1
say. Repeated indices are summed over. For a metric γαβ we use γ = det(γαβ). In
two dimensions there is the anti-symmetric ε-symbol εαβ = −εβα which is defined to
have ε01 = 1. We use a, b = 1, ..., N to label parallel D-branes, i.e. as Chan-Paton
indices. We use m,n = 0, 1, ..., p for the worldvolume coordinates of a p-brane and
I, J = p+ 1, ..., D − 1 for the transverse coordinates. We use units where ! = c = 1.
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