Distributed Ledger Architecture Paradigms

How distributed ledger technology can solve real problems.

Moritz Platt, moritz.platt@kcl.ac.uk Solutions Engineering Team Lead, R3 PhD Student, King's College London

blockchain serves the purpose of state machine replication.

Horses for Courses—Do you need a blockchain? Mapping business cases to architectural paradigms and why it's important to get it right at the beginning.

Network Performance—There are different measures for system performance in distributed systems. Counterintuitively, privacy can benefit network-level throughput.

Academia and Industry on DLT Innovation—The research agenda in permissioned and permissionless systems and the demand seen in the industry.

I see what you see—Any implementation of distributed ledger technology (DLT) or

Finite State Machines

 \Box In automata theory, a machine, or a model of a machine, that is capable of assuming only a finite number of states and transitions between these states. [Weik2017] □ This helps a formal understanding of the allowed states a computer system can be in. \Box Interactions—such as the buyer-seller relationship—can be modelled as state machines:

State Machine Replication

State machines help to model isolated systems Can they explain distributed systems too?

Synchronising transistions between (distrusting) systems is the core problem DLT solves □ Is the actor *allowed* to perform an action? □ How do we synchronise this state change with everyone who needs to know?

State Machine Replication

- Different DLT platforms implement SMR in different ways. Key differences are: □ Smart Contract Implementation: How can participants encode what constitutes a legal transition?
 - □ **Consensus Protocol:** How is a joint understanding on whether a transition was legal is reached?
 - □ **Network:** Who needs to evaluate a given transition for validity.
 - Synchronisation: How is it ensured that at all times participants have a correct/up-todate view of all relevant states.

The Two Dimensions of DLT

Permissioned versus Permissionless (Consensus) □ In a permissionless system anyone can contribute to network consensus Most prominent approach: 'Proof-of-Work' In a permissioned system an approved group validates transactions □ Public versus Private (Participation) □ A public DLT system is open for everyone to participate in □ A private system only allows invited parties to participate

Do you need a blockchain? [Wuest2018]

Public Permissionless Blockchains

- □ Bitcoin, Ethereum
- Based on Satoshi Nakamoto's original idea of a peer-topeer electronic cash system that hashes transactions into an ongoing chain using hash-based proof-of-work [Nakamoto2008]
 Truly permissionless: No need for participants with special
- Truly permissionless: No need for particip positions
- Waste of Resources: Mining Bitcoin/Bitcoin Cash has a significant energy footprint by causing 0.13% of global energy consumption [Jenkinson2017].

Public Permissionless Blockchains

- urations.
- try to enhance their privacy by manually creating new addresses [Androulaki2013].
- not definitive.

In Network inefficiency: Experimental analysis shows that existing 'Proof-of-Work' blockchains' are limited to throughputs of ~60 transactions per second [Gervais2016] even using optimal config-

Poor Privacy: Behavior-based clustering techniques can unveil profiles of users, even if they

□ The fact that everyone can contribute to consensus means that settlement is probabilistic,

Smart contracts are difficult to reason about. Defects in smart contracts on public/permissionless chains cannot be remedied by conventional means based on the rule of law.

Siloed Permissioned Blockchains

- Hyperledger Fabric, Quorum
- Hyperledger Fabric uses pairwise 'channels' to enable privacy for multilateral transactions [Androulaki2018]
- Quorum is Ethereum based and implements privacy in a similar fashion, i.e. by splitting the larger public ledger into a public and a private ledger. The public ledger is visible to all nodes in the network, the private ledger is visible only to the transacting parties [Baliga2018]
- Difficult to reason about privacy implications and transferability of assets and states

10

Corda: Public/Private Permissioned DLT

- DLT that allows building *private networks* as well as joining a *publicly available* internet of Corda nodes.
- Participant Identity based on Public Key Infrastructure (PKI) standards
- Assets remain transferable
- Only parties who should have access to the details of a transaction are those parties themselves and others with a legitimate need to know [Brown2016]
- Image Pluggable consensus protocols using dedicated 'notary nodes'

11

The Corda Privacy Model [R32018]

- □ Transaction details are only ever revealed to direct participants and notaries □ Corda uses notaries that
 - validate transactions according to different consensus algorithms
- □ These can operate in 'nonvalidating' mode that does not reveal transaction details

Corda Node Performance [R32018]

Limiting distributing updates to the participants involved only allows high throughput Looking beyond individual participants, common usage patterns scale well network-wide

Node Cores	Enterprise (Issuance)	Enterprise (Payment)
1	90 tps	14 tps
2	103 tps	22 tps
4	225 tps	46 tps
8	350 tps	70 tps
16	730 tps	130 tps
32	1,001 tps	205 tps

The Link Between Privacy and Performance

- In public permissionless systems, having to achieve global network consensus and distributing updates in blocks global ally leads to severe performance ceilings
- Corda's privacy preserving paradigm means that dedicated notaries can validate transactions and only direct participants need updates

The Link Between Privacy and Performance

- Not having to relay all transactions to all participants has positive performance implications
- Node-level throughput is limited
 by the node performance (*a*, *e*)
 and notary performance (*n*₁)
- In a network *a*, *b*, *c*, *d*, *e* with notary n₁ all with individual performance of 200tps the network throughput ceiling is equally 200tps

The Link Between Privacy and Performance

- □ Node-level throughput is still limited
- Understanding traffic patterns allows for shaping network throughput
- A network where the majority of transactions is between subsets of nodes can benefit from partitioning
- □ For fully utilised *n*1, *n*2 the network performance is ~400tps

[a, b]

~200tps

~200tps

n,

Corda's Strengths

- Corda is an implementation of the DLT paradigm that satisfies enterprise requirements: True finality of transactions (as opposed to probabilistic finality in 'Proof-of-Work' systems)
 - \Box A private/permissioned model that represents industry reality well (i.e. consortia) Strong privacy guarantees by revealing transaction details on a 'need-to-know' basis □ High performance on participant level

 - Positive scaling characteristics on network level through partitioning

17

Research Agenda

□ Maturity

Performance, Throughput, Scalability

Stability, Verifiability

Cross-chain compatibility

□ Computing

- Confidential Computing
- Zero-Knowledge-Proofs

□ Economy

□ Token economies

Legislative Environment

- Tokenisation
- Digital Currency
- Governance and Incentives of Blockchain Networks

Bibliography

InBook (Weik2001)

Weik, M. H. finite state machine Computer Science and Communications Dictionary, Springer US, **2001**, 609-609

InProceedings (Wuest2018)

Wüst, K. & Gervais, A. Do you Need a Blockchain? 2018 Crypto Valley Conference on Blockchain Technology (CVCBT), **2018**, 45-54

Misc (Nakamoto2008)

Nakamoto, S. Bitcoin: A peer-to-peer electronic cash system 2008

WWW (Jenkinson2017)

Jenkinson, G. Bitcoin Mining Uses More Power Than Most African Countries <u>https://cointelegraph.com/news/bitcoin-</u> mining-uses-more-power-than-most-african-countries 2017

InProceedings (Gervais2016)

Gervais, A.; Karame, G. O.; Wüst, K.; Glykantzis, V.; Ritzdorf, H. & Capkun, S. On the Security and Performance of Proof of Work Blockchains Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, ACM, **2016**, 3-16

InProceedings (Androulaki2013)

Androulaki, E.; Karame, G. O.; Roeschlin, M.; Scherer, T. & Capkun, S. Sadeghi, A.-R. (Ed.) Evaluating User Privacy in Bitcoin Financial Cryptography and Data Security, Springer Berlin Heidelberg, **2013**, 34-51

InProceedings (Androulaki2018)

Androulaki, E.; Barger, A.; Bortnikov, V.; Cachin, C.; Christidis, K.; De Caro, A.; Enyeart, D.; Ferris, C.; Laventman, G.; Manevich, Y.; Muralidharan, S.; Murthy, C.; Nguyen, B.; Sethi, M.; Singh, G.; Smith, K.; Sorniotti, A.; Stathakopoulou, C.; Vukolić, M.; Cocco, S. W. & Yellick, J.

Hyperledger Fabric: A Distributed Operating System for Permissioned Blockchains Proceedings of the Thirteenth EuroSys Conference, ACM, **2018**, 30:1-30:15

Misc (Baliga2018)

Baliga, A.; Subhod, I.; Kamat, P. & Chatterjee, S.Performance Evaluation of the QuorumBlockchain Platform2018

TechReport (Brown2016)

Brown, R. G.; Carlyle, J.; Grigg, I. & Hearn, M. Corda: An Introduction R3CEV LLC, R3CEV LLC, **2016**

WWW (R32018)

R3 Corda Enterprise Documentation <u>https://docs.corda.r3.com/_static/corda-developer-site.pdf</u> 2018

Picture Credit

Two black cable cars under grey sky

Photo by Tomas Robertson on Unsplash https://unsplash.com/@tomasrobertson