
SOS 2007

A Congruence Rule Format with Universal

Quantification

MohammadReza Mousavi a,b,1 , Michel Reniers a

a Department of Computer Science, Eindhoven University of Technology, P.O. Box 513, NL-5600
MB Eindhoven, The Netherlands

b Department of Computer Science, Reykjav́ık University,
Kringlan 1, IS-103 Reykjav́ık, Iceland

Abstract

We investigate the addition of universal quantification to the meta-theory of Structural Operational Seman-
tics (SOS). We study the syntax and semantics of SOS rules extended with universal quantification and
propose a congruence rule format for strong bisimilarity that supports this new feature.

Keywords: Structural Operational Semantics (SOS), Universal Quantification, SOS Rule Formats,
Bisimulation, Congruence.

1 Introduction

Structural Operational Semantics (SOS) [14] has been widely used in a variety of

forms. Transition System Specification (TSS) [7] is a formalization of SOS which

defines a rigorous syntactic and semantic framework for SOS. The notion of TSS

paved the way for building up meta-theories around SOS [1,10]; theories about

congruence rule formats [7,4] are examples of such meta-theories.

The semantics of a TSS [4,5] comes with an implicit existential quantification of

valuations of variables used in the rule: if there exists a substitution on variables

(appearing in the rule) such that the premises of the rule are satisfied, then the

conclusion (with the same substitution applied to it) follows. The following example

illustrates this.

1 Corresponding author: m.r.mousavi@tue.nl. The work of this author has been partially supported by
the projects “Unifying Framework for Operational Semantics” (nr. 070030041) and “The Equational Logic
of Parallel Processes” (nr. 060013021) of The Icelandic Research Fund.

This paper is electronically published in
Electronic Notes in Theoretical Computer Science



Mousavi, Reniers

Example 1.1 Consider the following TSS.

(aaa)
a

a→ a
(aab)

a
a→ b

(bbb)
b

b→ b
(f)

x
a→ y ∧ y b

9

f(x)
c→ y

In the aforementioned TSS, it is possible to derive f(a)
c→ a from (f) using rule (aaa)

since there exists a substitution for x and y, namely, σ(x) = a and σ(y) = a such

that σ(x)
a→σ(y) and σ(y)

b
9 . The semantics of TSS neglects the fact that there is

another substitution σ′, with σ′(x) = a and σ′(y) = b such that the premises of (f)

do not hold (which is justified due to the aforementioned existential quantification).

From a purely theoretical viewpoint, there is no reason to only use existential

quantification (implicitly) in the premises and it makes sense to study the meta-

theory of an SOS framework in which universal quantification over (valuations of)

variables is also allowed. Universal quantification in SOS rules appears in practice,

too [2,3,11,15]. The following examples illustrate the use of universal quantification

in practical instances of operational semantics.

Example 1.2 In [2], the weak termination predicate is characterized as follows:

p
√√

iff

(i) p
τ
9 and p

√
, or

(ii) p
τ→ and for each q, p

τ→ q implies q
√√

.

A straightforward formalization of this definition by means of deduction rules gives

x
τ
9 ∧ x√

x
√√

x
τ→ ∧ ∀y(x

τ→ y ⇒ y
√√

)

x
√√

By rewriting implication (and negation), this predicate can be conveniently formu-

lated in terms of deduction rules as follows:

x
τ
9 ∧ x√

x
√√

x
τ→ ∧ ∀y(x

τ
9 y ∨ y√√)

x
√√

Example 1.3 Also in [2], semantical divergence p ⇓ is defined formally by

x ↓ ∧∀y(x
τ→ y ⇒ y ⇓)

x ⇓
or by

x ↓ ∧∀y(x
τ
9 y ∨ y ⇓)

x ⇓

One may argue that universal quantification in the above examples (and other

similar ones such as [15, Definition 33]) can be resolved by a semantics-preserving

transformation which replaces universally quantified variables / terms with all their

possible instantiations. This is not always desired. In a general framework, universal

quantification can indeed be seen as an acronym for a (usually infinite) number of

existentially quantified premises and/or rules. However, once due to the restrictions

in the meta-theory, one restricts the framework to a certain form of rules (i.e.,

a certain congruence rule format such as the NTyft format), this transformation

101



Mousavi, Reniers

may change the shape of the rules and take the specification beyond the restricted

framework.

Hence, it is worth investigating a framework in which universal quantification

is genuinely present and study how much of the meta-theory carries over to this

setting. This has already been noted in [17, Section 2] where the author writes.

... Moreover, we think it would be a better idea to study a format that allows

universal quantification.

This paper takes a step towards the addition of universal quantification to the

SOS meta-theory. We slightly extend the syntax of SOS rules with one level of

universal quantification. Inspired by examples such as those mentioned before,

we also introduce the use of disjunction in the premises of a rule. We define the

semantics of such SOS rules as expected. As the main contribution, we propose

a congruence rule format for strong bisimilarity that supports these new features.

To our knowledge no such format (supporting universal quantification) exists. Our

meta-language for SOS rules is still restricted; one may consider a language in which

an arbitrary first order predicate formula (thus, an arbitrary mix of existential and

universal quantification) is allowed in the premises of deduction rules but this is an

extremely complicated problem which we could not tackle in one go.

2 Universal Quantification in TSS

In this section, we first fix a syntax for TSS’s with universal quantification and then

proceed with defining their semantics. There is little novelty concerning the notions

presented here; most of the notions can be traced back to those presented in [15,5].

Fix a signature Σ, i.e., a collection of function symbols f , g, . . . with fixed arities

(natural numbers), ar(f), ar(g), . . ., and a countable set X = {x, y, z, x0, . . .} of

variables. Function symbols a, b, c, . . . with arity 0 are also called constants. Open

terms t, t′, ti ∈ T are defined inductively using function symbols and variables (while

respecting the arities of function symbols). We denote variables of a term t by V(t).

Closed terms p, q . . . ∈ C are terms containing no variable. A substitution maps

variables to terms and it is closed if its range is a subset of C.

A (transition) clause Φ is defined by the following grammar.

Φ ::= t
p→ t′ | t p

9 t′ | ∧
i∈I Φi |

∨
i∈I Φi

We restricted the syntax of clauses as given above to facilitate better presentation;

adding implication and negation to the above syntax is straightforward but causes

a more complicated presentation, especially for our congruence results.

Clauses of the form t
p→ t′ and t

p
9 t′ are called positive and negative (transition)

formulae, respectively. The aforementioned formulae are said to deny each other,

denoted by ¬t p→ t′ = t
p

9 t′ and ¬t p
9 t′ = t

p→ t′. The formulae
∧

i∈I Φi and
∨

i∈I Φi

denote conjunction and disjunction, respectively, over formulae parameterised by

an index variable i quantified over a possibly infinite index set I. To unclutter

presentation we do not treat predicate formulae in our framework (e.g., formulae of

the form P (t) or ¬P (t)) but allow for their presence and consider them as transition

102



Mousavi, Reniers

formulae with dummy labels and targets. The rest of this paper can be re-phrased

in the genuine presence of predicate formulae without any substantial change in the

formal development of the paper.

We intend to add one level of universal quantification and this suffices for the

applications we have encountered thus far in the literature. It seems reasonable to

make the already existing and implicit existential quantification in rules explicit.

This raises the question as to whether these existentially bound variables are bound

outside or inside the universal quantification, i.e., whether the clause should be

augmented as ∃ ez0
∀ ez1

Φ or ∀ ez1
∃ ez0

Φ where z̃0 represents the set of (formerly implicitly

bound) existentially quantified variables. We decided to go for maximum generality

in our setting and avoid the design decision altogether. In other words, we allow for

disjoint sets of existentially quantified variables appearing before as well as after the

universal quantification. Of course, the ultimate goal would be to have a general

first order language and allow for all sorts of nested quantifiers.

Another decision we made is to write the quantifiers in front of the deduction

rules since they may also apply to the occurrences of the quantified variables in the

target of the conclusion.

A TSS is a set of deduction rules of the form

(r) ∃ ez0
∀ ez1

∃ ez2

Φ

φ
,

where z̃0, z̃1, and z̃2 stand for sets of variables, Φ is a transition clause and φ is a

positive formula. Clause Φ is called the premises (each formula appearing in Φ is

called a premise) and φ is a positive formula which is called the conclusion of deduc-

tion rule (r). Assume that φ = t
p→ t′; we call t the source of the above deduction

rule. A deduction rule (TSS) without universal quantification and disjunction is

called a traditional deduction rule (TSS). For such traditional deduction rules one

can represent the conjunction of transition formulae as a set (as we do in Definition

2.3 below). To avoid any ambiguity we assume that V(r) ⊆ V(t) ∪ z̃0 ∪ z̃1 ∪ z̃2
(where V(r) denotes all variables appearing in the premises and the conclusion of

the deduction rule (r)) and assume that V(t), z̃0, z̃1 and z̃2 are all pairwise disjoint.

We decided to quantify on valuations of variables only since intuitively, quan-

tification over valuations of (open) terms reduces to quantification over variables.

In the remainder of this paper, for better presentation, we assume that premises

are in the disjunctive normal form, i.e., of the form
∨

i∈I

∧
j∈J φij where I and J

are index sets, and φij is a positive or negative formula. Note that in the absence

of universal quantification, a rule with a number of disjuncts as premises can be

represented by a number of rules; one for each disjunct. However, in the presence

of universal quantification, this cannot be done because ∀z(φ∨ ψ) is not equivalent

to (∀zφ) ∨ (∀zψ).

Example 2.1 The weak termination operator of Example 1.2 is rephrased in our

syntax as follows.

∀y

x
τ
9 y ∧ x√

x
√√ ∃y′∀y

(x
τ→ y′ ∧ x τ

9 y) ∨ (x
τ→ y′ ∧ y√√)

x
√√

103



Mousavi, Reniers

Example 2.2 The semantical divergence of Example 1.3 can be rewritten into the

following extended TSS.

∀y

(x ↓ ∧x τ
9 y) ∨ (x ↓ ∧y ⇓)

x ⇓

2.1 Extended TSS: Semantics

Semantics of extended TSS’s do not defer much from traditional TSS’s. In [4,5],

the following notion of three-valued stable model is defined for closed traditional

TSS’s, i.e., TSS’s containing only traditional deduction rules which do not contain

any variable.

Definition 2.3 (Proof) A traditional deduction rule
Φ

φ
is provable from a closed

traditional TSS R, denoted by R ⊢ Φ

φ
, when there exists a well-founded upwardly

branching tree with formulae as nodes and of which

• the root is labeled by φ;

• if a node is labeled by ψ and the nodes above it form the set K then one of the

following two cases hold:

· ψ ∈ Φ and K = ∅;
· ψ is a positive transition formula and

K

ψ
∈ R.

When the TSS is known from the context, we omit it from the notation and just

write ⊢ Φ
φ
.

Definition 2.4 (Truth) A negative transition formula φ = p
l

9 p′ is true for a

set PF of positive formulae, denoted by PF � φ when p
l→ p′ /∈ PF . A set NF

of negative formulae is true for the set PF , denoted by PF � NF when for all

φ ∈ NF , PF � φ.

Definition 2.5 (Three-Valued Stable Models) A pair (C,U) of sets of posi-

tive closed formulae (where C stands for Certain and U for Unknown; the third

value is determined by the formulae not in U) is called a three-valued stable model

for a TSS when C ⊆ U and

• for all φ ∈ C, ⊢ N

φ
for a set N of negative closed transition formulae such that

U � N ;

• for all φ ∈ U , ⊢ N

φ
for a set N of negative closed transition formulae such that

C � N .

In [16,5], it has been shown that every TSS admits a least three-valued stable

model with respect to the information theoretic ordering (i.e., (C,U) ≤ (C ′, U ′)

when C ⊆ C ′ and U ′ ⊆ U). A TSS is called complete [5] (or positive after reduction

[4]) if for its least three-valued stable model (C,U), C = U .

104



Mousavi, Reniers

To define the semantics of traditional TSS’s in general, one has to instantiate

the deduction rules with all closing substitutions and then use the above definition

on the resulting closed TSS. A similar approach, as suggested in [15], can be used

to define a meaning for TSS’s with universal quantifiers. First, each rule is replaced

with a number of traditional rules, of which the premises contain all possible instan-

tiations for the universally quantified variables and some instance of the existentially

quantified ones (for each instance of the universally quantified variables, similar to

the idea of Skolemization). Second, the remaining variables, i.e., the variables in the

source of the conclusion, are instantiated with all possible substitutions resulting in

a closed traditional TSS. The following definitions formalize this idea.

Definition 2.6 For a traditional deduction rule r = Φ
φ
, its closure, cl(r) is the set

of deduction rules {σ(Φ)
σ(φ) | σ : X → C}. Closure of a traditional TSS R, denoted by

cl(R) is defined by
⋃

r∈R cl(r). The semantics of R is defined by the semantics of

cl(R).

For each deduction rule r of the following form,

(r)∃ ez0
∀ ez1

∃ ez2

∨
i∈I

∧
j∈J φij

t
l→ t′

sk(r) is the set of all deduction rules sk(r, σ0, σ10, . . . , σ20, . . . , i0, . . . | ij) for each

substitution σ0 : z̃0 → C, series of substitutions σ10, σ11, . . . : z̃1 → C such that for

each variable z ∈ z̃1, {σ10(z), σ11(z), . . .} = C, series of substitutions σ20, σ21, . . . :

z̃2 → C, series of indices i0, i1, . . . ∈ I and each ij ∈ {i0, i1, . . .} which is defined as

follows.
(
∧

j∈J σ0 · σ10 · σ20(φi0j)) ∧ (
∧

j∈J σ0 · σ11 · σ21(φi1j)) ∧ . . .

σ0 · σ1ij · σ2ij (t
l→ t′)

In the above deduction rule · denotes function composition and it binds stronger

than function application. If any of the sets z̃i (for each i ∈ {0, 1, 2}) is empty then

one should drop all σij (σi, for i = 0) from the definition of sk(r). Also in the case

of I = ∅, all ij components should be dropped from the definition of sk(r).

Note that the above deduction rule is traditional and hence, sets of such deduction

rules can be given a semantics using traditional ways of assigning meaning to TSS’s.

The meaning of a TSS R with universal quantification is defined as the meaning of⋃
r∈R sk(r).

The following simple example illustrates the semantics of extended TSS’s.

Example 2.7 Consider the following TSS.

(aaa)
a

a→ a
(aab)

a
a→ b

(bab)
b

a→ b
(bbb)

b
b→ b

(f)∀y∃z
x

a
9 y ∨ y b→ z

f(x)
c→ c

Assume A = {(aaa), (aab), (bab), (bbb)}; it holds that A =
⋃

r∈A sk(r), i.e., since

deduction rules in A do not contain quantified variables, their Skolemization yields

105



Mousavi, Reniers

the same deduction rules. However, (f) contains a universally quantified variable y

and an existentially quantified variable z. (In terms of the notation used in Defini-

tion 2.6, z̃0 = ∅, z̃1 = {y} and z̃2 = {z}.) Let φ0 = x
a
9 y and φ1 = y

b→ z; sk(f) is

defined as follows.

{(sk(f, σ10 = [y 7→ p10], σ20 = [z 7→ p20], . . . , i0, i1, . . . , i))

∧
j∈IN σ1j · σ2j(φij )

f(x)
c→ c

|

∀k∈{0,1},l∈IN pkl ∈ C ∧ {p10, p11, . . .} = C ∧ il ∈ {0, 1} ∧ i ∈ {0, 1}}

For example, sk(f, σ10, σ20, . . . , i0, . . . , i) where ij = 0, for each j ∈ IN (for

arbitrary i, σ1j and σ2j) is the following deduction rule.

∧
p∈C

x
a
9 p

f(x)
c→ c

The least three-valued stable model of the TSS is the pair (C,U) where C = U =

{a a→ a, a
a→ b, b

a→ b, b
b→ b, f(p)

c→ c | p ∈ C \ {a}}. Hence, the TSS is complete.

3 Universal NTyft

3.1 Bisimilarity and Congruence

Strong bisimulation [12], as defined below, is a key notion of behavioral equivalence

in concurrency theory.

Definition 3.1 (Bisimulation and Bisimilarity) A symmetric relation R ⊆ C×
C is a bisimulation relation when for all p, q ∈ C such that p R q, l ∈ C, and p′ ∈ C,

if p
l→ p′ then there exists a q′, q

l→ q′ and p′ R q′.

Two closed terms p and q are bisimilar, denoted by p↔ q, when there exists a

bisimulation relation R such that p R q.

To treat bisimilarity compositionally and algebraically, it is essential to make

sure that it is a congruence relation, i.e., one can replace equals by equals.

Definition 3.2 (Congruence) An equivalence relation R is a congruence w.r.t. a

function symbol f (with an arbitrary arity n), when for all −→p ,−→q , if −→p R −→q then

f(−→p ) R f(−→q ). R is a congruence w.r.t. a signature Σ when it is a congruence for

all function symbols f ∈ Σ.

3.2 Rule Format and Its Proof

In this section, the rule format is defined that should guarantee congruence of

bisimilarity and this is proven.

Definition 3.3 (Variable Dependency Ordering) For a deduction rule r of the

106



Mousavi, Reniers

form (r)∃ ez0
∀ ez1

∃ ez2

W
k∈K(

V
i∈Ik

ti
li→ yi∧

V
j∈Jk

t′j

l′j
9y′

j)

t
l
→ t′

, the variable dependency ordering

<r is the smallest relation containing all pairs (u, yi) and (u′, y′j) where u ∈ V(ti)

and u′ ∈ V(t′j) for each i ∈ Ik, j ∈ Jk and k ∈ K.

A deduction rule (TSS) is well-founded if the variable dependency ordering of

the rule is (all its deduction rules are) well-founded.

Definition 3.4 (UNTyft/UNTyxt) A deduction rule of the following form

(r)∃ ez0
∀ ez1

∃ ez2

∨
k∈K(

∧
i∈Ik

ti
li→ yi ∧

∧
j∈Jk

t′j
l′j
9 y′j)

t
l→ t′

,

is in the UNTyft format when it satisfies the following conditions:

(i) t is of the form f(−→x );

(ii) ∀i,i′∈
S

k∈K Ik
yi 6= yi′∧ yi /∈ V(t) and ∀j,j′∈

S
k∈K Jk

y′j 6= y′j′∧ y′j /∈ V(t) (targets of

positive and negative transition formulae are all distinct variables and are all

different from variables in the source of the conclusion);

(iii) z̃1 ∩ {yi | i ∈ Ik, k ∈ K} = ∅ (universally quantified variables cannot appear as

targets of positive premises)

(iv) {y′j | j ∈ Jk, k ∈ K} ⊆ z̃1 (all targets of negative premises should be universally

quantified);

(v) ∀z∈ ez0
∀k∈K∀i∈Ik

z = yi ⇒ ∀u∈ ez1∪ ez2
¬(u <r z) (if an existentially quantified

variable in z̃0 appears in the target of a premise, then it does not depend on

variables among those in z̃1 or z̃2).

A deduction rule of the above form is in the UNTyxt rule format when t is of the

form x and it satisfies items (ii)-(v).

A TSS is in the UNTyft(/UNTyxt) format when all its deduction rules are.

An immediate question that comes to mind is how the UNTyft format compares

to the NTyft format. It is not hard to see that the UNTyft format extends the NTyft

formats (by taking sets K to be a singleton, z̃0 to be ∅ and z̃1 to be {yj | j ∈ Jk, k ∈
K}, one obtains the NTyft format). In terms of expressive power, i.e., the set of

definable transition relations, the following example shows that the UNTyft format

is strictly more expressive than the NTyft format. (The example is essentially taken

from [9, Example 4.9].)

Example 3.5 (UNTyft vs. NTyft)

a
a→ d b

a→ d b
a→ c c

b→ d
∃y′,y′′ ∀y,z

(x
a→ y′ ∧ x a

9 y) ∨ (x
a→ y′′ ∧ y b

9 z)

f(x)
c→ d

The above TSS is in the UNTyft format, it is complete and its three-valued stable

model is C = P = {a a→ d, b
a→ d, b

a→ c, c
b→ d, f(a)

c→ d}. We claim that there is no

TSS in the NTyft format that defines the above three-valued stable model. Assuming

that such a TSS does exist (without loss of generality, we can assume that the TSS

is pure), consider a minimal proof for f(a)
c→ d ∈ C (a minimal proof is a proof

107



Mousavi, Reniers

in which no formula appears more than once in a branch of the proof tree); using

the same deduction rule leading to this proof and a new substitution, we prove that

f(b)
c→ d (contradiction).

Assume that the proof for f(a)
c→ d is due the rule (r)

{ti
pi→ yi|i∈I} {tj

pj
9 |j∈J}

f(x)
c
→ t

and

there exists a substitution σ such that σ(x) = a and σ(t) = d. The premises of such

a rule may be of one of the following shapes:

(i) x
a→ yi or a

a→ yi, for some i ∈ I,

(ii) b
a→ yi, for some i ∈ I,

(iii) ti
b→ yi or c

b→ yi, where σ(ti) = c and i ∈ I,
(iv) tj

a
9 where tj can be an arbitrary term but a, b or x, and j ∈ J ,

(v) tj
b

9 where tj can be any term such that σ(tj) 6= c, and j ∈ J ,

(vi) tj
c

9 where tj can be any term but f(a) or f(x) and j ∈ J , (these two cases

are excluded since otherwise, f(a)
c→ d cannot be included in C),

Note that f(x) or f(a) cannot be in the source of a positive premise because the

label of such a premise should be a c and then the proof of f(a)
c→ d due to (r) is

not minimal and there is a smaller proof which is the proof of such a premise. Also,

given the above forms, the target of the conclusion, i.e. t, should either be d or some

yl such that σ(yl) = d.

Define σ′ as follows: σ′(x)
.
= b, σ′(y) = σ(y), for all variables y 6= x. Then, all

positive premises (items 1 to 3 above) must have a proof (for they are all included in

the C component of the least well-supported model). For the negative premises, there

is no case where substituting a b for an a may enable a- or b-transitions. Similarly,

substituting a b for an a may disable c-transitions but may not enable them. Hence,

we obtain a proof for σ′(f(x)
c→ t), i.e. f(b)

c→ d.

Theorem 3.6 For a complete and well-founded TSS in the UNTyft/UNTyxt format

bisimilarity is a congruence.

Proof. We prove the theorem for a TSS in the UNTyft format. For deduction rules

in the UNTyxt format essentially the same proof technique can be adopted. We use

the following auxiliary definition for our inductive proof.

Definition 3.7 (Reduction Technique for SOS with Negative Premises) For

an ordinal α, define:

Cα
.
= {φ |⊢ N

φ
∧ ∃β<αUβ � N}

Uα
.
= {φ |⊢ N

φ
∧ ∀β<αCβ � N}

It follows from the above two items that C0 = ∅, U0 = {φ |⊢ N

φ
}.

It follows from Tarski’s fixpoint theorem (observing that Cα ⊆ Cβ and Uβ ⊆ Uα

for α ≤ β) that the above reduction procedure will reach a fixpoint at an ordinal,

say λ and it follows from the above definition that (Cλ, Uλ) is indeed the least

three-valued stable model.

108



Mousavi, Reniers

Define R to be the smallest congruence containing the bisimilarity ↔ associated

with the TSS in the UNTyft format. If we show that R is a bisimulation relation,

then the theorem follows. Instead, by an induction on α, we simultaneously prove

that the following two statements hold for each (p, q) ∈ R, for each l, p′ ∈ C, and

for each α.

(i) p
l→ p′ ∈ Cα ⇒ ∃q′q

l→ q′ ∈ Cλ ∧ (p′, q′) ∈ R;

(ii) p
l→ p′ ∈ Uλ ⇒ ∃q′q

l→ q′ ∈ Uα ∧ (p′, q′) ∈ R;

Once we prove the above two statements, the transfer conditions for bisimulation

(w.r.t. Cλ = Uλ) follow by taking α to be λ and from the fact that Cλ = Uλ (due

to completeness of the TSS under consideration).

Note that bisimilarity is an equivalence and so is R; thus, we assume the sym-

metric statements for q without having to prove them. The above statements hold

trivially for all p and q such that p ↔ q. Hence, we focus on terms of the form

p = f(−→p ) and q = f(−→q ) where −→p R −→q .

(i) It follows from Definition 3.7 that ⊢ N

p
l→ p′

for some N and some β < α such

that Uβ � N , and from Definition 3.4 that there exists a deduction rule r of

the following form

(r)∃ ez0
∀ ez1

∃ ez2

∨
k∈K(

∧
i∈Ik

ti
li→ yi ∧

∧
j∈Jk

t′j
l′j
9 y′j)

t
l→ t′

,

and (according to Definition 2.6) there exist substitutions σp : V(−→x ) → C and

σ0 : z̃0 → C such that σp(
−→x ) = −→p and for all substitutions σ1 : z̃1 → C, there

exists a substitution σσ1
: z̃2 → C and an index k ∈ K, such that all positive

formulae with indices i and j with i ∈ Ik and j ∈ Jk under σ = σp · σ0 · σ1 · σσ1

hold, i.e., ⊢ Ni

σ(ti
li→ yi)

with a smaller proof structure and Ni ⊆ N for each

i ∈ Ik, and σ(t′j
lj→ y′j) ∈ N for each negative premise j ∈ Jk. We proceed with

an induction on the proof structure for ⊢ N

p
l→ p′

.

In a traditional proof method for congruence rule formats (e.g., that of

[7]), one aims at defining a new substitution σ′ such that σ′(−→x ) = −→q and

σ(u) R σ′(u) for each variable u ∈ X; furthermore, while completing the def-

inition of σ′, one shows, using the induction hypothesis, that all the premises

also hold under σ′, thus, obtaining a proof for q
l→ q′, for some q′ such that

σ(t′) R q′ and q′ = σ′(t′). Our proof method is slightly more involved. Since

we have a universal quantification over variables in z̃1, we are allowed to use the

fact that under all substitutions σ1 : z̃1 → C at least one disjunct among the

premises holds by choosing an appropriate σσ1
. Thus, during the construction

of σ′, as explained below, we also change substitution σ into some σ′′ = σp ·
σ0 · σ′′1 · σσ′′

1
(by choosing a σ′′1 which is appropriate for our proof obligation),

while preserving σ′′(u) R σ′(u). Note that σ and σ′′ agree on the variables in

z̃0. Furthermore, σ and σ′ agree on the variables in z̃1.

109



Mousavi, Reniers

Let σq : V(−→x ) → C be such that σq(
−→x ) = −→q . Given σ0 and for each σ1

as given above, we aim at constructing new substitutions σ′0, σ
′′
1 and σ′σ1

such

that σ′′1(z1) R σ1(z1) and σ′′(u) R σ′(u) for each z1 ∈ z̃1 and for each u ∈ X

where σ′′ = σp · σ0 · σ′′1 · σσ′′

1
and σ′ = σq · σ′0 · σ1 · σ′σ1

. Note that σσ′′

1
need not

be re-defined; given σ′′1 , it is determined by the deduction rule chosen to derive

p
l→ p′ according to Definition 2.6, i.e., if σ′′1 = σ1j , for some j ∈ IN, σσ′′

1
is σ2j .

To define σ′ and σ′′, we start with σ′11 where σ′11(u) = σ(u) for each variable

in u ∈ (z̃0 ∪ z̃2) \ {yi, yj | i ∈ Ik′ , j ∈ Jk′ , k′ ∈ K} and undefined otherwise, and

a substitution σ′′11 such that σ′′1u = σ(u) for each variable in u ∈ z̃1 \ {yj | j ∈
Jk′ , k′ ∈ K}.

Consider substitutions σ′1i and σ′′1i and a variable u such that for each variable

x preceding u in the variable dependency graph either σ′1i(x) or σ′′1i(x) is de-

fined. Furthermore, we assume that for all such variables x, σ′′i (x) R σ′i(x)

where σ′i = σq · σ1 · σ′1i, σ
′′
i = σp · σ0 · ρi · σρi

and ρi = σ1 ↑ σ′′1i where

(σ1 ↑ σ′′1i)(x) = σ′′1i(x) if σ′′1i(x) is defined and σ1(x) otherwise.

We define a procedure which takes any such variable u and substitutions

σ′1i and σ′′1i and defines the substitution σ′1i+1 which agrees with σ′1i on the

domain of σ′1i and extends the domain of σ′1i with u, if u ∈ z̃0 ∪ z̃2 in such

a way that σ′′i (u) R σ′i+1(u). Furthermore, if u ∈ z̃1, we define a value for

(σ′′1i+1)(u), in such a way that σ′′1i(u) R ρ(σ1)(u), thus in both cases maintaining

σ′′i+1 R σ′i+1(u). If u ∈ z̃1, then σ′1i+1 is the same as σ′1i; if u /∈ z̃1, then σ′′1i+1

is the same as σ′′1i. Then, substitutions σ′ and σ′′ are defined as the greatest

fixed point of the chain σ′i’s and σ′′i ’s (taking the above-mentioned procedure

as a monotone function, with the subset relation on the union of the domains

of the substitutions σ′i and σ′′1i as the ordering).

We make a case distinction based on the status of variable u with respect

to set z̃0, z̃1 and z̃2. (We shall still use an induction on α and inside that an

induction on the structure of the proof in the following items.)

(a) Assume that u ∈ z̃0 ∪ z̃2; then, u can only be a variable yi′ for some i′ ∈ Ik
and k ∈ K (i.e., the target of a positive premise). We distinguish the

following two cases based on the status of σ′′i (ti′
li′→ yi′) with respect to Cα.

Assume that σ′′i (ti′
li′→ yi′) is among the premises of the rule proving σ(t

l→ t′),

i.e., σ′′i (ti′
li′→ yi′) ∈ Cα with a proof structure which is smaller than the

proof of σ(t
l→ t′). Considering that σ′′i (ti′) R σ′i(t

′
i), the induction hypoth-

esis on the structure of the proof applies and we have that σ′i(ti′)
li′→ qi′ ∈

Cλ for some qi such that σ(u) R qi′ (and thus, σ′′i (u) R qi). Define

σ′1i+1(u) = qi.

Otherwise, assume that σ′′i (ti′
li′→ yi′) is not in the proof tree for σ(t

l→ t′).

Take σ′1i+1(u) = σ(u).

Note that since u /∈ z̃1, in both cases σ′′i+1 = σ′′i .

(b) Assume that u ∈ z̃1; then, u = yj, for some j ∈ Jk and k ∈ K. We

distinguish the following two cases.

Either ∃β<α ∀pj
σ(yj) R pj ⇒ σ′′i (tj)

lj→ pj /∈ Uβ; it follows from the

induction hypothesis (on α; contraposition of item (ii)) that σ′i(tj)
lj→ pj /∈

110



Mousavi, Reniers

Uλ. Define σ′′1i+1(u) = σ(u).

Or ∀β<α ∃pj
σ(yj) R pj ∧ σ′′i (tj)

lj→ pj ∈ Uβ . It follows from the fact that

for all γ ≤ γ′, U ′
γ ⊆ Uγ that ∃pj

∀β<α σ(yj) R pj ∧ σ′′i (tj)
lj→ pj ∈ Uβ .

Define σ′′1i+1(u) = pj.

This way, we have completed the definition of σ′ and σ′′. There is a k ∈ K

such that for all i′ ∈ Ik, σ
′′(ti′

li′→ yi′) ∈ Cα and it follows from the construc-

tion of σ′ that σ′(ti
li→ yi) ∈ Cλ. Furthermore, it holds for all j ∈ Jk that

σ′′(tj
lj→ yj) /∈ Uβ, for some β ≤ α. It again follows from the above construc-

tion of σ′′ that σ′′(tj
lj→ pj) /∈ Uβ for all pj such that σ(uj) = σ′(uj) R pj and

hence, σ′(tj
lj→ pj) /∈ Uλ. This completes the proof for q

l→σ′(t′) ∈ Cλ and we

have that σ′′(t) R σ′(t).

(ii) The case is dual to the above case. One just has to replace the sets Cα with

Uλ and Cλ with Uα, simultaneously.

2

3.3 (Counter-)Examples

In this section, we give a few (counter-)examples witnessing the generality of our rule

format. First, we show that our format is general enough to cover our motivating

examples.

Example 3.8 The deduction rules for weak termination and divergence as specified,

respectively, in Examples 2.1 and 2.2 are in the UNTyft/UNTyxt format.

Next, we show that the syntactic constraints concerning the UNTyft format can-

not be simply dropped or the congruence meta-result will be ruined. The first condi-

tion in the UNTyft format concerns the source of the conclusion and it is among the

conditions of the ordinary Tyft and NTyft formats. Thus, counter-examples given

in [7,6] work in this case, as well. Constraint (ii) is about distinctness of variables

appearing as targets of premises. Our addition to the traditional constraints of the

NTyft format is that we prohibited the repetition of target variables among differ-

ent disjuncts. The following counter-example shows that this additional constraint

cannot be dropped.

Example 3.9 The following specification conforms to all constraints of the UNTyft

format but constraint (ii) in that variable y is repeated in the target of the premises

of the left-most deduction rule. Moreover, it is complete and is well-founded.

∀y

x
a
9 y ∨ x b

9 y

f(x)
c→ c a

a→ a a
b→ a b

a→ a b
b→ b

For the above specification, it holds that a↔ b but it does not hold that f(a) ↔ f(b)

since ∀y b
a
9 y ∨ b b

9 y but it does not hold that ∀y a
a
9 y ∨ a b

9 y, namely a
a→ a and

a
b→ a.

111



Mousavi, Reniers

Constraint (iii) states that universally quantified variables cannot appear as

targets of positive premises. The following counter-example shows the role of this

constraint in establishing congruence.

Example 3.10 The following TSS is complete and well-founded and satisfies all

constraints of the UNTyft format but constraint (iii).

∃x

a
a→x b

a→ a b
a→ c b

a→ f(a)
∀y

x
a→ y

f(x)
c→ a

It holds for the above TSS that a↔ b but f(a)
c→ a while f(b)

c
9 a (since, for exam-

ple, b
a
9 b).

The fourth syntactic constraint states that targets of negative premises should be

universally quantified. The following counter-example witnesses that this constraint

cannot be dropped.

Example 3.11 The following deduction rules satisfy the constraints of the UNTyft

format apart from constraint (iv) in that the negative premise x
a
9 y has an existen-

tially quantified variable y as its target.

a
a→ c a

a→ c′ b
a→ c c

b→ c c′
b→ c

∃y,y′,y′′

x
a
9 y y

b→ y′ x
a→ y′′

f(x)
a→ c

The above TSS is complete and its associated transition relation is

{a a→ c, a
a→ c′, b

a→ c, c
b→ c, c′

b→ c, f(b)
a→ c}.

Hence, we observe that a↔ b but it does not hold that f(a) ↔ f(b). Thus, bisimi-

larity is not a congruence.

The last constraint on the UNTyft format concerns the variables in z̃0 when

they appear as a target of a premise. Namely, such variables should not depend

on variables in z̃1 or z̃2 (in the sense of Definition 3.3). The first counter-example

given below shows that a direct dependency on variables in z̃1 can be damaging.

The second counter-example shows the same for a direct dependency on variables

in z̃2. Both counter-examples can be easily adapted for indirect dependencies.

Example 3.12 The following deduction rules satisfy the constraints of the UNTyft

format apart from constraint (v) in that variable z0 depends on a universally bound

variable z1 in deduction rule (g).

(a)
a

a→ b
(b)

b
a→ a

(g)∃z0
∀z1

f(z1, x)
b→ z0

g(x)
c→ c

(f0)∀y0
∃y1

x0
a
9 y0 x1

a→ y1

f(x0, x1)
b→ y1

(f1)∃y0,y1

x0
a→ y0 x1

a→ y1

f(x0, x1)
b→ a

112



Mousavi, Reniers

First of all note that a ↔ b because they only afford a-transitions to each other.

Furthermore, from (f0), it follows that for all p /∈ {a, b}, we have f(p, a)
b→ b and

f(p, b)
b→ a. Thirdly, from (f1), we can deduce that f(a, b)

b→ a and f(b, b)
b→ a.

Thus, we conclude that for all p ∈ C, f(p, b)
b→ a. Hence, we have that g(b)

c→ c.

It does not hold that for all p ∈ C, f(p, a)
b→ p′ for any p′ ∈ C; the only possible

candidates for such p′ are a and b both of which fail (above-mentioned transitions

to a cannot be derived from (f0) and transitions to b cannot be derived from (f1)).

Hence, we have that g(a)
c

9 which shows that the congruence result is ruined.

Example 3.13 The following TSS is a modified version of the one specified in

Example 3.12. The deduction rules satisfy the constraints of the UNTyft/UNTyxt

format apart from constraint (v) in that variable z0 depends on an existentially

bound variable z2.

(a)
a

a→ b
(b)

b
a→ a

(x)
x

d→x

(f0)∀y0
∃y1

x0
a
9 y0 x1

a→ y1

f(x0, x1)
b→ y1

(f1)∃y0,y1

x0
a→ y0 x1

a→ y1

f(x0, x1)
b→ a

(g)∃z0
∀z1

∃z2

z1
d→ z2 f(z2, x)

b→ z0

g(x)
c→ c

The transition relation induced by the above TSS is the same as the one in Example

3.12 except for that it also includes a d-self-loop on all closed terms. Thus, a↔ b

and it does not hold that g(a) ↔ g(b).

4 Conclusions

Results. We extended the syntax and the semantics of SOS specifications with one

level of universal quantification, explicit notions of existential quantification (before

and after the universal quantifier), conjunction and disjunction. We proposed a rule

format with the above-mentioned features that guarantees the induced bisimilarity

to be a congruence.

Future Work. From a theoretical viewpoint, a much more challenging goal is to

introduce a framework supporting the full first-order logic. We plan to investigate

the possibility of relaxing the well-foundedness assumption in our congruence meta-

results. Expressiveness of the UNTyft rule format with respect to the NTyft and the

Tyft format is another topic for our future research. Our main point of inspiration

for the introduction of universal quantification originated from our study of ordered

SOS [13,8]. There, we observed that in order to translate general Tyft rules with

ordering into the NTyft format, we need some extra expressive power, possibly

modeled by universal quantification over variables. Otherwise, the ordered version

of the Tyft format is strictly more expressive that the NTyft format and a direct

translation (involving no auxiliary operators) is shown to be impossible in [9]. It

113



Mousavi, Reniers

remains thus to show that the UNTyft format indeed gives us sufficient expressive

power to remove ordering from ordered Tyft rules.

Acknowledgments. Constructive discussions with Iain Phillips and Irek Ulidowski

led to research questions which form the subject matter of this paper. Comments

of the anonymous reviewers of the SOS workshop helped us improve the paper and

are thus acknowledged.

References

[1] Aceto, L., W. J. Fokkink and C. Verhoef, Structural operational semantics, in: J. A. Bergstra, A. Ponse
and S. A. Smolka, editors, Handbook of Process Algebra, Chapter 3, pp. 197–292.

[2] Aceto, L. and M. Hennessy, Termination, deadlock, and divergence, Journal of the ACM (JACM) 39

(1992), pp. 147–187.

[3] Baeten, J. C. M. and J. A. Bergstra, Processen en procesexpressies, Informatie 30 (1988), pp. 177–248,
(In Dutch).

[4] Bol, R. and J. F. Groote, The meaning of negative premises in transition system specifications, Journal
of the ACM (JACM) 43 (1996), pp. 863–914.

[5] van Glabbeek, R. J., The meaning of negative premises in transition system specifications II, Journal
of Logic and Algebraic Programming (JLAP) 60-61 (2004), pp. 229–258.

[6] Groote, J. F., Transition system specifications with negative premises, Theoretical Computer Science
(TCS) 118 (1993), pp. 263–299.

[7] Groote, J. F. and F. W. Vaandrager, Structured operational semantics and bisimulation as a
congruence, Information and Computation (I&C) 100 (1992), pp. 202–260.

[8] Mousavi, M., I. C. C. Phillips, M. A. Reniers and I. Ulidowski, The meaning of ordered SOS, in:
Proceedings of the 26th Conference on Foundations of Software Technology and Theoretical Computer
Science (FSTTCS’06), Lecture Notes in Computer Science 4337 (2006), pp. 334–345.

[9] Mousavi, M., I. C. C. Phillips, M. A. Reniers and I. Ulidowski, Semantics and expressiveness of
ordered SOS, Technical Report CSR-07-07, Department of Computer Science, Eindhoven University
of Technology, Eindhoven, The Netherlands (2007).

[10] Mousavi, M., M. A. Reniers and J. F. Groote, SOS formats and meta-theory: 20 years after, Theoretical
Computer Science (TCS) 373 (2007), pp. 238–272.

[11] Mousavi, M., M. Sirjani and F. Arbab, Formal semantics and analysis of component connectors in
Reo, in: Proceedings of the 4th International Workshop on the Foundations of Coordination Languages
and Software Architectures (FOCLASA’05), Electronic Notes in Theoretical Computer Science 154,
2006, pp. 83–99.

[12] Park, D. M., Concurrency and automata on infinite sequences, in: Proceedings of the 5th GI Conference,
Lecture Notes in Computer Science 104, pp. 167–183.

[13] Phillips, I. C. C. and I. Ulidowski, Ordered SOS rules and process languages for branching and eager
bisimulations, Information and Computation (I&C) 178 (2002), pp. 180–213.

[14] Plotkin, G. D., The origins of structural operational semantics, Journal of Logic and Algebraic
Programming (JLAP) 60 (2004), pp. 3–15.

[15] van de Pol, J., Operational semantics of rewriting with priorities, Theoretical Computer Science (TCS)
200 (1998), pp. 289–312.

[16] Przymusinski, T. C., The well-founded semantics coincides with the three-valued stable semantics,
Fundamenta Informaticae 13 (1990), pp. 445–463.

[17] Verhoef, C., A congruence theorem for structured operational semantics with predicates and negative
premises, Nordic Journal of Computing 2 (1995), pp. 274–302.

114


	Introduction
	Universal Quantification in TSS
	Extended TSS: Semantics

	Universal NTyft
	Bisimilarity and Congruence
	Rule Format and Its Proof
	(Counter-)Examples

	Conclusions
	References

