
Towards Model Checking Executable UML Specifications in mCRL2

Helle Hvid Hansen∗, Jeroen Ketema†, Bas Luttik∗, MohammadReza Mousavi∗ and Jaco van de Pol†
∗Eindhoven University of Technology †University of Twente

Eindhoven, The Netherlands Enschede, The Netherlands
{h.h.hansen,s.p.luttik,m.r.mousavi}@tue.nl {j.ketema,j.c.vandepol}@ewi.utwente.nl

Abstract—We describe a formalisation of a subset of Ex-
ecutable UML (xUML) in the process algebraic specification
language mCRL2. This formalisation includes class diagrams
with class generalisations and state machines with send and
change events. The choice of these xUML constructs is dictated
by their use in the modelling of railway interlocking systems.

The long term goal is to verify safety properties of inter-
lockings modelled in xUML using the mCRL2 and LTSmin
toolsets. Initial verification of an interlocking toy example has
demonstrated that the safety properties of model instances
depend crucially on the run-to-completion assumptions made.

Keywords-Software verification and validation, Specification
languages

I. I NTRODUCTION

We formalise a subset of Executable UML (xUML) [1]
in the formal specification language mCRL2 [2] with the
purpose of verifying safety properties. The xUML constructs
covered include class diagrams with class generalisations
and object associations, and state machines which consist of
composite and concurrent states and have signal and change
events. The mCRL2 language extends the process algebra
ACP [3] with abstract data types and is accompanied by a
toolset1 which provides for explicit model checking, state
space analysis and simulation. Symbolic model checking is
provided for by the LTSmin toolset [4], [5]2.

Our work is part of INESS3, an EC FP7-funded project,
which aims at developing uniform specifications of railway
interlockings. One of the aims of INESS is to formally verify
safety properties of generic interlockings whose functional
requirements are expressed in a dialect of xUML. Several
approaches to this are explored within the project. Our
approach is based on model checking using mCRL2 and
the current paper provides a first step in achieving this by
presenting a translation from xUML to mCRL2.

Interlockings ensure that trains neither collide nor derail.
They do this by preventing conflicting routes from being set
over arrangements of tracks, points, etc., where a route is
the basic notion used by a railway signaller to guide trains.

As in most real-world applications, the xUML models
arising from the interlocking domain are of considerable size

1http://www.mcrl2.org
2http://fmt.cs.utwente.nl/tools/ltsmin/
3http://www.iness.eu

and they express requirements that may change over time.
This leads to two main concerns: (1) In order to mitigate the
state space explosion problem, our translation from xUML to
mCRL2 should produce specifications that are manageable
by our tools while still capturing all executions allowed
by the xUML model. (2) In order to make the translation
from xUML to mCRL2 efficient, correct and flexible, our
approach should have the potential to be automated.

Below, we focus on the first of the above concerns,
although our translation has been developed with automation
in mind (see Section VIII). We have tested the viability of
different translations using a toy interlocking specification,
which was kindly provided to us by KnowGravity Inc.4 This
toy specification is almost as simple as it gets, but it still
shows how choices in the translation affect the size and
behaviour of the model. In particular, initial results reveal
that different run-to-completion assumptions give rise to a
wide variety in model sizes and observable traces.

The rest of this paper is organised as follows. In Section II,
we describe and motivate the use of model checking in the
verification of xUML interlocking models. In Section III, we
introduce the xUML constructs covered by our translation,
and discuss different types of run-to-completion assump-
tions. Our translation to mCRL2 is described in Section IV,
and in Section V, we discuss some problems related to
model checking translated xUML models and give some
solutions to these problems. In Section VI, we report on
our observations made in translating and verifying a toy
xUML interlocking model. Finally, we discuss related work
and conclude in Sections VII and VIII, respectively.

II. M ODEL CHECKING XUML INTERLOCKING MODELS

In model checking, a formal model represents all possible
executions of the system being modelled. In our case, we
obtain such a formal model by instantiating the classes and
associations of the xUML model according to a particular
track layout, where a track layout is a configuration of
physical and logical railway elements such as tracks, points,
signals and routes (see Section VI for an example). Suitable
track layouts have been designed by railways. For example,
ProRail5, the Dutch railway infrastructure manager, has

4http://www.knowgravity.com
5http://www.prorail.nl

designed three track layouts that together are supposed to
capture all features of track layouts found in the Netherlands.

Model checking is thus limited to verification of particular
model instances. It is not possible to prove statements
about all instances. In spite of this, model checking can
still provide valuable information: The violation of a safety
property in a particular model instance shows that the
xUML model is not correct in general, and traces that
witness this undesired behaviour can be used to improve the
model. Moreover, confidence in the correctness of the xUML
model can be increased by showing that several instances
satisfy the requirements. Furthermore, model checking is
more thorough than simulation, since exhaustive state space
exploration is performed, which is generally not possible in
simulation.

III. E XECUTABLE UML

Executable UML [1] (xUML) consists of UML class
diagrams, UML state machines and an action language
which complies with the UML action semantics. There are
several action languages in use; we refer to [1] for a—
somewhat limited—overview.

The xUML models to be translated by us are expressed
in KnowGravity’s Cassandra/xUML dialect [6]. We briefly
describe the modelling constructs relevant to us.

A. Constructs

In class diagrams, we allow for class generalisations
(inheritance) and associations between classes (specifying
which class instantiations may reference each other). Asso-
ciation classes, however, may not occur, i.e., no objects may
be related to instances of associations.

State machines may contain concurrent and composite
states (AND- and OR-states) and initial pseudo-states. We
currently do not translate history and final pseudo-states. All
UML-defined transitions may occur as far as they involve
the allowed (pseudo-)states. A transition is labelled with a
trigger and a sequence of actions, both of which may be
empty. A trigger must be a signal event or a change event.

Signals are communicated asynchronously. A signal can
be sent either by an object within the system (an internal
signal) or by the environment (an external signal). Each state
machine is accompanied by an event pool which stores re-
ceived signals until dispatched, i.e., until they are taken from
the event pool by the state machine [7, Section 13.3.25].

A change event [7, Section 13.3.7] is an event which
is generated when a certain condition becomes true. The
condition typically refers to the states of objects referenced
through associations. In Cassandra/xUML, change events
are denoted bywhen(cond), where cond is a boolean
expression. The UML 2.2 semantics [7, Section 13.3.7] for
change events is under-specified. For example, it is not
indicated when a change event is evaluated or how a change
event is detected. Also, implementations may or may not let

change events remain in case their condition becomes false
again after having been true.

Given a state machineX with a transitiont labelled by a
change eventwhen(cond), the Cassandra/xUML simulator
adds an eventewhen(cond) to the event pool ofX whenever
cond changes from false to true (personal communication
with KnowGravity). The eventewhen(cond) triggers transition
t once dispatched and remains in the event pool even in case
cond becomes false beforeewhen(cond) is dispatched.

If a dispatched event is not the trigger of an enabled
transition, the event is discarded. Otherwise, the actions
labelling the transition are carried out. The only type of
action we currently allow is the sending of a signal [7,
Section 11.3.45], where the target may either be an object
within the system or the environment.

B. Run-to-completion

An important aspect of concurrency is the interleaving of
process executions. Run-to-completion (RTC) assumptions
can help reduce the complexity of a concurrent system. A
local RTC stepof a state machineX consists of processing
all actions labelling a transition triggered by some event.
In the literature, three different levels of RTC seem to be
considered (no fixed terminology seems to exists and the
names are our own):

Local RTC:A local RTC step of a state machineX must
be completed before the next event can be dispatched toX.

Atomic RTC:While a state machineX is executing a
local RTC step, no other event can be dispatched to any
state machine in the system.

Global RTC:External signals may only be dispatched to
the system in case all event pools are empty and there are
no remaining change events.

Local RTC is required by the UML specification [7,
Section 15.3.12]. It ensures that a state machine is in a well-
defined configuration before the next event is dispatched.

In addition to local RTC, implementations may enforce
stricter notions of RTC. Atomic RTC is employed, e.g.,
by [8] and [9]. With atomic RTC, local RTC steps in
different state machines may not be interleaved (which is
not forbidden by local RTC). Global RTC separates internal
system interactions (between objects) from interactions with
the environment. Note that atomic RTC implies local RTC,
but that global RTC implies neither local nor atomic RTC.
The Cassandra/xUML simulator uses both atomic RTC and
global RTC [6, Section 4.3.5].

IV. T RANSLATION INTO MCRL2

A. The mCRL2 language

The mCRL2 specification language [2] extends the pro-
cess algebra ACP [3] with abstract data types. Built-
in data types include booleans, integers, and lists. New
structured data types can be defined using the keyword
struct. We currently only use enumerated data types, e.g.,

sort Elt State = struct Ready | Not Ready. Functions
over sorts can be defined by giving equations.

The process specification language of mCRL2 allows for
the definition of basic actions with zero or more parameters.
For example,act send, read : Message defines the actions
send and read which take a parameter of typeMessage.
Similarly, a process specification may take parameters, e.g.,
proc Element(state : Elt State). Processes can be com-
posed using sequential and parallel composition and non-
deterministic choice. Actions can be hidden (turned into
the silent action) and blocked (disallowed). Synchronisation
is achieved by using a communication operatorΓC , where
elements ofC are of the forma1 | a2 | . . . | an → c,
meaning that the actionc is the result of the multi-party
synchronisation of the actionsa1, a2, . . . , an.

An mCRL2 specification consists of data type defini-
tions, equations over the data types, process specifications
and an initial process. The above process specification
procElement(state : Elt State) could, e.g., be ini-
tialised asinit Element(Ready).

B. The translation

In our translation from xUML to mCRL2, each class
becomes a process specification. Each of these process
specifications consists of two parallel parts: One part is the
translation of the state machine associated with the class, the
other part formalises the event pool associated with the state
machine as a buffer process. The buffer process essentially
implements a queue. An event is placed in the queue by
a synchronous communication between the sending process
and the buffer process. The sending process can either be
another process representing a state machine, the environ-
ment or a process monitoring change events (described at the
end of this section). Signals are dispatched on a FIFO basis
through synchronous communication between the buffer
process and the process representing a state machine.

Class diagrams:As mentioned in Section III-A, we
allow for class generalisations and class associations. In our
translation, the first is dealt with by flattening the class
hierarchy; each superclassY of a classX occurs only
once in this flattening, even in case there are severalis-a
associations betweenX and Y in the class diagram. Now,
if X is a class with superclassesY1, . . . , Yn, the flattened
classX ′ arising fromX has all attributes ofX, Y1, . . . , Yn,
and the state machine ofX ′ is defined as the concurrent
composition of the state machines ofX, Y1, . . . , Yn.

Class associations are translated by defining an enu-
merated type consisting of identifiers (depending on the
instantiation of the model) and supplementing each mCRL2
representation of a class instance with one parameter (of the
enumerated type) for each of its associations.6 For example,

6In practice we employ macro pre-processing of the mCRL2 specification
before model checking. This is to avoid loop constructs when dealing with
one-many and many-many associations.

N

I J

L M

F

G
H

K

Figure 1. A state machine

if each instance of a classX is associated with exactly one
instance of a classY , then the process specification ofX
will be of the form proc X(. . . , id Y : Id, . . .), whereId
is the enumerated type consisting of identifiers.

State machines:The potential state configurations of
a state machineX are encoded as follows. For each
non-concurrent composite state (OR-state)S, we define
an enumerated typeancS states where ancS identifies
S in the state hierarchy. IfS has substatesP , . . . , Q,
then ancS states has membersancS substate P, . . . ,
ancS substate Q, andancS substate nop. The process
specification of the state machineX is then supplied with a
parameterancS state whose value represents the currently
active substate ofS. In particular, the top stateT of a state
machine for a class is always a non-concurrent state and
gives rise to a parameterT state. We refer toancS state
as astate parameter. If S is not active, thenancS state
has the valueancS substate nop.

The configurations of a concurrent stateS are not mod-
elled by parameters, as they are determined by the state
configurations of the (direct) substates of the concurrent
components ofS (the Cartesian product of these substates
to be precise). To illustrate, consider the state machineF
in Figure 1 (transitions are unlabelled as we only wish to
illustrate how composite states are treated). In Figure 2 we
list the data type definitions arising fromF together with the
declaration of state parameters in the process specification of
F (disregarding any class attributes), and an initial process
corresponding with the initial state configuration.

Since we treat class generalisation by flattening, if a class
Y generalises a classX, then the process specification of
the state machine forX (which concurrently composes the
state machines forY andX) will have the state parameters
arising from bothX and Y . This is completely analogous
to the handling of concurrent states within a state machine.

Transitions: Following the local RTC assumption, a
process specifying the state machine of a classX can obtain
an event from its buffer process (event pool) precisely when
it is in a stable state, i.e., when no other transition is
currently being taken. One of the transitions triggered by

sort F states = struct F substate G
| F substate N
| F substate nop;

sort F G H states = struct F G H substate I
| F G H substate J
| F G H substate nop;

sort F G K states = struct F G K substate L
| F G K substate M
| F G K substate nop;

proc F(F state : F states,
F G H state : F G H states,
F G K state : F G K states) = . . . ;

init F(F substate G,
F G H substate I,
F G K substate L);

Figure 2. Translation of the state machine in Figure 1: data types for
representing states, state parameters and initialisation

the obtained event is taken at random (non-deterministic
choice), assuming such a transition exists. The actions
labelling the chosen transition are executed and the state
parameters of the process are updated to reflect the new
state configuration. If no transition is triggered by the event,
then the event is discarded, as allowed by the UML state
machine semantics [7, Section 15.3.12].

Change events:We implement change events by intro-
ducing a process for each such event. This process monitors
the value of the condition in the change event. For example,
if a state machineX has a transition from a stateS triggered
by (in pseudo-notation)when(P.state = T & Q.state =
U), where P and Q are state machines associated with
X, then we create a processwhen X S(P in state T :
Bool, Q in state U : Bool), and let the objectsP and
Q communicate synchronously with the monitor process
whenever they enter or leave the statesT andU , respectively.
This communication updates the values of the boolean
parametersP in state T and Q in state U. When an
update results in the condition changing from false to true,
the monitor process places a signal in the buffer ofX. This
signal remains in the buffer ofX even when the condition
becomes false again. Hence, at the moment the state machine
reacts to the event, the condition might no longer hold.

Architecture: We summarise how the elements of
an xUML model are mapped onto the elements of an
mCRL2 specification: For each flattened classX with asso-
ciated state machineS, we define a process specification
proc X(id : Id, . . .) consisting of the parallel compo-
sition of S(id : Id, . . .), S buffer(id : Id, . . .), and
S wheni(id : Id, . . .) wherei ranges over the change events
of S. The parameterid represents the unique identifier
associated with an instance of the represented class. The
translation of the state machineS is embodied byS and
S buffer represents the event pool. EachS wheni monitors
one of the change events occurring in the state machine

Figure 3. Class diagram for Micro interlocking

associated withX, as described earlier.
An instance of an xUML model defines, in addition

to the above, an enumerated type with object identifiers
and an appropriate initialisation consisting of the parallel
composition of the processes arising from the objects in
the instantiation, together with the required synchronisation
constraints.

V. PROBLEMS AND POSSIBLE SOLUTIONS

The above translation presents us with the following
problems from a model checking perspective:

1) The system has an infinite state space as there is no
bound on the number of messages accepted by the
system from the environment.

2) System components may starve, i.e., a process may
have events in its buffer waiting to be dispatched, but
the process may never get its turn.

To alleviate these problems, we propose two constraints:

A) Limit the size of buffers. This restriction will over-
come the first of the above problems. However, as an
object may send several signals to itself during a local
RTC step (cf. Section III-B), we only impose this limit
on messages coming from other objects and from the
environment in order to avoid deadlock.

B) Add a mechanism which ensures that the system can
only receive a message from the environment in case
all message queues are empty. In other words, imple-
ment global RTC (cf. Section III-B). This restriction
addresses both 1 and 2 under the assumption that ex-
ternal signals do not (directly or indirectly) trigger an
unbounded number of internal events. Consequently,
each process will eventually get the chance to empty
its buffer.

VI. M ODEL CHECKING A TOY SPECIFICATION

We have applied our translation to a toy interlocking
specification which we refer to as the Micro model. The
Micro model has classes namedelement, track, point, signal
and route, where element is a generalisation of track, point
and signal. The class diagram for this model is depicted in
Figure 3. An instance of the Micro model is obtained from
the track layout depicted in Figure 4.

t1 p1

t3

t2s1

Figure 4. Track layout for an instance of the Micro model

The layout consists of three trackst1, t2, t3, one pointp1

(positioned left in the picture), one signals1, and two routes:
router1 requiresp1 to be positioned left and goes from track
t1 to trackt3; router2 requiresp1 to be positioned right and
goes fromt1 to t2; both routes haves1 as their entry signal.
The model instance thus contains three track objects, one
point object, one signal object and two route objects, and
these objects are linked via the following associations:

tracks = {〈r1, t1〉, 〈r1, t3〉, 〈r2, t1〉, 〈r2, t2〉}
left points = {〈r1, p1〉}
right points = {〈r2, p1〉}
entry signal = {〈r1, s1〉, 〈r2, s1〉}
The main functionality of the Micro model is route setting

and route cancellation. Informally described, when a route
receives a reserve request, it should signal to its left points
and right points to move into position. When all points are
positioned, all tracks along the route are clear and the entry
signal is ready, the entry signal is set to show proceed. When
one of the elements associated with the route is no longer in
the required state, or the route is cancelled, the route entry
signal is set to show stop. The state machine describing the
behaviour of the class Route is shown in Figure 5.

We translated the Micro model instance into mCRL2 in
two versions corresponding to constraints A and B from
Section V. The state space resulting from version A is huge
even with buffer size 1 (61× 1012 states), but our symbolic
tools still compute the number of states within seconds: The
mentioned state space was explored in 113 seconds using
238 MB memory of a machine equipped with an Intel Xeon
2.66 GHz, 32GB of memory and Linux 2.6.18. To obtain
version B we used barrier synchronisation. This version
has a significantly smaller state space (8 million states).
However, computing the number of states takes longer (160
seconds). The state space reduction that stems from a global
RTC assumption is thus significant, but run-time increases.

We were able to prove the presence of certain (unwanted)
traces in both version A and B by placing a monitor process
in parallel with the mCRL2 translation. The monitor dead-
locks the process in case a certain finite trace, representing
the violation of a safety property, is present. The deadlock
detection functionality of the symbolic model checker from
the LTSmin toolset was used to produce a trace. The trace
shows that when the entry signals1 has been set to show
proceed, the system may command the pointp1 to move

Figure 5. State machine for class Route

before it setss1 to show stop, thus risking the derailment
of a train passing overp1. However, we point out that the
Micro model is merely intended to illustrate the type of
xUML model constructs that are used in the modelling of
interlockings, and it is not claimed to be a safe interlocking
specification. Our main point is that some of these bad
traces cannot be observed in the Cassandra/xUML simulator,
because it uses a stronger RTC assumption than our versions
A (only local RTC) and B (local and global RTC).

VII. R ELATED WORK

There is extensive work on the formalisation of exe-
cutable UML, and in particular, UML state machines, for
the purpose of carrying out formal verification. See for
example, [8–12]. Translation of xUML into a process alge-
braic language has been done in [13], [14]. More references
can be found in [11] and the survey article [15]. In the
above work, translation focuses on composite and concurrent
states, history pseudo-states, (conflicting) transitions, and the
action language. We were not able to locate any research
that includes the formalisation of change events, which are
an essential ingredient in the specification of high-level
interlocking requirements.

Formal methods have been widely applied in the verifi-
cation of interlockings. The work can be divided into two
categories: Verification of concrete interlockings (e.g. [16–
18]) and verification of more generic descriptions (e.g. [19],
[20]), as in our case.

VIII. C ONCLUSION

We have presented a translation of a subset of xUML
into the process algebra mCRL2. Each of the elements of
the xUML subset is translated into a very simple mCRL2

construct, with the translation of the change events being
the most complicated. We expect it to be straightforward
to extend our translation to include transitions with guards,
as well as history and final pseudo-states. We also expect
the constructs of any chosen action language to be included
easily, bar operations like object creation and destruction.
These last operations would correspond to on-the-fly process
creation and destruction which is not possible in mCRL2.
Given the simplicity of the mCRL2 constructs, we expect
that the presented translation can be automated without too
much trouble. In fact, work on this automatic translation
from xUML (in the form of XMI files) to mCRL2 has
already begun.

Our first steps towards verifying safety properties of
xUML interlocking specifications have demonstrated the
following: First, the fairness and safety properties of an
interlocking system may depend crucially on the run-to-
completion (RTC) assumption employed in the implementa-
tion. Verification should therefore be relative to a particular
choice of RTC.

Second, even for small xUML models, such as our toy
specification, the state space can be enormous. Still the
symbolic model checker seems to be able to deal quite
well with the mCRL2 translations obtained from the toy
specification. However, in order to verify real interlocking
specifications, we expect it will be necessary to come up
with specific abstraction and decomposition techniques, as
well as reduce the number of event orderings, either in a
generic way (partial-order reduction) or specifically (such
as RTC assumptions).

REFERENCES

[1] S. J. Mellor and M. Balcer,Executable UML: A foundation
for model-driven architecture. Addison Wesley, 2002.

[2] J. F. Groote, A. Mathijssen, M. A. Reniers, Y. S. Usenko,
and M. van Weerdenburg, “The formal specification language
mCRL2,” in Proc. of Methods for Modelling Software Sys-
tems,, ser. Dagstuhl Seminar Proceedings, vol. 06351, 2007.

[3] J. A. Bergstra and J. W. Klop, “Process algebra for syn-
chronous communication,”Information and Control, vol. 60,
no. 1-3, pp. 109–137, 1984.

[4] S. Blom and J. van de Pol, “Symbolic reachability for process
algebras with recursive data types,” inProc. Theoretical
Aspects of Computing (ICTAC 2008), ser. Lecture Notes in
Computer Science, vol. 5160. Springer, 2008, pp. 81–95.

[5] S. C. C. Blom, J. C. van de Pol, and M. Weber, “Bridging
the gap between enumerative and symbolic model checkers,”
CTIT, University of Twente, Enschede, Technical Report TR-
CTIT-09-30, 2009.

[6] Cassandra/xUML User’s Guide, KnowGravity Inc., 2008.
[Online]. Available: http://www.knowgravity.com/eng/value/
cassandra.htm

[7] (2009, Feb.) OMG Unified Modeling Language Super-
structure Version 2.2. Object Management Group. [Online].
Available: http://www.omg.org/spec/UML/2.2/Superstructure

[8] M. von der Beeck, “Formalization of UML-statecharts,” in
Proc. UML 2001, ser. Lecture Notes in Computer Science,
vol. 2185. Springer, 2001, pp. 406–421.

[9] Fei Xie, V. Levin, and J. Browne, “Model checking for
an executable subset of UML,” in16th IEEE International
Conference on Automated Software Engineering (ASE 2001),
2001, pp. 333–336.

[10] R. Alur and M. Yannakakis, “Model checking of hierarchical
state machines,”ACM Transactions on Programming Lan-
guages and Systems, vol. 23, no. 3, pp. 273–303, 2001.

[11] W. Damm, B. Josko, A. Pnueli, and A. Votintseva, “A
discrete-time UML semantics for concurrency and commu-
nication in safety-critical applications,”Science of Computer
Programming, vol. 55, pp. 81–155, 2005.

[12] Z. Hu and S. M. Shatz, “Explicit modeling of semantics
associated with composite states in UML statecharts,”Journal
of Automated Software Engineering, vol. 13, no. 4, pp. 423–
467, Oct. 2006.

[13] E. Turner, H. Treharne, S. Schneider, and N. Evans, “Auto-
matic generation of CSP‖ B skeletons from xUML models,”
in Proc. of Theoretical Aspects of Computing (ICTAC 2008),
2008, pp. 364–379.

[14] W. L. Yeung, K. R. P. H. Leung, J. Wang, and W. Dong,
“Improvements towards formalizing UML state diagrams in
CSP,” inProc. of the 12th Asia-Pacific Software Engineering
Conference (APSEC 2005). IEEE Computer Society, 2005.

[15] B. Purandar and S. Ramesh. (2004, Jul.) Model checking of
statechart models: Survey and research directions. [Online].
Available: http://arxiv.org/abs/cs.SE/0407038

[16] S. Gnesi, D. Latella, G. Lenzini, C. Abbaneo, A. M. Amen-
dola, and P. Marmo, “An automatic SPIN validation of a
safety critical railway control system,” inProc. of the 2000
Int. Conf. on Dependable Systems and Networks. Washing-
ton, DC, USA: IEEE Computer Society, 2000, pp. 119–124.

[17] A. Cimatti, F. Giunchiglia, G. Mongardi, D. Romano, F. To-
rielli, and P. Traverso, “Formal verification of a railway
interlocking system using model checking,”Formal Aspects
of Computing, vol. 10, no. 4, pp. 361–380, 1998.

[18] W. Fokkink, “Safety criteria for the vital processor interlock-
ing at Hoorn-Kersenboogerd,” in5th Conference on Comput-
ers in Railways (COMPRAIL’96). Volume I: Railway Systems
and Management, 1996.

[19] K. Winter and N. J. Robinson, “Modelling large railway
interlockings and model checking small ones,” inACSC
’03: Proc. of the 26th Australasian comp. sci. conference.
Australian Computer Society, Inc., 2003, pp. 309–316.

[20] L.-H. Eriksson, “Specifying railway interlocking requirements
for practical use,” inProceedings of the 15th International
Conference on Computer Safety, Reliability and Security
(SAFECOMP’96). Springer, 1996.

