
On Well-Foundedness and Expressiveness of
Promoted Tyft

(Being Promoted Makes a Difference)

MohammadReza Mousavi a,b, 1, Michel Reniers a

a Department of Computer Science, Eindhoven University of Technology,
P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands
b Department of Computer Science, Reykjav́ık University,

Kringlan 1, IS-103 Reykjav́ık, Iceland

Abstract

In this paper, we solve two open problems posed by Karen L. Bernstein regarding her
promoted tyft format for structured operational semantics. We show that, unlike
formats with closed terms as labels, such as the tyft format, the well-foundedness
assumption cannot be dropped for the promoted tyft format while preserving the
congruence result. We also show that the well-founded promoted tyft format is
incomparable to the tyft format with closed terms as labels, i.e., there are transition
relations that can be specified by the promoted tyft format but not by the tyft
format, and vice versa.

Key words: Structural Operational Semantics (SOS), SOS Rule
Formats, Promoted Tyft, Tyft.

1 Introduction

In [3], Bernstein proposed the promoted tyft format which is an elegant frame-
work for specifying the operational semantics of higher-order processes. She
proved that the well-founded promoted tyft format guarantees strong bisimilar-
ity to be a congruence. The semantics of the lazy lambda-calculus [1] and the
Calculus of Higher-Order Communicating Systems (CHOCS) [9] were speci-
fied in the promoted tyft format of [3] and using the congruence meta-theorem,

1 Corresponding author: m.r.mousavi@tue.nl. The work of this author has been partially
supported by the project “The Equational Logic of Parallel Processes” (nr. 060013021) of
The Icelandic Research Fund.

Preprint submitted to Elsevier Preprint 29 September 2006



it was shown that applicative bisimilarity for the lazy-lambda calculus and
strong bisimilarity for CHOCS are both congruences. The conclusions of [3]
reads as follows.

“In this paper, we have described a rule format that is a simple but ex-
pressive generalization of Groote and Vaandrager’s tyft/tyxt rule format. ...
There are several open questions related to the work in this paper. It is
not clear that the well-foundedness property is necessary for the congru-
ence result. We are not sure how the extensions to tyft/tyxt format that
allow negative premises are compatible with our extensions. It is not clear
whether promoted tyft/tyxt format is strictly more expressive than tyft/tyxt
format.”

We touched upon the second open question in another publication [8]. In
this paper, we answer the first and the third questions as follows.

• We show that the promoted tyft format does not necessarily induce congru-
ence of strong bisimilarity if the well-foundedness assumption is omitted;

• We show that the well-founded subset of the promoted tyft format is incom-
parable, in its expressiveness, with the tyft format. In other words, we give
two counter-examples witnessing that there exist transition relations that
can be specified by one rule format but not by the other.

The rest of this paper is organized as follows. In Section 2, we give some
basic definitions. Section 3 addresses the well-foundedness concept, shows
that it cannot be dropped for the promoted tyft format while preserving the
congruence result. Section 4 addresses the expressiveness of the promoted tyft
format and proves it incomparable to the tyft format. The paper is concluded
in Section 5.

2 Preliminaries

Definition 2.1 (Signature, Term and Substitution) Assume a countable
set of variables V (with typical members x, y, x′, y′, xi, yi . . .). A signature
Σ is a set of function symbols (operators, with typical members f , g, . . .) with
fixed arities ar : Σ → IN. Functions with zero arity are called constants.
Terms s, t, ti, . . . ∈ T are constructed inductively using variables and function
symbols. A list of terms is denoted by

−→
t . When we write f(

−→
t ), we assume

that
−→
t has the right size, i.e., ar(f). All terms are considered open terms.

Closed terms p, q, . . . ∈ C are terms that do not mention a variable and are
typically denoted by p, q, p′, q′, pi, . . .. A substitution σ replaces variables in
a term with terms. The set of variables appearing in term t is denoted by
vars(t).

Definition 2.2 (Transition System Specification (TSS)) A TSS is a pair

2



(Σ, D) where Σ is a signature and D is a set of deduction rules. A deduction
rule dr ∈ D, is defined as a pair (H, c) where H is a set of formulae and c is a

formula. For all t, t′, t′′ ∈ T we define that t
t′→ t′′ is a formula. The formula c

is called the conclusion of dr and the formulae from H are called its premises.

A deduction rule (H, c) is mostly denoted by
H

c
.

The concept of closed-ness and substitution are lifted to formulae and sets
of formulae in the natural way (i.e., a substitution applied to a formula, applies
to all three terms). We refer to t as the source, t′ as the label and t′′ as the
target of the transition. We may also write vars(φ) and vars(H) to denote
variables appearing in a formula and in a set of formulae, respectively.

In this paper, we only deal with positive TSS’s. Hence, the semantics
of TSS’s is straight-forward and is defined as the set of all closed provable
formulae using instances of deduction rules.

Definition 2.3 (Tyft [6] and Promoted Tyft [3]) A deduction rule is in
tyft format if and only if it has the following form

{ti
t′i→ yi|i ∈ I}

f(−→x )
t′→ t′′

,

where variables in −→x and yi’s are all distinct variables, all labels, i.e., t′ and
t′i’s, are closed terms and I is a (possibly infinite) set of indices.

A rule of the above form is in the promoted tyft format if the source and
targets of all formulae in it conform to the constraints of the tyft format and
further t′i’s contain at least one function symbol (i.e., are not variable), t′ is
of the form g(−→z ) where variables in −→z are all distinct and different from
variables in −→x and yi’s.

A TSS is in tyft (promoted tyft) format if and only if all its deduction rules
are.

A subset of the tyft format is the one using constants (instead of closed
terms) as labels which is also considered in this paper and compared to the
promoted tyft format in Section 4. Arguably, this subset can be considered
the original definition of the tyft format as defined by [6]. The generalization
to closed terms as labels (if at all considered a generalization) is entirely safe
and orthogonal to all existing results (e.g., congruence, conservativity and
commutativity meta-theorems [2,5]).

The transition relation induced by a TSS (in the above two formats) is the
set of all provable formulae as defined below.

Definition 2.4 A proof of a closed formula φ is a well-founded upwardly
branching tree whose nodes are labelled by closed formulae such that

3



• the root node is labelled by φ, and

• if ψ is the label of a node and {ψi | i ∈ I} is the set of labels of the nodes

directly above this node, then there are a deduction rule
{χi | i ∈ I}

χ
and a

substitution σ such that σ(χ) = ψ, and for all i ∈ I, σ(χi) = ψi.

Definition 2.5 (Strong (Bi)similarity) A relation R ⊆ C × C is a strong

simulation relation when ∀p,q∈C pRq ⇒ ∀p′,p′′∈C p
p′
→ p′′ ⇒ ∃q′′∈C q

p′
→ q′′ ∧ (p′′, q′′) ∈

R. A symmetric strong simulation relation is a strong bisimulation relation.
Closed terms p and q are (bi)similar, denoted by p . q (p ↔ q) if there is a
strong (bi)simulation relation R such that p R q.

For a relation R ⊆ C × C, we write −→p R −→q and by that we mean −→p and
−→q have the same size (possibly zero) and for all pi and qi at the same position
in the two lists pi R qi.

Lemma 2.6 (Substituting Bisimilar Labels Under Context [3]) For a

TSS in the promoted tyft format, ∀
p,q,

−→
p′ ,
−→
q′ ,p′′∈C∀f∈Σ p

f(
−→
p′ )→ p′′ ∧ p ↔ q∧

−→
p′ ↔

−→
q′

⇒ ∃q′′∈Cq
f(
−→
q′ )→ q′′ ∧ p′′ ↔ q′′.

Definition 2.7 ((Pre-)Congruence) An equivalence (a pre-order) R ⊆ C×
C is a (pre-)congruence when ∀f∈Σ ∀−→p ,−→q ∈C

−→p R −→q ⇒ f(−→p ) R f(−→q ).

3 Well-Foundedness

In [3], Bernstein proposes a definition of well-foundedness which coincides with
the following and proves that for the well-founded subset of the promoted tyft
format, bisimilarity is a congruence.

Definition 3.1 The variable dependency graph of a deduction rule is a graph
of which the nodes are variables and there is an edge from x to y when y
appears in the target of a premise and x in its source or label. A deduction
rule is well-founded when there is no backward chain of infinite length in the
variable dependency graph. A TSS is well-founded when all its deduction rules
are.

Note that this definition coincides with that of [6] in case of TSS’s with
closed terms as labels. An alternative definition of well-foundedness is the one
that treats the labels in the same way as the targets of formulae (while in
the above definition labels are treated like sources). This alternative defini-
tion, called p-well-foundedness in [8], is not useful for proving congruence of
strong bisimilarity (while it is useful for proving congruence of higher-order
bisimilarity) and in fact, as shown below, there are p-well-founded TSS’s in
the promoted tyft format for which bisimilarity is not a congruence.

4



Theorem 3.2 (Congruence for Well-founded (Promoted [3]) Tyft [6])
For a well-founded TSS in the (promoted) tyft format, strong bisimilarity is a
congruence.

Theorem 3.3 (Tyft Reduces to Well-founded Tyft [4]) For an arbitrary
TSS in the tyft format, there exists a well-founded TSS in the tyft format which
induces the same transition relation.

In the following three examples, we show that the congruence result for
bisimilarity can be ruined if the TSS’s in the promoted tyft format do not
satisfy the well-foundedness assumption. The first example violates the well-
foundedness assumption by having a self-loop on a variable which appears
both in the label and the target of a premise.

Example 3.4 Consider the following set of deduction rules defined on a sig-
nature with 0 and 1 and f as a unary function symbol. 2 The following TSS
is in the promoted tyft format. Note that the last deduction rule is not well-
founded due to the occurrence of y both in the target and the label of the
premise. (This deduction rule is indeed p-well-founded.)

0
0→ 1 1

0→ 0

x
0→ y

1
f(x)→ x

x
0→ y

0
f(x)→ y

x
f(y)→ y

f(x)
1→ y

The following is the transition relation induced by the above TSS.

{0 0→ 1, 1
0→ 0,

1
f(0)→ 0, 1

f(1)→ 1, 0
f(0)→ 1, 0

f(1)→ 0,

f(1)
1→ 0, f(1)

1→ 1}

Note that for the above transition relation it holds that 0 ↔ 1, but it does not
hold that f(0) ↔ f(1). Therefore, bisimilarity is not a congruence.

In the following two examples, the same exercise is repeated, i.e., it is
shown that although the TSS is in the promoted tyft format and 0 ↔ 1, it
does not hold that f(0) ↔ f(1). In the next example, the TSS is not well-
founded since a variable in the target of a premise also appears in the source
of the same premise and thus has a self-loop in the variable dependency graph.

Example 3.5 Consider the following TSS in the promoted tyft format. The

2 In the coming examples we omit stating the precise signature as it is clear from the
symbols used in the deduction rules.

5



last deduction rule is not well-founded.

0
0→ 0 1

0→ 0

x
0→ y

0
f(x)→ x

x
0→ y

1
f(x)→ y

y
f(x)→ y

f(x)
1→ y

The following is the transition relation induced by the above TSS.

{0 0→ 0, 1
0→ 0, 0

f(0)→ 0, 0
f(1)→ 1, 1

f(0)→ 0, 1
f(1)→ 0, f(0)

1→ 0}

The last example violates well-foundedness (and congruence of bisimilar-
ity) by having a non-trivial cycle concerning target, label and source of two
premises.

Example 3.6 Consider the following TSS in the promoted tyft format. The
last deduction rule is not well-founded.

0
0→ 1 1

0→ 0 0
1→ 0 1

1→ 1

x
0→ y

1
f(x)→ x

x
0→ y

0
f(x)→ y

x
f(y)→ y′ y′

1→ y

f(x)
1→ y

The following is the transition relation induced by the above TSS.

{0 0→ 1, 1
0→ 0, 0

1→ 0, 1
1→ 1,

0
f(0)→ 1, 0

f(1)→ 0, 1
f(0)→ 0, 1

f(1)→ 1, f(1)
1→ 0, f(1)

1→ 1}

The essence of all counter-examples given before is the presence of a cycle in
the variable dependency graph. Such cycles may allow for checking syntactic
equivalence of terms (e.g., comparing the argument in the target of a premise
against a constant) and hence ruin the congruence result. An interesting
question is whether there exists a subset of non-well-founded promoted tyft
which indeed guarantees congruence, we conjecture that the safe subset of the
promoted tyft format, as defined below, is the desired subset which guarantees
congruence.

Definition 3.7 (Safe Cycles) Consider a cycle u0 → . . .→ un → u0 in the
variable dependency graph of a deduction rule of the following form:

{ti
t′i→ yi|i ∈ I}

f(−→x )
g(−→z )→ t′′

,

Such a cycle is called safe if in the variable dependency graph, there is no path
u → . . . → ui for all i, 0 ≤ i ≤ n such that u is among −→x or among −→z . A
deduction rule (TSS) is safe when all cycles in its variable dependency graph
(all its deduction rules) are safe.

6



The following deduction rule contains a safe cycle in its premise.

c
f(y)→ y

f(x)
g(x)→ y

4 Expressiveness

4.1 Well-Founded Promoted Tyft does not reduce to Tyft

Consider the following TSS in the promoted tyft format.

0
0→ 0 1

0→ 0 0
0→ 1 1

0→ 1

0
1→ 0 1

1→ 0 0
1→ 1 1

1→ 1

x
0→ y

0
f(x)→ 1

x
0→ y

1
f(x)→ 0

x
f(x)→ y

0
f(x)→ y

x
f(x)→ y

1
f(x)→ y

x
f(x)→ y

f(x)
1→ y

The transition relation induced by the above TSS is as follows.

{0 0→ 0; 1 , 1
0→ 0; 1 , 0

1→ 0; 1 , 1
1→ 0; 1 ,

0
f(0)→ 1 , 0

f(1)→ 0; 1 , 1
f(0)→ 0; 1 , 1

f(1)→ 0 , f(0)
1→ 1 , f(1)

1→ 0}

where p
p′
→ p′′; q′′ means p

p′
→ p′′ and p

p′
→ q′′. We claim that the above transition

relation cannot be specified by any TSS in the tyft format.

If there is such a TSS, then there is a TSS in the pure well-founded tyft
format which induces the same transition relation as above [4].

Consider the pure well-founded TSS in the tyft format that (purportedly)
induces the same transition relation as above. Assume, without loss of gener-

ality that the proof of f(0)
1→ 1 from such a TSS does not depend on the proof

for f(1)
1→ 0 (otherwise, a similar assumption should hold for the transition

of f(1)
1→ 0 and one can swap 0’s and 1’s in the sources, labels and targets of

the transitions in the remainder of the proof and the argument remains valid).

The last deduction rule applied to derive the proof for f(0)
1→ 1 should be of

the following form.

(dr)
{ti

p′
i→ yi|i ∈ I}

f(x)
1→ t′′

,

7



and there is a substitution σ such that σ(x) = 0, σ(t′′) = 1 and all σ(ti
p′

i→ yi)
have a proof tree.

Definition 4.1 (Distance of a Variable) Given the above deduction rule,
define the distance of variable x as 0 and a variable yi to be the maximum of
distances of variables appearing in ti plus 1. The distance of a premise is the
distance of the variable of its target.

Term t′′ can either be a variable or the constant 1 (otherwise, if it contains
a function symbol other than 1, t′′ cannot be unified with 1). Since (dr) is
pure, it can only contain variables x or yi’s (i ∈ I) and thus t′′ can be either
1, or x or yi (for some i ∈ I).
(i) If t′′ is 1, i.e., if the deduction rule is of the following form

{ti
p′

i→ yi|i ∈ I}

f(x)
1→ 1

,

then we define substitutions σ′k inductively (on the rank of the premises)
maintaining σ(x) ↔ σ′k(x) for all variables x in the domain of σ′k. First,
define σ′0 with σ′0(x) = 1 and note that indeed σ(x) = 0 ↔ 1 = σ′0(x).

Substitution σ′k+1 is obtained from σ′k as follows: select a premise ti
p′

i→ yi

(or all such premises) for which the variables of the source are in the
domain of σ′k. Then, as σ(ti) ↔ σ′k(ti) (this follows from the fact that
σ(x) ↔ σ′k(x) for all variables x from the domain of σ′k and the fact
that for a TSS in the tyft format, bisimilarity is a congruence) and

σ(ti)
p′

i→σ(yi) we obtain the existence of q′i such that σ′k(ti)
p′

i→ q′i and
σ(yi) ↔ q′i. Then define σ′k+1(yi)

.
= q′i.

Define σ′ to be the supremum of the chain of premises σ′0, σ
′
1, . . . (which

is increasing with respect to the subset ordering on their domains). Then,
all premises of the deduction rule are derivable with respect to substi-

tution σ′. Thus providing us with a proof for f(1)
1→ 1 (which is not

supposed to be provable according to the above transition relation).

(ii) If t′′ is x, then σ(x) = σ(t′′) = 0 which is contradictory to the target of

the transition f(0)
1→ 1.

(iii) Thus, it only remains to consider the case where t′′ is a variable yc, for
some c ∈ I, i.e., the deduction rule is of the following form

{ti
p′

i→ yi|i ∈ I}

f(x)
1→ yc

.

Take an arbitrary variable yj such that σ(yj) = 1 and define σ′0 and σ′′0

8



to be the following partial substitutions:

σ′0(x) = σ′0(yj) = 0 and σ′′0(x) = σ′′0(yj) = 1.

Then, using an induction on the distance of yj, we show that we can
complete either σ′0 or σ′′0 to a substitution σ′ such that the range of σ′ is

{0, 1} and for all k ∈ I, σ′(t′k
p′

k→ yk) is provable.
Then, it follows that for the particular case of yc, since σ(yc) = 1, that

we can prove either f(0)
1→ 0 or f(1)

1→ 1 which is contradictory to the
transition relation that should be induced by the TSS.
• (Base case) If the distance of yj is 1, i.e., yj is the target of a premise

of which the source only contains x as variable or is a closed term, then

the premise tj
p′

j→ yj can be of one of the following eleven shapes (for
all other transitions in the above transition relation, the target of the
transition is 0 and thus cannot match with 1).

0;x
0;1;f(0);f(1)→ yj or 1

0;1;f(0)→ yj,

where we have abused the ; notation to avoid writing all eleven cases
explicitly.

For each of these eleven cases both substitutions σ′0 and σ′′0 are com-
plete. Furthermore, for each of the cases, at least one of these substitu-
tions gives a transition that actually belongs to the transition relation
induced by the TSS.

Assuming that σ′0 is the substitution that proves the premise tj
p′

j→ yj,
as before, one can complete the definition to a substitution σ′ induc-
tively on the distance of the premises.

• (Induction step) Consider a rule in which yj has distance n + 1 for
n ≥ 1. As the distance of yj is n + 1, it cannot be the case that
tj is a closed term or the variable x, since then the distance of yj

would have been 1. Hence, tj is a term containing at least a variable.

Our previous assumption that the proof of f(0)
1→ 1 does not depend

on a proof for f(1)
1→ 0 and the fact that all other transitions in the

transition relation have a left-hand side 0 or 1 indicates that tj has
to be a variable, say yk. Now, suppose that p′j is 0, 1, or f(1). Then,
define the substitution σ′ to be σ′(yj) = 0 and σ′(v) = σ(v) for all other
variables v and this way we have a proof for all the premises using σ′

which is an extension of σ′0. Thus it only remains to check the case

where p′j = f(0). Therefore, the premise tj
p′

j→ yj is of the form yk
f(0)→ yj

for some k ∈ I where yk has distance n. Note that necessarily σ(yk) = 0
since otherwise the substitution σ′ with σ′(v) = σ(v) for all variables

9



v with distance smaller than the distance of yj and σ′(yj) = 0 can be
completed inductively on the rank of the premises to a substitution that
extends σ′0 and proves all the premises.

Based on a similar reasoning we must conclude that the premise

tk
p′

k→ yk should be of the form yl
f(1)→ yk for some l ∈ I where yl has

distance n− 1 and σ(yl) = 1.
Thus we have a deduction rule of the following form:

yl
f(1)→ yk yk

f(0)→ yj {ti
p′

i→ yi|i ∈ I − {j, k}}

f(x)
1→ yc

.

By the induction step, we can complete the definition of one of the
two following substitutions:

σ′0(x) = σ′0(yl) = 0 and σ′′0(x) = σ′′0(yl) = 1

to a substitution σ′ or σ′′ such that all the premises with a distance
of n − 1 or less find a proof. If σ′0 can be completed, then we define
σ′(yk) = 1 and σ′(yj) = 0 and complete the definition of σ′ for all
premises with distance n or more, as before. If σ′′0 can be completed,
we define σ′′(yk) = 0 and σ′′(yj) = 1 and complete the definition of σ′′.

This concludes the proof as in all of the above cases, we can construct a

proof for either f(0)
1→ 0 or f(1)

1→ 1 (or both) none of which are supposed
to be in the induced transition relation.

4.2 Tyft does not reduce to Promoted Tyft

Example 4.2 Consider the following TSS in the tyft format. The signature
of the TSS consists of 0, 1 and 2 as constants and f as a unary function
symbol.

2
f(0)→ 2

The transition relation induced by it is {2 f(0)→ 2}. We claim that there is no
TSS in the promoted tyft format which can induce the same transition relation.

It trivially holds that 0 ↔ 1 and from 2
f(0)→ 2 and Lemma 2.6 that (for a TSS

in the promoted tyft format) 2
f(1)→ 2 is also in the induced transition relation.

If one restricts the tyft format to the subset with only constants as labels,
then it trivially conforms to all requirements of the promoted tyft format and
thus, the promoted tyft format (taking the first example in Section 4.1) is
strictly more expressive than the tyft format with constants as labels.

10



4.3 (Promoted) Tyft reduces to Promoted PANTH

In [8], we introduced the promoted PANTH format which generalizes promoted
tyft with negative premises. But even restricted to positive TSS’s, the pro-
moted PANTH format generalizes both the promoted tyft and the tyft format.
To define the promoted PANTH format, we need the following notion of volatile
operators.

Definition 4.3 (Volatile Operators) Given a TSS (Σ, D) an operator f ∈ Σ
is called volatile when there exists a rule d ∈ D of the following form:

{ti
t′i→ t′′i | i ∈ I}

t
t′→ t′′

and f(
−→
tk ) is a subterm of t′i for some i ∈ I such that vars(

−→
tk ) ∩ vars(t) 6= ∅

or ∃i∈Ivars(
−→
tk ) ∩ vars(t′i) 6= ∅.

Note that for a TSS in the tyft format, no operator is volatile as the set
vars(

−→
tk ) is always empty. Arguments of transition labels under a volatile

operator should be replaceable by bisimilar terms (i.e., given a transition with
a volatile operator as the outermost operator in the label, another transition
with the label containing bisimilar arguments under the same volatile operator
should be provable to a bisimilar target). In the definition of the promoted
tyft format, all operators are assumed to be volatile and this assumption has
resulted in a less expressive rule format, as we prove shortly.

The following is a simplified definition of the promoted PANTH format
(restricted to positive TSS’s and without predicates and lists of terms as labels)
that suffices for our purposes.

Definition 4.4 (Positive Promoted PANTH) A deduction rule is in the posi-
tive promoted PANTH format when it is of the following form

{ti
t′i→ yi | i ∈ I}

f(−→x )
t′→ t′′

and first, all xi and yj variables (0 ≤ i < ar(f) and j ∈ I) and variables in
t′ are pairwise distinct, second, if a component of ti (i ∈ I) is a variable (i.e.,
does not have any function symbol) then it is not among xi’s and yj’s and
third,

(i) if t′ contains a volatile g ∈ Σ then t′ is of the form g(−→z ) where all zi’s
are distinct variables and for all j ∈ I, all ti containing a variable among
−→z are of the form gi(

−→
t′i ) where gi is volatile,

(ii) if there is a volatile operator in the signature and if t′ is a variable z then

11



Tyft with constants as labels

Tyft with closed terms as labels Promoted Tyft

Positive Promoted Panth

Fig. 1. Comparison of the expressiveness of rule formats.

for all i ∈ I, ti containing z are either z itself or are of the form gi(
−→
t′i )

where g′ is volatile.

It follows immediately from the above definition that any TSS in the tyft
format is in the positive promoted PANTH format since a TSS in the tyft format
contains no volatile operator. On the other extreme resides the promoted tyft
format which is a subset of positive promoted PANTH in which all operators are
considered volatile (regardless of whether or not they actually are volatile).
Thus, we conclude that positive promoted PANTH is strictly more expressive
than both tyft and promoted tyft since it includes TSS’s of examples of Section
4.1 and has both formats as its (proper) subsets.

Figure 1 summarizes the result of our comparison. Each arrow shows strict
inclusion of the sets of definable transition relations.

5 Conclusions

In this paper we studied issues related to the well-foundedness of premises
and expressiveness for (the set of transition relation that can be specified
by) TSS’s in the promoted tyft format. We showed that well-foundedness
cannot be dropped while preserving the congruence property for bisimilarity.
Furthermore, we compared the expressiveness of the tyft, the promoted tyft,
and the positive subset of the promoted PANTH formats and showed that while
the tyft format with closed terms is incomparable to the promoted tyft format,
the positive subset of the promoted PANTH format is strictly more expressive
than both.

Regarding well-foundedness, we are currently studying the congruence

12



meta-theorem for the safe subset of the promoted tyft format. The techniques
used in [4] are not directly applicable to this setting as the open terms on the
labels (containing at least one function symbol) cannot be trivially resolved
to variables. Regarding expressiveness, it is interesting to compare the safe
promoted tyft format with the promoted tyft format. We do not yet know the
answer but expect the two formats to be equally expressive.

References

[1] S. Abramsky, The lazy lambda calculus. in: Research topics in functional
programming, Addison-Wesley, Boston, MA, USA, 1990, pp. 65–116.

[2] L. Aceto, W. J. Fokkink, C. Verhoef, Structural Operational Semantics, Chapter
3 of Handbook of Process Algebra, Elsevier Science, Dordrecht, The Netherlands,
2001, pp. 197–292.

[3] K. L. Bernstein, A congruence theorem for structured operational semantics of
higher-order languages, in: Proceedings of the 13th IEEE Symposium on Logic In
Computer Science (LICS’98), IEEE Computer Society, Los Alamitos, CA, USA,
1998, pp. 153–164.

[4] W. J. Fokkink, R. J. van Glabbeek, Ntyft/ntyxt rules reduce to ntree rules,
Information and Computation (I&C) 126 (1) (1996) 1–10.

[5] J. F. Groote, M.R. Mousavi, M. A. Reniers, A Hierarchy of SOS Rule Formats. in:
Proceedings of the 2nd Workshop on Structural Operational Semantics (SOS’05),
Electronic Notes in Theoretical Computer Science 156 (1) (2006) 3–25.

[6] J. F. Groote, F. W. Vaandrager, Structured operational semantics and
bisimulation as a congruence, Information and Computation (I&C) 100 (2)
(1992) 202–260.

[7] D. J. Howe, Proving congruence of bisimulation in functional programming
languages, Information and Computation (I&C) 124 (1996) 103–112.

[8] M.R. Mousavi, M. J. Gabbay, M. A. Reniers, SOS for higher order processes,
in: Proceedings of the 16th International Conference on Concurrency Theory
(CONCUR’05), Lecture Notes in Computer Science, Springer-Verlag, Berlin,
Germany, 2005, pp. 308–322.

[9] B. Thomsen, A Theory of Higher Order Communicating Systems”, Information
and Computation (I& C) 116 (1) (1995) 38–57.

13


	Introduction
	Preliminaries
	Well-Foundedness
	Expressiveness
	Well-Founded Promoted Tyft does not reduce to Tyft
	Tyft does not reduce to Promoted Tyft
	(Promoted) Tyft reduces to Promoted PANTH

	Conclusions
	References

