Identity Based Consensus for Self-Governing Systems

Defence and Security Doctoral Symposium 2020

Data on a Blockchain is grouped in blocks, each of which contains multiple transactions. Blocks have to be resistant to replication over a ‘byzantine’ network. On those networks, writers can act maliciously in different ways:

- Attempt to store incorrect/invalid transactions on the Blockchain
- Use one input multiple times (‘double spend’)
- Censor the Blockchain by systematically withholding particular transactions

The selection of members responsible for data replication is a challenge in decentralised record-keeping systems.

‘Byzantine’ and ‘Sybil’ Actors

Lampert et al. (1982) show how a decentralised system (S) behaves when actors (m, n) spread incorrect or conflicting information, or withhold information. They describe how a system tolerates a limited fraction of these actors, often referred to as ‘byzantine’ actors. Doucure (2002) describes how a single faulty entity (m), often referred to as a ‘sybil’ actor, can gain control of a redundant network by ‘presenting multiple identities’ (sm).

Membership Selection Strategies

- **Proof-of-Work (Bitcoin; Nakamoto, 2008):** Select a ‘miner’ to validate transactional data and to act as an ordering authority of transactions. Participants qualify as miners by expending computing resources.
- **Proof-of-Stake (Conceptual Bitcoin forum post, later formalised by King et al., 2012):** Being able to prove ownership of currency determines the difficulty of creating a new block, thus making participants who have held larger quantities of currency for longer more influential.
- **Delegated Proof-of-Stake (Larimer, 2016):** A variation to proof-of-stake, introducing a delegation scheme, in which ‘shareholders may delegate their voting power to a representative’.
- **Proof-of-Authority: Membership selection ‘by policy’, i.e. through a pre-defined list of privileged actors (i.e. Schwartz et al., 2014, Hearn and Brown, 2019, Libra Association, 2020).**

Arithmetic Properties of Personhood Tokens

Members can endorse or discourage gatekeeping authorities via a broadcast message. These actions directly impact the reputation of the authority and thus the personhood score the authority can grant. Per authority A, a vector of endorsement scores da and a vector of discouragement scores de are kept publicly. Participants add to either of the vectors via a message they broadcast. This means that the influence a participant can exert on the reputation of another authority is proportional to their reputation.

Future Work

The protocol proposed lacks formalisation, intuition suggests that the concept of evolving constituencies, backed by identity authorities, that can be added to and removed from a network dynamically, has merit.

Future work must focus on formalising the protocol to evaluate its robustness. A formal approach will ultimately prove or disprove its advantages over existing membership selection protocols, in the context of attacks.

Constituencies Evolve Over Time

Through messages of approval and rejection, authorities (A) are voted onto the system and removed from it. Authorities issue personhood tokens to their constituents (C).

Counteracting Sybil Attacks

A single malevolent authority can flood the network with sybil actors, who can disrupt any record-keeping and record-keeping activity on the network, permanently. We therefore need to implement countermeasures:

- **Temporal normalisation can mitigate sybil attacks that go along with a sudden influx of bogus identities**
- **An overall constituency size ceiling that limits the total number of identities, created by one authority, is introduced.**
- **A quantitative safeguard enforcing diversity is introduced.** This gives reputational signals from diverse sources more weight.
- **A lower bound for personhood scores is introduced.**