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Abstract

We present a prototype implementation of SOS meta-theory in the Maude term
rewriting language. The prototype defines the basic concepts of SOS meta-theory
(e.g., transition formulae, deduction rules and transition system specifications) in
Maude. Besides the basic definitions, we implement methods for checking the
premises of some SOS meta-theorems (e.g., GSOS congruence meta-theorem) in
this framework. Furthermore, we define a generic strategy for animating programs
and models for semantic specifications in our meta-language. The general goal of
this line of research is to develop a general-purpose tool that assists language de-
signers by checking useful properties about the language under definition and by
providing a rapid prototyping environment for scrutinizing the actual behavior of
programs according to the defined semantics.
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Term Rewriting, Language Prototyping, Maude.

1 Introduction

Defining a formal semantics for a language is usually among the very first
steps of bringing it into the formal world. The process of defining the se-
mantics involves many choices some of which are very implicit and hidden
from the designer’s naked eyes. Furthermore, there is usually no reference
point to check whether the end result is “correct” and the right choices have
been made during the process of defining the semantics. For a complicated
language, it soon goes beyond human capabilities to keep track of the conse-
quences of design-decisions in the semantics and one can often overlook pos-
sible counter-intuitive phenomena introduced there. Proving theorems about
intuitive properties and checking several instances of system runs (according

1 Email: M.R.Mousavi@tue.nl
2 Email: M.A.Reniers@tue.nl

Preprint submitted to Elsevier Preprint 25 September 2005



to the given semantics) against the intuition are good ways to build insight
and confidence about the semantics.

In this paper, we report an initial attempt to implement a general-purpose
tool that provides a language designer with the above possibilities. Our proto-
type is geared to Structural Operational Semantics (SOS) [22] which is by now
a de facto standard in defining semantics for specification and programming
languages.

There has been a reasonable body of knowledge developed around the con-
cept of SOS which aims at proving useful properties about SOS specifications
[3]. Congruence results [13,5], deriving equational theories [2] and conserva-
tive extensions [11] are among the most notable meta-theories in this direction.
We aim at defining a framework which allows us to check the premises of sim-
ple instances of the above meta-theorems for SOS specifications and further
allows for animating specifications and programs according to the given se-
mantics. The Maude term rewriting language [1] comes in very handy as the
base language for our implementation.

The rest of this paper is structured as follows. In Section 2, we review the
related work in prototyping SOS languages and proving meta-theorems about
them. Afterwards, in Section 3, the general definition of Transition System
Specification as a formalization of SOS is presented and its implementation
in Maude is described. An instance of a congruence meta-theorem is then
defined in Section 4 and implemented. Section 5 defines a simple operational
conservativity theorem and illustrates its implementation. Section 6 is devoted
to animating SOS specifications. Finally, Section 7 concludes the paper and
proposes several possible extensions of our prototype.

2 Related Work

Despite the bulk of knowledge in the area of SOS meta-theory, little has been
done in implementing them. In [21], we report our initial experiment with
implementing an instance of SOS specification in the Maude rewriting logic
[1] which was used as a prototype simulation and model checking environment
for the particular target language. This initial prototype helped us check
and remove a few “bugs” in our initial semantics. Apart from our previous
implementation, other authors have studied the, rather clear, link between the
rewriting logic [15] and SOS [22] both from a theoretical [10,15,16,17] as well
as from a practical point of view [8,9,24,26,27].

In [8], the outline of a translation from Modular SOS (MSOS) [18,19] to
the Maude rewriting logic is given and proven correct. The translation is quite
straightforward and the main technical twist is in the decomposition of labels
into the configurations in the source and the targets of the transitions which is
due to the structure of labels in MSOS. The translation is fully implemented
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and details of this implementation can be consulted in [7]. The main difference
between this research and ours stems from the fact that we take SOS as our
point of departure and this may help us benefit from its theoretical history
(e.g., the meta-theorems implemented in this paper) and practical popularity.

Verdejo in [24] and Verdejo and Marti-Oliet in [26,27] report the implemen-
tation of a number of instances of SOS semantics in Maude. Our approach is
very close in essence to their work in that SOS deduction rules are interpreted
as Maude conditional rewrite rules. This approach is referred to as transitions
as rewrites. We contribute to their work by first, raising the level of abstrac-
tion a bit so that one can talk about SOS rules in general, specify and execute
them and reason about them and second, we implement a bit more involved
case of SOS with negative premises in our framework.

Earlier versions (of Maude) did not support conditional rewriting with
rewrites as conditions. Thus, a different approach has been proposed in [15] to
implement SOS, called transitions as judgements. In this approach each tran-
sition is implemented as a term and SOS deduction rules are implemented as
rewrite rules that rewrite the transition in the conclusion to the transitions in
the premises or vice versa (i.e., constructing a proof structure using a bottom-
up or a top-down approach). Both of these approaches have been suggested by
[15] and the former has been implemented in [25]. Both transitions as rewrites
and as judgements can be useful. In [26], it is reported that the transitions
as rewrites approach is easier to implement and causes less complications.
Furthermore, modeling transitions as rewrites allows for exploiting available
search and model checking libraries implemented in Maude to investigate the
behavior of a model.

LETOS [14] is a tool that generates LaTex documents as well as executable
animation code in Miranda [23] from a wide range of semantics, including some
forms of SOS. A first attempt to implement an SOS meta-theorem, concern-
ing operational conservativity of [13] is also reported in [14]. However, the
implementation does not fully check this theorem and only checks the source-
dependency requirement which is one of the hypotheses of the conservativity
theorem of [13].

3 Transition System Specifications

Motivation

Transition System Specification (TSS) is a formalization of SOS proposed
in [13]. In this section, we define the concept of TSS with constant labels and
negative premises [12,5] and formalize it in Maude. A natural extension of
our framework would be to support terms as labels.
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Basic Definitions

We assume a countably infinite set of variables V = {X0, Y0, . . .}. A
signature Σ contains a number of function symbols (composition operators:
f, g, . . .) with fixed arities (ar(f), ar(g), . . .). Function symbols with arity 0
are called constants. The set of process terms, denoted by T (Σ,V ) with
typical members s, t, s′, t′, is inductively defined on a signature Σ and a set of
variables V . A substitution σ replaces variables in a term with other terms.
A term s can match (is unifiable with) term t if there exists a substitution σ
such that σ(t) = s. The set of variables appearing in term t is denoted by
vars(t). Term t is closed if vars(t) = ∅.

A Transition System Specification (TSS) is a tuple (Σ,V , L,D) where Σ
is a signature, V is a set of variables, L is a set of labels and D is a set of

deduction rules. For all l ∈ L, and s, s′ ∈ T (Σ,V ) we define that s
l→ s′ and

s
l9 are positive and negative formulae, respectively. We refer to s as the

source of both formulae and s′ as the target of the positive one. A deduction
rule dr ∈ D, is defined as a tuple (H, c) where H is a set of formulae and c
is a positive formula. The formula c is called the conclusion and the formulae
from H are called premises. A rule with an empty set of premises is called an

axiom. A deduction rule (H, c) is denoted by H
c . The notion of substitution

and matching are lifted to formulae as expected.

Formalization in Maude

Labels and variables are defined as sorts Labels and Vars, respectively.
Elements of sort Labels are left to be defined by the user, but we treat the
labels as constants (possibly with some algebraic structure). Basic construc-
tors X- n and Y- n are defined for variables Xn and Yn indexed by natural
numbers. A signature is to be defined per specification. Function symbols in
the signature are to be defined using the Maude syntax. For example, a bi-
nary operator + can be defined as op + : T T -> T [ctor], where
T is the given name for the sort of terms and ctor stands for constructor.
Substitutions and matching are already defined for variables and have to be
lifted by the user to the term level. We foresee the possibility of generating
substitution and matching axioms automatically by examining the signature
at meta-level.

Formulae s
l→ s′ and s

l9 are denoted by expressions s == l ==> sp and
s == l =/=>, respectively. A TSS is a functional theory parameterized by
the signature, variables and labels. However, due to a technical issue (lack
of support for parameterized modules in upModule method) in the current
implementation of Maude, we implement them as plain functional modules.
Transforming our implementation to the parameterized setting is a matter of

renaming interfaces and sort names. A deduction rule
H

c
is denoted by
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fmod MPA-TSS is eq vars (delta) = emptyVars .
inc Term-Match . eq vars (act ; s) = vars (s) .
inc TSS-Definition . eq vars (s + t) =
sort BAct . vars (s) cup vars (t) .
subsort BAct < Labels . eq match (delta, delta) = emptySbst .

*** MPA Signature eq match ((s + t), (sp + tp) ) =
op delta : -> T [ctor] . (match (s, sp), match (t, tp)) .
op _ ; _ : BAct T -> T [ctor] . eq match ((act ; s), (act ; t)) =
op _ + _ : T T -> T [ctor] . match (s, t) .

*** Substitutions and Matching *** Operational Semantics of MPA
op a : -> BAct [ctor] . op MPA : -> TSS .
var act : BAct . eq MPA =
var sigma : Sbst . ( ===
vars s t sp tp : T . a ; X- 0 == a ==> X- 0 ) ,
eq sigma ( delta ) = delta . ( X- 0 == a ==> Y- 0
eq sigma (act ; s) = ===

act ; sigma (s) . X- 0 + X- 1 == a ==> Y- 0 ) ,
eq sigma (s + t) = ( X- 1 == a ==> Y- 1

sigma (s) + sigma (t) . ===
X- 0 + X- 1 == a ==> Y- 1 ) .

endfm

Table 1
Structural Operational Semantics of MPA in Maude

H === c and deduction rules in a set are separated by commas.

Using the general implementation of TSS’s and related concepts, we can
specify instances of SOS specification as shown in the examples given below.
Note that the examples are there for explanation purposes and do not neces-
sarily stand for practical and meaningful instances of SOS.

Examples

Table 1 shows the SOS specification of a Minimal Process Algebra (MPA)
in our framework. The Maude code is self-explanatory and is almost the same
as the text appearing in any SOS specification. The signature consists of
a constant delta for the deadlocking process, a class of unary operators a

; for action prefixing with a being a member of the sort BAct (for Basic
Actions) and a binary operator + for the non-deterministic choice. The
concepts of substitution, matching and variables of a term are defined by a
simple structural induction on terms (the base cases for these definitions are
defined generically in the module Term-Match). Deduction rules define the
operational semantics of action prefixing and non-deterministic choice.

Our next example is a simple extension of MPA with the aspect of timing
presented in Table 2. In this extension, we have a new label tick for the
time transition and a new unary operator delay ; which causes a time
transition to happen. Apart from the deduction rules specified before, we
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fmod MPAT-TSS is (( X- 0 == tick =/=> ,
inc MPA-TSS . X- 1 == tick ==> Y- 1 )
op tick : -> Labels [ctor] . ===
op delay ; _ : T -> T [ctor] . X- 0 + X- 1 == tick ==> Y- 1 ) ,
eq sigma (delay ; s) = (( X- 0 == tick ==> Y- 0 ,

delay ; sigma (s) . X- 1 == tick =/=> )
eq match ((delay ; s), ===

(delay ; t)) = match (s , t) . X- 0 + X- 1 == tick ==> Y- 0 ) ,
eq vars (delay ; s) = vars (s) . (( X- 0 == tick ==> Y- 0 ,

*** Operational Semantics of MPAT X- 1 == tick ==> Y- 1 )
op MPAT : -> TSS . ===
eq MPAT = ( MPA, X- 0 + X- 1 == tick ==>
( === Y- 0 + Y- 1 )) .
delay ; X- 0 == tick ==> X- 0 ), endfm

Table 2
A Simple Extension of MPA with Time in Maude

have to add deduction rules defining the behavior of the delay operator and
also the time-deterministic nature of choice (cf. [4]), i.e., time will only decide
about non-deterministic choice if one of the two components blocks the time
transition.

To simplify matters in the remainder, we assume that TSS’s extending
other specifications import (include) the theory to be extended but have all
the newly introduced function symbols, labels and deduction rules in a single
module.

4 A Congruence Meta-Theorem

Motivation

Operational semantics usually induces a labelled transition system for
closed terms and it is interesting to observe when two terms show the same
behavior. This notion of behavioral equivalence can be used to establish that
an implementation is correct with respect to its specification. It is very much
desired for a notion of behavioral equivalence to be compositional or in tech-
nical terms to be a congruence. Several congruence meta-theorems have been
proposed in the literature [3]. These meta-theorems guarantee that a notion
of behavioral equivalence on a particular semantics is a congruence if the de-
duction rules of the semantics conform to some syntactic criteria. Here, as an
example, we choose a practically useful instance of such meta-theorems from
[5] and implement it in our framework. The meta-theorem that we implement
guarantees that the notion of (strong) bisimilarity for a particular TSS is a
congruence.
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Basic Definitions

If TSS tss proves a transition formula p
l→ p′, we denote it by tss � p

l→ p′

(see Section 6 for the precise meaning of “proving a transition”). Given a TSS
tss, a symmetric relation R on closed terms is a bisimulation relation when

∀p,q (p, q) ∈ R ⇒ ∀l,p′ tss � p
l→ p′ ⇒ ∃q′ tss � q

l→ q′ ∧(p′, q′) ∈ R. Two
closed terms p and q are bisimilar, denoted by p ↔ q, when there exists a
bisimulation relation R such that (p, q) ∈ R.

An equivalence relation R on terms is a congruence when for all function
symbols f ∈ Σ and for all terms pi, qi ∈ T (Σ,V ) (0 ≤ i < ar(f)), if (pi, qi) ∈ R
for all 0 ≤ i < ar(f), then (f(p0, . . . , par(f)−1), f(q0, . . . , qar(f)−1)) ∈ R.

A deduction rule is in GSOS format [5] when it has the following form:

{xi
lij→ yij | i ∈ I, j ≤ mi} ∪ {xj

ljk9 | j ∈ J, k ≤ nj}

f(x0, . . . , xar(f)−1)
l→ t

,

where f is a function symbol in the signature, xi and yij’s are all distinct
variables, I and J are subsets of {0, . . . , ar(f) − 1}, mi and nj are natural
numbers and vars(t) ⊆ {xi, yjk|i ∈ I ∪ J, j ∈ I, k ≤ mi}. A TSS is in GSOS
format when all its deduction rules are.

Theorem 4.1 (Congruence for GSOS [5]) If a TSS is in GSOS format
then bisimilarity (w.r.t. its induced transition relation) is a congruence.

Formalization in Maude

Our formalization of the GSOS format makes use of the reflective seman-
tics of Maude. Reflection in this context means that any rewrite theory can be
interpreted as an object inside a “universal” rewrite theory. This way one can
look at theories from a meta-level viewpoint and reason about them. Using
this capability we examine the structure of deduction rules by first, auto-
matically compiling a list of function symbols in the signature (with a target
source T) using the meta-level operation getOps and then, checking whether
the premises contain only the right kind of variables in their source and tar-
get. Using meta-level functions, our implementation becomes independent
from the choice of signature and the set of defined and used variables.

The implemented GSOS-Check method takes the name of the TSS (of type
Qid) as a parameter, reads the signature of the TSS from the corresponding
functional module, checks the conformance of rules and outputs a string which
states the positive result, or alternatively, outputs one deduction rule which
does not conform to the GSOS format.
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fmod Test-TSS is *** Operational Semantics
inc Term-Match . op Test : -> TSS .
inc TSS-Definition . eq Test =

*** Signature ( ===
ops a b : -> T [ctor] . ft (a) == l ==> ft(a)) .
op ft _ : T -> T [ctor] . endfm
op l : -> Labels [ctor] .

Table 3
A Simple TSS Violating GSOS Format

Examples

Consider the TSS’s of MPAT given in Table 2. The following statements
show how to check conformance of MPAT to GSOS format and the outcome
of this check (applying a similar command on MPA results in a similar result).

Maude> red in GSOS-Check : GSOS-Chk ( ’MPAT-TSS , MPAT ) .
reduce in GSOS-Check : GSOS-Chk(’MPAT-TSS,MPAT) .
rewrites: 211 in 30ms cpu (80ms real) (7033 rewrites/second)
result Message: successmsg
("GSOS-Check: TSS conforms to GSOS.")

Now, consider the TSS shown in Table 3. Applying GSOS-Check on this
TSS results in the following error messages.

Maude> red in GSOS-Check : GSOS-Chk ( ’Test-TSS , Test ) .
reduce in GSOS-Check : GSOS-Chk(’Test-TSS,Test) .
rewrites: 49 in 0ms cpu (0ms real) (~ rewrites/second)
result Message: errormsg(
"GSOS-Check: Error, the following rule:",
emFr === ft(a) == l ==> ft(a),
"has more than one operator in its source of conclusion.")

The GSOS meta-theorem only provides sufficient (and not necessary) con-
ditions for the congruence of bisimilarity but in the above case, bisimilarity
is indeed not a congruence: a ↔ b since both of them have no operational
behavior but it does not hold that f(a) ↔ f(b) since the former can make a
transition using the rule mentioned above while the later cannot make any
transition.

5 Operational Conservativity

Motivation

Using the concept of functional modules, we can include SOS specifications
in new modules and extend them with new function symbols, new labels and
new deduction rules. It is often crucial to make sure that such extensions are
conservative, i.e., they do not change the operational behavior of old terms.
In this section, we formulate a simple instance of operational conservativity
meta-theorems (by restricting it to the GSOS framework) and explain its
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implementation in Maude.

Basic Definitions

To extend a language defined by a TSS, one may have to combine an ex-
isting signature with a new one. However, not all signatures can be combined
into one as the arities of the function symbols may clash. To prevent this,
we define two signatures to be consistent when they agree on the arity of the
shared function symbols.

Consider consistent TSS’s tss0 = (Σ0,V0, L0, D0) and tss1 = (Σ1,V1, L1,
D1). The extension of tss0 with tss1, denoted by tss0 ∪ tss1, is defined as
(Σ0 ∪ Σ1,V0 ∪ V1, L0 ∪ L1, D0 ∪D1). If ∀p∈C(Σ0) ∀p′∈C(Σ0∪Σ1) ∀l∈L0∪L1 tss0 ∪
tss1 � p

l→ p′ ⇔ tss0 � p
l→ p′, then tss0∪ tss1 is an operationally conservative

extension of tss0.

The following theorem is a simplification of the general theorem presented
in [11].

Theorem 5.1 (Operational Conservativity for GSOS) Consider consis-
tent TSS’s tss0 = (Σ0,V0, L0, D0) and tss1 = (Σ1,V1, L1, D1) both in the
GSOS format. tss0 ∪ tss1 is an operationally conservative extension of tss0 if
for all deduction rules d ∈ D1, one of the following conditions holds:

(i) d has a function symbol from Σ1 \ Σ0 in the source of conclusion, or

(ii) d has a positive premise xi
lij→ yi with lij ∈ L1 \ L0.

Formalization in Maude

Formalization of this meta-theorem goes along the same lines as that of
the congruence meta-theorem. First, we compile a list of function symbols
and labels in the extended and extending TSS’s and then check the deduction
rules of the extending TSS to either include a fresh function symbol in the
source of conclusion or a fresh label in at least one of the positive premises.

Example

Checking the conservativity of the extension of MPA (Table 1) with time
(Table 2) goes as follows.

Maude> red in CONSV-Check : Cons-Chk ( ’MPA-TSS , MPA, ’MPAT-TSS, MPAT ) .
reduce in CONSV-Check : Cons-Chk(’MPA-TSS,MPA,’MPAT-TSS,MPAT) .
rewrites: 14 in 0ms cpu (0ms real) (~ rewrites/second)
result Message: successmsg
("CONS-Check: Operational conservativity theorem checked successfully.")

Trying the same routine on a non-conservative extension results in an error
message which points out a deduction rule and a hypothesis of the conserva-
tivity theorem that has been violated.
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6 Animating SOS

Motivation

Despite their operational nature, SOS specifications are not in general
executable. As shown in [5], slight extensions to GSOS easily ruin the de-
cidability of proving a transition. To add to the complications, it was shown
in [12] that not all SOS specifications are meaningful, in that they may not
define a transition relation at all or they may ambiguously allow for more than
one transition relation. By taking GSOS as a framework, one may be relieved
of these hassles. Our animation method does not require the TSS to be in
GSOS. However, it guarantees to terminate and produce a sound result if the
TSS is strictly and finitely stratified (GSOS specifications are among these).
Next, we precisely define what it means for a transition to be provable from
a TSS and how this concept is formalized in Maude.

Basic Definitions

A positive closed formula φ is provable from a set of positive formula T and
a transition system specification tss, denoted by (T, tss) ` φ, if and only if
there is a well-founded upwardly branching tree of which the nodes are labelled
by closed formulae such that

• the root node is labelled by φ, and

• if the label of a node q, denoted by ψ, is a positive formula and {ψi | i ∈ I}
is the set of labels of the nodes directly above q, then there is a deduction

rule
{χi | i ∈ I}

χ
in tss (N.B. χi can be a positive or a negative formula)

and a substitution σ such that σ(χ) = ψ, and σ(χi) = ψi for all i ∈ I;
• if the label of a node q, denoted by s

l9 , is a negative formula then there

exists no s′ such that s
l→ s′ ∈ T .

A stable model, also called a transition relation, defined by a transition system
specification tss is a set of formulae T such that for all closed positive formulae

φ, φ ∈ T if and only if (T, tss) ` φ. A transition s
l→ s′ is provable from

tss, denoted by tss � s
l→ s′ when tss induces a unique stable model T and

s
l→ s′ ∈ T .

One way to make sure that a TSS defines a unique transition relation is
through the following notion of stratification.

A stratification of a transition system specification tss is a function S from
closed positive formulae to an ordinal such that for all deduction rules of tss
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of the following form:

{ti
li→ t′i | i ∈ I} {tj

lj9 | j ∈ J}

t
l→ t′

such that for all closed substitutions σ we have (1) for all i ∈ I, S(σ(ti
li→ t′i))

≤ S(σ(t
l→ t′)) and (2) for all j ∈ J and t′′, S(σ(tj

lj→ t′′)) < S(σ(t
l→ t′)). A

stratification measure is strict if in the previous definition ≤ is replaced by
<. A stratification measure is finite if the range of it is the natural numbers.
A transition system specification is called (strictly and/or finitely) stratified if
and only if there exists a (strict and/or finite) stratification function for it.

Corollary 6.1 A TSS in GSOS is strictly and finitely stratified. Thus, all
TSS’s conforming to the GSOS format have a unique stable model [6].

Formalization in Maude

We interpret deduction rules as conditional rewrite rules. In order to check
for possible transitions for a closed term s, we first look for a deduction rule

d ∈ tss of the form
H

s′
l→ t

such that s′ can match (i.e., is unifiable with) s. The

unification of s′ with s results in a substitution σ0 evaluating the variables of
s. We aim at completing σ0 into σ such that first, σ evaluates all the variables
in d (thus, the variables in t), second, all positive premises evaluated by σ
are provable from tss and finally, negative premises evaluated by σ cannot be
contradicted by a proof from tss. To this end, we examine the premises in the
following order.

We search for premises of d of which its source is evaluated by the substi-
tution σj constructed so far. 3 If the premise is a negative one, we make sure
that this fully evaluated premise cannot be contradicted by a proof from tss.

If it is a positive premise of the form ti
li→ t′i, we try to construct a proof for a

transition of σj(ti) to evaluate the variable in t′i. If we succeed in constructing
such a proof, we add the valuation of the variable in t′i to σj resulting in σj+1.
This process continues until no premise remains to be examined.

Each of the above mentioned steps is implemented as a conditional rewrite
rule, rewriting a set of premises and a partial substitution to a (possibly
more complete) substitution. The transition of term s is then modeled as a
conditional rewrite rule from σ0(s) to σn(t) where σn results from the rewrite
rules of the procedure described above. For pure TSS’s [13] such a substitution
evaluates all variables in t (the target of the transition). For non-pure TSS’s,

3 In a large class of TSS’s such a premise can be found. Such TSS’s are theoretically
characterized as pure and well-founded TSS’s [13]. For TSS’s that do not have such property,
a premise is chosen arbitrarily and different closed substitutions for its source are examined.
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variables in t that are not evaluated by the above procedure are mapped in
σn to an arbitrary closed term (again using a rewrite theory).

Next, we quote an excerpt of the Maude code implementing this procedure.

crl ( tss |- ( s == l ==> ) ) =>
( ( sigma, rho ) ( target ( conc ( rule ))))

if
( rule , tssp ) := tss /\
sigma := match ( conc(rule), ( s == l ==> )) /\
( tss ||- ( sigma (prem(rule)))) => rho /\
( ( sigma , rho ) :: Sbst ) /\
( closed ( (sigma, rho) (target (conc(rule) )))) .

In the above code, crl stands for conditional rewriting which rewrites the
term before the arrow => to the term after provided the condition specified by
the if clause holds. In this case, the term before the rewrite arrow consists
of the TSS under consideration (tss) the source (s) and the label (l) of the
transition. The term after the rewriting arrow is the target of the conclusion
of the matching deduction rule (rule) with the substitution (sigma, rho)
to be constructed by the above mentioned procedure applied to it. In the
condition part of the rewrite rule, first, pattern matching is used to pick an
arbitrary rule from the TSS. Then, it is checked whether there is a substitution
sigma matching the source of the rule and s. Next, it is checked whether a
substitution rho can be constructed so that the premises of the rule can be
satisfied (to be explained further in the remainder). If such a substitution can
be found and it evaluates all variables in the target of the conclusion of rule.
Here, we omit the case (of non-pure thus, non-GSOS rules) where the resulting
substitution does not evaluate all variables in the target of the conclusion of
rule.

We distinguish the following two cases for checking the premises of the
deduction rule. If the premise is a positive one, the the check is nothing
but looking for a transition from the source which matches the target of the
premise. The matching substitution sigma is then used to evaluate the rest
of the premises.

crl ( tss ||- ( s == l ==> t ) ) => sigma
if
( tss |- ( s == l ==> ) ) => sp /\
sigma := match ( t, sp ) .

If the premise is a negative one, we use the meta-level method metaRewrite

to check whether a contradicting rewrite (transition) can be found using the
same rewriting theory. Note that the check for negative premises does not add
any information with respect to the substitution under constructed. Thus,
the result of the rewrite is the empty substitution (emSbst). Again in both of
these cases, we omit the rewrite rules dedicated to the cases where the chain
of premises is broken (i.e., the rule is not pure) and no transition with a closed
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source can be found among the evaluated premises.

crl ( tss ||- (s == l =/=> ) ) => ( emSbst )
if
possible? := metaRewrite( [’TSS-Animation],

upTerm( ( tss |- ( s == l ==> ) ) ), 1 ) /\
(possible? :: ResultPair ) .

The above procedure, upon termination, gives us a complete proof for the
transition with a guarantee that negative premises cannot be refuted using
our rewrite theory, thus, using the SOS semantics. However, in general this
procedure need not terminate. Consider the following two SOS specifications.

a == l ==> a a == l =/=>
=== ===
a == l ==> a a == l ==> a

The Maude tool crashes when trying to animate any of the above two
TSS’s since the procedure results in an infinite chain of rewrites each being
a condition for the next. However, this problem does not occur in GSOS
specifications and in general, strictly and finitely stratified TSS’s because for
such TSS’s checking conditions of each rewrite results in a condition with a
lower stratification measure. Hence, the depth of conditional rewrite checks
for a transition is always finite. Also, breadth of this search is always finite,
since we can only specify a finite number of rules each having a finite number
of premises. If the proof search is successful on all premises, it provides us
with a substitution that valuates the variables in the target of the deduction
rule and hence, we are able to find a possible transition for term s using the
label and evaluated target of the conclusion of the deduction rule.

It is worth mentioning that this procedure is non-deterministic in that there
may be several provable transitions for a closed term s. The Maude semantics
has an inherent support for non-deterministic rewrite theories and hence the
choice among such transitions remains non-deterministic and is eventually
made by the Maude rewriting engine. Using the Maude tool one can browse
through provable transitions, check for provability of a particular transition
and even use logical formulae (Linear Temporal Logic (LTL) formulae) to
model check properties of transitions and runs.

Example

Consider the TSS MPA of Table 1. We can animate a transition for the
term a ; (( a ; delta) + delta ) as follows.

Maude> rew in TSS-Animation :
( MPA |- ( a ; ( a ; delta + delta ) == a ==> ) ) .

rewrite in TSS-Animation : MPA |- a ; (a ; delta + delta) == a ==> .
rewrites: 13 in 0ms cpu (0ms real) (~ rewrites/second)
result T: a ; delta + delta
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7 Conclusions and Future Extensions

In this paper, we presented an initial attempt to implement SOS meta-theory
in Maude. Our implementation defines a basic SOS framework with constant
labels and provides a way to check the premises of congruence and opera-
tional conservativity meta-theorems. Furthermore, it allows for animating
SOS specifications.

Maude was a very convenient choice for our implementation. Particularly,
the correspondence between rewrites and transitions simplified the translation
from SOS to Maude. The reflective semantics of Maude was crucial in our
implementation. We expect easier and more efficient implementations as the
meta-level facilities provided by Maude improve gradually.

In order to turn this prototype into a full-fledged tool for SOS, we foresee
the following possible extensions:

(i) Implementing the more general SOS frameworks and their correspond-
ing meta-theorems: There are more general SOS frameworks that allow
for terms as labels, multi-sorted and binding signatures. Implementing
such frameworks increases the applicability of our tool. Furthermore,
the meta-theorems we implemented in this paper are among the most
simple versions of the available meta-theorems for congruence and oper-
ational conservativity. By extending the SOS framework to more general
settings, implementing the more general meta-theorems such as those of
[20,11] would be beneficial.

(ii) Generating sound and complete equational theories: A class of meta-
theorems that we did not address in this paper concerns generating equa-
tional theories from SOS specifications (see [2], for example). These meta-
theorems also have an algorithmic nature and can be implemented in our
framework.

(iii) Generating natural language documentation (and possibly research pa-
pers!) from the specified semantics.

(iv) Automatically generating the term matching and substitution definitions:
To check the congruence and operational conservativity meta-theorems,
we used routines that extract function symbol definitions from a theory.
Using similar routines we may automate the substitution and matching
procedures and make the Maude code for SOS specifications even more
compact.

(v) Building a graphical user interface and importing SOS specifications from
a general input format (e.g., XML).
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