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Abstract

In 1981 Structural Operational Semantics (SOS) was introduced as a systematic
way to define operational semantics of programming languages by a set of rules
of a certain shape [62]. Subsequently, the format of SOS rules became the object
of study. Using so-called Transition System Specifications (TSS’s) several authors
syntactically restricted the format of rules and showed several useful properties
about the semantics induced by any TSS adhering to the format. This has re-
sulted in a line of research proposing several syntactical rule formats and associated
meta-theorems. Properties that are guaranteed by such rule formats range from
well-definedness of the operational semantics and compositionality of behavioral
equivalences to security- and probability-related issues. In this paper, we provide
an initial hierarchy of SOS rules formats and meta-theorems formulated around
them.

Key words: Formal Semantics, Structural Operational Semantics,
Rule Formats, Framework.

1 Introduction

Structural Operational Semantics has become the common way to define oper-
ational semantics. Operational semantics defines the possible transitions that
a piece of syntax can make during its “execution”. Each transition may be
labelled by a message to be communicated to the outside world. Transitions of
a composed piece of syntax can usually be defined in a generic way, in terms
of the transitions of its constituting parts. This forms the central idea behind
Structural Operational Semantics (SOS).
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Transition System Specifications (TSS’s), as introduced by Groote and
Vaandrager in [36], are a formalization of SOS. By imposing syntactic restric-
tions on TSS’s one can deduce several interesting properties about their in-
duced operational semantics. These properties range from well-definedness of
the operational semantics [35,15,32] to security- [70,71] and probability-related
issues [10,41]. The syntactic restrictions imposed by these meta-theorems usu-
ally suggest particular forms of deduction rules to be safe for a particular
purpose and hence these meta-theorems usually define what is called a rule
format.

The excellent overview [3] provides existing rule formats to its date of
publication (2001). Since then, even more formats have been proposed and
we felt that in order to keep track, this field of formats requires some structure.
Therefore, we attempt to present an overview of all SOS rule formats defined
in the literature, together with the meta-theorems formulated around them.
All the results are put in a lattice to easily locate the most suited format for a
certain application. To do this, we define the concept of a TSS, in a far more
general setting than [36], including the concepts of multi-sorted signatures and
variable binding, inspired by the definition of [24]. This general definition of
TSS serves as a unifying framework and paves the way for studying semantic
meta-theorems for SOS and comparing their underlying frameworks.

The rest of this paper is organized as follows. In Section 2 the hierarchy
of formats is given. In Section 3, we list different syntactic features that an
SOS rules can have. In Section 4, we review semantic meta-theorems about
different SOS frameworks.

Disclaimer. This paper is a step towards a complete survey. This means
that although most formats and results are mentioned in the remainder of this
paper, some rule formats and meta-result can still be missing. We will be very
thankful if notified of such omissions.

Acknowledgements. Peter Mosses, Simone Tini and Irek Ulidowski pro-
vided useful comments on the draft of this article.

2 A hierarchy of operational formats

Since the first formats have been defined for TSS rules, many have been added.
In order to keep track of them we made an overview of the existing rule formats
in Figure 1. The lattice presented there has SOS frameworks as nodes, ordered
by syntactic inclusion (mainly based on the syntactic features). The most
general format can be found at the top and more specific formats at lower
positions. The arrows indicate syntactical inclusion. The one inclusion that
is not syntactic but possibly require some translation of syntactic constructs
is indicated by a dotted line.

A node in this lattice has the structure shown in the left-hand-side below.
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Fig. 1. A hierarchy of existing SOS formats

At the right an example is shown, taken from the lattice.

Format Name

Syntactic Features

Semantic Meta-Theorems [references]

NTyft/NTyxt (NTree)

SS, CPY, LA, Neg.

C(↔s) [21,35]

The syntactic features of each format are described in Section 3. The
abbreviations can be found in Table 1. The theorems holding for TSS’s in
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each format are described in Section 4 and the abbreviations can be found in
Table 2.

3 Syntactic Features of TSS’s

In this section we list the distinctive syntactical features of the different rule
formats. The typical features for each format are listed in Table 1.

Shorthand Syntactic Feature

SS vs. MS Single- vs.

Multi-Sorted Terms

VB Variable Binding

TL vs. TL∗ A Term vs.

List of Terms as Labels

CPY Copying Variables

LA Lookahead

Pred Predicates

Neg Negative Premises

Table 1
Syntactic features of rule formats (cf. Fig. 1)

3.1 Labels

Labels are terms that may appear as parameters of transition relations and
predicates in the deduction rules. SOS frameworks can be classified with re-
spect to the kind of labels they afford as follows.

Open Terms as Labels. Many SOS frameworks assume a special sort for
labels and only allow for constants (alternatively, closed terms) of this sort to
appear as labels. Such SOS frameworks thus forbid any correlation between
valuation of terms and labels through the use of common variables. Frame-
works defined in [24,26,11,53] allow for arbitrary terms as labels. All other
SOS frameworks reviewed in this paper only allow for constant labels.

Open terms are used as labels in a number of cases in transition sys-
tem specifications. Higher-order process calculi [16,69,66] are examples of
formalisms exploiting this feature.
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Two other frameworks that use labels with some structure on them are
the Modular SOS framework of [51,52] and Enhanced Operational Semantics
of [18]. The former assumes that labels are arrows of a category and thus
comes equipped with composition and identity. The latter approach codes the
derivation tree of transitions on their labels.

Lists of Terms as Labels. Most SOS frameworks only allow for a single
term as label. The only existing exceptions are those of [24,53].

3.2 Signatures

Names and Binders. In many contemporary process algebras and calculi,
concepts of names, (actual and formal) variables and name abstraction (bind-
ing) are present and even serve as a basic ingredient. For example, in the
π-calculus [48,49,50], names are first-class citizens and the whole calculus is
built around the notion of passing names among concurrent agents. Less cen-
tral, yet important, instances of these concepts appear in different process
algebras in the form of the recursion operator, the infinite sum operator and
the time-integration operator (cf., for example, [48], [44,63] and [7], respec-
tively). Hence, it is interesting to accommodate the concept of names in the
TSS framework.

There have been a few attempts in this direction. Proposals for modeling
names and binders are formulated in [83,24,45,46,39,65]. Apart from the in-
troduction of parameterized variables, the TSS frameworks of [83,45,46,39,65]
are more restricted than that of [24] in that they do not allow for open terms
as labels. Furthermore, the frameworks of [83,39,65] do not support negative
premises.

Apart from the above mentioned formats, all other rule formats we mention
in the remainder of this paper do not support names and binders.

Multi-Sorted States. Based on the number of sorts allowed in the signature,
an SOS framework may be classified in the following three categories:

(i) Multi-sorted TSS’s: In such frameworks, there is no restriction on the
sorts allowed for constructing terms.

(ii) N -sorted TSS’s: A framework may only allow for a fixed number of
sorts participating in the signature. An example of such frameworks is
the process-tyft format of [55] where there are two distinguished sorts of
processes and data. Apart from these two sorts that are used to define
the states of the semantics, there is a sort for constant labels.

(iii) Single-sorted: This is the most common framework in the literature. It
has a single sort for operational states which is usually called the sort of
processes (and terms from this sort are process terms). In this framework,
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there is usually a sort for constant labels, as well.

The TSS of [26] has a special status with respect to its allowed signatures.
Namely, it requires a special sort for processes and at least one (necessarily
different) sort for labels. Furthermore, it requires that process sorts should
not participate in function symbols with label sorts as targets.

3.3 Positive Premises and the Conclusion

Lookahead. A framework allows for lookahead if a deduction rule in the
framework may have two premises with a variable in the target of one of the
premises being present in the source of the other. An example of a deduction
rule with lookahead is the following.

x
τ→ y y

l→ z

x
l→ z

The above rule from [28] is used to combine silent (τ) and ordinary transitions
in order to implement a weak semantics (by ignoring silent steps) inside a
strong semantic framework.

Well-foundedness. The variable dependency graph of a deduction rule is
a graph of which the nodes are variables and there is an edge between two
variables if one appears in the source and the other in the target of (the same)
positive premise in the deduction rule. A deduction rule is well-founded when
all the backward chains of variables in the variable dependency graph are
finite. A TSS is well-founded when all its deduction rules are.

All practical instances of SOS specifications are well-founded. Well-foundedness
also comes very handy in the proof of semantic meta-results for SOS frame-
works. It is of theoretical interest whether a framework allows for non-well-
founded deduction rules or not.

Copying. A framework has the copying feature if it allows for repetition of
variables in different premises and in the target of the conclusion and sharing
a variable between the source of a premise and target of the conclusion (called
branching premises, explicit copying and implicit copying, respectively in [72])
. A simple example of copying is the second rule in the following TSS which
defines the semantics of the while construct.

¬Hold [b, M ]

〈while (b) do P od, M〉 ↓

Hold [b, M ]

〈while (b) do P od, M〉→ 〈P ; while (b) do P od, M〉
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Infinite Premises. It is an interesting theoretical question whether a frame-
work allows for infinite number of premises or not. Also practically, when
dealing with infinite domains (e.g., infinite basic actions, data or time do-
mains), it is sometimes useful to have deduction rules with infinite premises.
The following example from [58] illustrates a possible use of deduction rules
with infinite premises:

x
a→ y a /∈ H

∂H(x)
a→ ∂H(x′)

∀a∈A\Hx
a9

∂H(x)
χ→ δ

The above deduction rules define the semantics of the encapsulation oper-
ator ∂H( ) which forbids its parameter from performing actions in H. If the
parameter cannot perform any ordinary action allowed by ∂H then it makes a
transition to the deadlocking process δ. If the set of basic actions is infinite,
then for some finite H, the deduction rule in the right-hand side has infinite
(negative) premises.

3.4 Negative Premises

Negative premises are a complicating factor in SOS frameworks. They cause
several complications with respect to the semantics of TSS’s which are rather
difficult to solve. In other words, it is not immediately clear what can be
considered a “proof” for a negative formula.

To our knowledge, in practice, the first example of negative premises in
SOS appeared in [6] in the specification of the semantics of the following
priority operator θ( ).

x
a→x′ ∀b>ax

b9

θ(x)
a→ θ(x′)

The above deduction rule states that a parameter of θ( ) can perform a
transition with label a if no transition with a label b of higher priority can
be performed (according to a given ordering >). In addition to negative
premises, the above deduction rule may have infinite premises if there is a
chain of priorities with infinitely many (different) basic actions.

3.5 Predicates

Predicates are useful syntactic features which are used to specify phenomena
such as termination or divergence.

3.6 Other Syntactic Features

Ordering the Deduction Rules. One way to avoid the use of negative
premises (and sometimes predicates) is by defining an order among deduction
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rules. Then, a deduction rule of a lower order may be applied to prove a
formula only when there is no deduction rule with a higher order applicable.
For example, the semantics of the priority operator defined in Section 3.4 can
be expressed in terms of a number of rules of the following form

(ra)
x

a→x′

θ(x)
a→ θ(x′)

with an ordering << defined by ra << rb whenever a < b. The semantics of
the sequential composition operator can also be defined as follows.

(rx)
x

l→x′

x; y
l→x′; y

(ry)
y

l→ y′

x; y
l→ y′

with the ordering << defined by ry << rx. This way, the second argument of
sequential composition can take over, only when the first part cannot make
a transition, i.e., has terminated (we do not consider unsuccessful termina-
tion or deadlock in this simple setting). The implications of introducing an
order among deduction rules and its possible practical use are investigated in
[74,75,76,61].

Equational Specifications. Structural congruences are equational addenda
to SOS specification which can define inherent properties of function symbols
or define some function symbols in terms of the others. For example, the fol-
lowing equation specifies that the order of arguments in a parallel composition
does not matter or in other words, that parallel composition is commutative.

x || y ≡ y ||x
In [54], the addition of equational specifications to SOS specifications is studied
in detail.

4 Semantic Meta-Results

In this section we list a number of meta-results. Each meta-result is abbrevi-
ated (see Table 2) and indicated in each format in Figure 1. To fix the notation
for the semantic properties and their corresponding meta-result, next, we de-
fine the notion of TSS.

Definition 4.1 (Transition System Specification(TSS)) A TSS denoted
by the pair (Σ, D) is a set of deduction rules d ∈ D defined on a signature Σ
where each deduction rule is of the following shape:

{P (Li)ti or ti
Li→ t′i | i ∈ I} {¬P (Lj)tj or tj

Lj9 | j ∈ J}

P (L)t or t
L→ t′

In the above rule schema t, tx and t′x stand for terms from signature Σ and
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L and Lx are lists of terms from the same signature. Statements of the form
P (L)t and ¬P (L)t are called positive and negative predicate formulae, respec-

tively. Statements of the form t
L→ t′ and t

L9 (where in the latter statement t′

may or may not be present) are called positive and negative transition formu-
lae, respectively. The sets I and J are arbitrary (possibly infinite) index sets.
In a deduction rule, the statements above the line are called premises and the
one below the line is called conclusion.

For TSS’s with constant labels, a distinguished sort L is dedicated to rep-
resent the labels and then the lists L and Lx in the above rule are confined to
have a single constant (closed term) from this sort. In the literature, as well
as in the remainder of this paper, for TSS’s with constant labels, sort L is
taken out of the signature Σ and such TSS’s are then represented by a triple
(Σ, L, D).

Semantic Meta-Theorems

Shorthand Semantic Meta-Theorems

C(↔x) Congruence for

x-Bisimulation

C(≈x) Congruence for

x-equality

PC(≤x) Pre-congruence for

x-pre-order

OC Operational Conservativity

Axiom. Deriving Sound and

Complete Axiomatization

Ind. Eq. Comparison of

Induced Equality Classes

NIntrf Non Intereference

(Security-related [64])

BNd Bounded Non-determinism

Stoch Stochasticity

Table 2
Short-hands for theorems used in Figure 1
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4.1 Congruence for Behavioral Equivalences

Given an operational semantics, it is interesting to observe when two systems
show the same behavior. It is also interesting to check whether a particular
system is a restricted implementation of the other. To check these, we have to
have notions of behavioral equivalence and behavioral pre-order, respectively.
It is very much desired for a notion of behavioral equivalence (pre-order) to
be compositional or in technical terms to be a congruence (pre-congruence).
There is a myriad of notions of behavioral equivalence and pre-order in the
literature [30,29]. Correspondingly, there are a number of rule formats guaran-
teeing these notions to be a (pre-)congruence [36,13,12,33]. In the remainder,
we confine ourselves to single-sorted frameworks. In such frameworks, the ar-
ity of a function symbol can be conveniently expressed by a natural number
(representing the number of parameters in the left-hand side of the arrow).
The only congruence meta-theorems for multi-sorted frameworks are those of
[26,45,24,83] and with open terms as labels are [26,24,53].

We start with defining the notion of congruence for relations on closed
terms.

Definition 4.2 ((Pre-)Congruence) An equivalence (pre-order) R ⊆ C ×
C is a (pre-)congruence with respect to a signature Σ if and only if for all
(f, ar(f)) ∈ Σ and all −→p ar(f),

−→q ar(f) ∈ T , if −→p ar(f) R −→q ar(f) then f(−→p ar(f))
R f(−→q ar(f)).

The first congruence formats were defined for the notion of strong bisimi-
larity, defined below.

Definition 4.3 (Bisimulation and Bisimilarity [60]) A relation R ⊆ C×
C is a bisimulation relation with respect to a set of transition relations Rel and
a set of predicates Pr if and only if ∀p,q∈C pRq ⇒ ∀r∈Rel,P∈Pr such that r and
P are of arbitrary arities of n and m,

(i) ∀p′∈C,l∈L p
l→ p′ ⇒ ∃q′∈C q

l→ q′ ∧ (p′, q′) ∈ R;

(ii) ∀q′∈C,l∈L q
l→ q′ ⇒ ∃p′∈C p

l→ p′ ∧ (p′, q′) ∈ R;

(iii) P (l) p ⇔ P (l) q.

Two closed terms p and q are are bisimilar if and only if there exists a bisim-
ulation relation R with respect to Rel such that (p, q) ∈ R. Two closed terms
p and q are bisimilar with respect to a transition system specification tss, de-
noted by tss ` p ↔ q, if and only if they are bisimilar with respect to the
semantics of tss.

There are good reasons for considering strong bisimilarity as an important
notion of behavioral equivalence. Here, we mention a few.

(i) Strong bisimilarity usually gives rise to elegant and neat theories and it
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turns out that congruence formats for it are also much more elegant and
compact than those for other (weaker) notions;

(ii) For finite state processes, strong bisimilarity can be checked very effi-
ciently in practice [59] while some weaker notions are intractable [40];

(iii) Other notions can often be coded in strong bisimilarity [28].

So, it is not surprising that the first standard congruence format was geared
toward strong bisimilarity. This format was proposed by De Simone in [17].

Definition 4.4 (De Simone Format) The De Simone format uses the pos-
itive framework with constant labels and allows for deduction rules of the fol-
lowing form:

{xi
li→ yi | i ∈ I}

f(−→x ar(f))
l→ t

[Pred(
−→
li , l)].

where xi and yi are distinct variables ranging over process terms, f is a func-
tion symbol from the signature (e.g., sequential composition, parallel compo-
sition, etc.), I is a subset of the set {1, . . . , ar(f)} (indices of arguments of
f), t is a process term that only contains variables among yi’s for i ∈ I and
xj’s for j /∈ I and does not have repeated occurrences of variables, li’s and l
are constant labels and Pred is a predicate stating the relationship between the
labels of the premises and the label of the conclusion.

Bloom, Istrail and Meyer, in their study of the relationship between bisim-
ilarity and completed-trace congruence [14], define an extension of the De Si-
mone format, called GSOS (for Structural Operational Semantics with Guarded
recursion), to capture reasonable language definitions. The GSOS format ex-
tends the De Simone format by allowing for copying and negative premises.
The GSOS format is formally defined as follows.

Definition 4.5 (GSOS Format) A deduction rule is in the GSOS format
when it is of the following form:

{xi
lij→ yij | i ∈ I, 0 ≤ j ≤ mi} ∪ {xj

ljk9 | j ∈ J, 0 ≤ k ≤ nj}

f(−→x ar(f))
l→ t

.

where f is a function symbol, xi (1 ≤ i ≤ ar(f)) and yij’s (i ∈ I and j ≤
mi) are all distinct variables, I and J are subsets of {1, . . . , ar(f)}, mi and
nj are natural numbers (to set an upper bound on the number of premises),
vars(t) ⊆ {xi, yjk|i ∈ I ∪ J, j ∈ I, k ≤ mi} and lij’s, ljk’s and l are constant
labels. A TSS is in the GSOS format when all its deduction rules are.

Another orthogonal extension of the De Simone format is called tyft/tyxt
format and is first formulated in [36]. 4 This format allows for lookahead,

4 Tyft/tyxt is a code representing the structure of symbols in the deduction rules, namely,
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copying and an infinite set of premises.

Definition 4.6 (Tyft/tyxt Format [36]) A rule is in the tyft format if and
only if it has the following form.

{ti
li→ yi|i ∈ I}

f(−→x ar(f))
l→ t

where xi and yi are all distinct variables (i.e., for all i, i′ ∈ I and 1 ≤ j, j′ ≤
ar(f), yi 6= xj and if i 6= i′ then yi 6= yi′ and if j 6= j′ then xj 6= xj′), f is a
function symbol from the signature, I is a (possibly infinite) set of indices, t
and ti’s are arbitrary terms and li’s and l are constant labels.

A rule is in tyxt format if it is of the above form but the source of conclusion
is a variable distinct from all targets of premises. A TSS is in the tyft format
when all its deduction rules are. A TSS is in the tyft/tyxt format when all its
deduction rules are either in the tyft or in the tyxt format.

Any TSS in the tyft/tyxt format can be reduced to an equivalent TSS (in-
ducing the same transition relations) in the tyft format. In [36], to prove con-
gruence of strong bisimilarity for TSS’s in the tyft/tyxt format, well-foundedness
of the TSS is assumed. Later, in [19], it is shown that the well-foundedness
constraint can be relaxed and that for every non-well-founded TSS in the
tyft/tyxt format, a TSS exists that induces the same transition relation and is
indeed well-founded.

Theorem 4.7 (Congruence of Bisimilarity for Tyft/tyxt [36,19]) For a
TSS in the tyft/tyxt format, strong bisimilarity is a congruence.

The merits of the two extensions were merged in [35] where negative
premises were added to the tyft/tyxt format, resulting in the ntyft/ntyxt for-
mat.

Definition 4.8 (Ntyft/ntyxt Format [35]) A rule is in the ntyft format if
and only if it has the following form.

{ti
li→ yi|i ∈ I} {tj

lj9 |j ∈ J}

f(−→x ar(f))
l→ t

The same conditions as of the tyft format hold for the positive premises and
the conclusion. There is no particular constraint on the terms appearing in
the negative premises. Set J is the (possibly infinite) set of indices of negative
premises. A rule is in the ntyxt format if it is of the above form but the source
of conclusion is a variable distinct from all targets of premises. A TSS is in
the ntyft format when all its deduction rules are. A TSS is in the ntyft/ntyxt

a general term (t) in the source of the premises, a variable (y) in the target of the premises,
a function symbol (f) or a variable (x) in the source of the conclusion and a term (t) in the
target of the conclusion.
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format when all its deduction rules are either in the ntyft or in the ntyxt
format.

As explained before, introduction of negative premises in the ntyft/ntyxt
format brings about doubts regarding the well-definedness of the semantics.
In the coming section, we give well-definedness criteria (from [35,15]) for the
semantics of TSS’s in the ntyft/ntyxt format. Well-foundedness assumption
was also used in [35] and was shown to be redundant in [21].

Finally, the PATH format [8] for Predicates And Tyft/tyxt Hybrid format)
and the PANTH format [81] (for Predicates And Negative Tyft/tyxt Hybrid
format) extend the tyft/tyxt and the ntyft/ntyxt with predicates, respectively.

Definition 4.9 (PANTH Format [35]) A rule is in the PANTH format if
and only if it has the following form.

{Pi(li) ti or ti
li→ yi|i ∈ I} {¬P (lj) tj or tj

lj9 |j ∈ J}

P (l) t or f(−→x ar(f))
l→ t or x

l→ t

The same conditions as of the ntyft/ntyxt format hold for the premises and
the conclusion. A TSS is in the PANTH (PATH) format when all its deduction
rules are (and it contains no negative premises).

[11,53] generalize tyft/tyxt and PANTH format, respectively, to their promoted-
counterparts which cater for open terms as labels.

In [45], the PANTH format is extended for multi-sorted variable binding.
This covers the problem of operators such as recursion or choice over a time
domain. The issue of binding operators for multi-sorted process terms is also
briefly introduced in [3].

A number of other standard formats have been proposed for the congru-
ence of weaker notions of bisimulation. A major example of such formats is the
Cool languages format introduced in [12] which proves congruence of (rooted)
weak and branching bisimulations. This format has recently been reformu-
lated in [33] and extended to prove congruence of delay and η-bisimulations.
In [31], the ready simulation format is proposed that induces congruence for
ready simulation. This format is the ntyft/ntyxt format without the lookahead
feature. The ready simulation format is further restricted in [13] to obtain
pre-congruence for readiness, ready traces and failures pre-order. Note that
pre-congruence for a pre-order implies congruence for the corresponding equiv-
alence (the kernel of the pre-order). Fokkink in [20] presents the RBB Safe
format which induces congruence for rooted branching bisimulation and gen-
eralizes the Cool languages format of [12] to the setting with negative premises
and predicates.

In [53], the higher-order PANTH format is presented which induces congru-
ence for higher-order bisimilarity [4]. The rule format of [83] guarantees that
open-bisimilarity [67] is a congruence.
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4.2 Well-definedness of the Semantics

For positive TSS’s, i.e., TSS’s without negative premises, the semantics of a
TSS is clear; the transition relation (and the predicate) induced by a TSS is
precisely the set of closed transitions (and predicate) formulae provable using
the deduction rules. However, if there are negative premises in the semanti-
cal rules it is not self-evident anymore whether the rules define a transition
relation in an unambiguous way. For example, consider the following two
TSS’s:

c
a9

c
a→ c

c
a9

c
b→ c

c
b9

c
a→ c

The left-hand-side TSS is kind of paradoxical and the right-hand-side one
is ambiguous in that it is not clear why one would prefer one of the two

possible transitions c
a→ c or c

b→ c over the other. ([32] gives an overview of
this issue, present 11 different semantic interpretations of TSS’s and compares
them formally.)

In [35], the first criterion is given using which a TSS in the ntyft/ntyxt
format is guaranteed to have a well-defined semantics. This criterion, defined
below, is called (strict) stratification and is originally due to [27] in logic
programming. It is an important property of a format when it guarantees
that every set of rules equivocally defines a transition relation.

In [35], Groote defines a criterion which guarantees a TSS in the ntyft/ntyxt
format to induce a well-defined semantics. This criterion, defined below, is
called (strict) stratification and is originally due to [27] in the setting of logic
programming.

Definition 4.10 (Stratification [35]) A stratification of a transition sys-
tem specification tss is a function S from closed positive formulae to an ordinal
such that for all deduction rules in tss of the following form:

{ti
li→ t′i|i ∈ I} {tj

lj9 |j ∈ J}

f(−→x ar(f))
l→ t

and for all closed substitutions σ, ∀i∈IS(σ(ti
li→ t′i)) ≤ S(σ(f(−→x ar(f))

l→ t)) and

∀j∈J ∀t′∈T S(σ(tj
lj→ t′)) < S(σ(f(−→x ar(f))

l→ t)). A transition system specifi-
cation is called stratified when there exists a stratification function for it. If
the measure decreases also from the conclusion to the positive premises, then
the stratification is called strict.

The following theorem shows useful properties of stratified TSS’s.

Theorem 4.11 (Properties of Stratified TSS’s [15]) A stratified TSS in
the ntyft/ntyxt format has a unique semantics (called its stable model) and for
such a TSS bisimilarity is a congruence.
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TSS’s in the GSOS format are strictly stratified using a measure of size on
terms in the source of the transition formulae. As a corollary of the above
theorem, one may deduce that the semantics of a TSS in the GSOS format
is well-defined and bisimilarity is a congruence for such a TSS. Of course,
congruence of bisimilarity for the GSOS format had been directly proven in
[14].

Definition 4.10 and Theorem 4.11 can easily be extended to the PANTH
format (by interpreting predicates as transitions with dummy targets). The-
orem 4.11 has been generalized to the so-called, positive after reduction or
complete TSS’s in [15]. In the same paper, an of a TSS in the ntyft/ntyxt
format is given for which bisimilarity is not a congruence. This TSS, does not
satisfy the criterion of being positive after reduction (and thus, not stratified),
yet has a unique semantics.

4.3 Conservativity of Language Extensions

Operational semantics of languages may be extended by adding new pieces
of syntax to the signature and new rules to the set of deduction rules. A
number of meta-theorems have been proposed to check whether extensions
do not change the behavior of the old language and whether they preserve
equalities among old terms. Two general instances of such meta-theorems are
formulated in [24,46]. We review the results of [24] (simplified to the setting
with constant labels and without binders) in this section, which gives the most
detailed account of this issue.

To extend a language defined by a TSS, one may have to combine an ex-
isting signature with a new one. However, not all signatures can be combined
into one as the arities of the function symbols may clash. To prevent this,
we define two signatures to be consistent when they agree on the arity of the
shared function symbols. In the remainder, we always assume that extended
and extending TSS’s are consistent. The following definition formalizes the
concept of operational extension.

Definition 4.12 (Extension of a TSS) Consider TSS’s tss0 = (Σ0, L0, D0)
and tss1 = (Σ1, L1, D1). The extension of tss0 with tss1, denoted by tss0∪tss1,
is defined as (Σ0 ∪ Σ1, L0 ∪ L1, D0 ∪D1).

Next, we define when an extension of a TSS is called operationally conser-
vative.

Definition 4.13 (Operational Conservativity [80]) Consider TSS’s tss0

= (Σ0, L0, D0) and tss1 = (Σ1, L1, D1). If ∀p∈C(Σ0) ∀p′∈C(Σ0∪Σ1) ∀l∈L0∪L1

tss0 ∪ tss1 � p
l→ p′ ⇔ tss0 � p

l→ p′ (and similarly, tss0 ∪ tss1 � P (l) p ⇔
tss0 � P (l) p) , then tss0 ∪ tss1 is an operationally conservative extension of
tss0.

15



Next, we formulate sufficient conditions to prove operational conservativ-
ity. But before that, we need a few auxiliary definitions.

Definition 4.14 (Source Dependency) All variables appearing in the source
of the conclusion of a deduction rule are called source dependent. A variable
of a deduction rule is source dependent if it appears in a target of a premise of
which all the variables of the source are source dependent. A premise is source
dependent when all the variables appearing in it are source dependent. A rule
is source dependent when all its variables are. A TSS is source dependent
when all its rules are.

Definition 4.15 (Reduced Rules) For a deduction rule d = (H, c), the re-
duced rule with respect to a signature Σ is defined by ρ(d, Σ)

.
= (H ′, c) where

H ′ is the set of all premises from H which have a Σ-term as a source.

The following result, from [24], gives sufficient conditions for an extension
of a TSS to be operationally conservative.

Theorem 4.16 (Operational Conservativity Meta-Theorem [24]) Given
two TSS’s tss0 = (Σ0, L0, D0) and tss1 = (Σ1, L1, D1), tss0 ∪ tss1 is an oper-
ationally conservative extension of tss0 if:

(i) tss0 is source dependent;

(ii) for all d ∈ D1 at least one of the following holds:
(a) the source of the conclusion has a function symbol in Σ1 \ Σ0, or

(b) ρ(d, Σ0) has a source-dependent positive premise t
l→ t′ such that l /∈

Σ0 or t′ /∈ T (Σ0).

In [57], slightly more liberal notion of operational conservativity, called
orthogonality, is introduced and a meta-theorem about it is proposed. Or-
thogonality allows for the addition of new transitions and predicates on the
old syntax provided that these new transitions and predicates do not change
the behavioral equalities among old terms.

4.4 Generating Equational Theories

Equational theories are central notions to process algebras [5,38,47]. They
capture the basic intuition behind the algebra, and the models of the algebra
are expected to respect this intuition (e.g., the models induced by operational
semantics modulo bisimilarity). One of the added-values of having equational
theories is that they enable reasoning at the level of syntax without committing
to particular models of the semantics. When the semantic model of behavior
(e.g., the transition system associated to a term) is infinite, these techniques
may come in very handy.

To establish a reasonable link between the operational model and the equa-
tional theory of the algebra, a notion of behavioral equality should be fixed.
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Ideally, the notion of behavioral equivalence should coincide with the closed
derivations of the equational theory. One side of this coincidence is captured
by the soundness theorem which states that all closed derivations of the equa-
tional theory are indeed valid with respect to the particular notion of behav-
ioral equality. The other side of the coincidence, called completeness, phrases
that all induced behavioral equalities are derivable from the equational theory,
as well. These concepts are formalized in the remainder.

Definition 4.17 (Equational Theory) An equational theory or axiomati-
zation (Σ, E) is a set of equalities E on a signature Σ of the form t = t′, where
t, t′ ∈ T . A closed instance p = p′, for some p, p′ ∈ C, is derivable from E,
denoted by E ` p = p′ if and only if it is in the smallest congruence relation
on closed terms induced by the equalities of E.

An equational theory (Σ, E) is sound with respect to a TSS tss (also on
signature Σ) and a particular notion of behavioral equality ∼ if and only if for
all p, p′ ∈ C, if E ` p = p′, then it holds that tss ` p ∼ p′. It is complete if
the implication holds in the other direction.

In [2,1], an automatic method for generating sound and complete equa-
tional theories from GSOS specifications is presented. This technique was
extended in [9] to cater for explicit termination of processes. This approach,
although more complicated in nature, gives rise to more intuitive and more
compact sets of equations compared to the original approach of [2]. Axiom
systems for pre-orders have been generated, too, see for instance [73]. Along
the same lines, [74] generates prioritized rewrite systems for TSS’s with an
ordering on deduction rules.

4.5 Other Meta-Results

Non-Interference. Confidentiality is an important aspect of security and
non-interference [34] is a well-studied means to guarantee end-to-end confi-
dentiality. Non-interference means that a user with a lower confidentiality
level cannot infer anything about the higher level information by interacting
with the system (using lower-level methods that it has in hand). In [70,71] a
rule format for non-interference is proposed which is based on the Cool lan-
guages format (in order to guarantee compositionality of non-interference) and
imposes further restrictions to assure that the lower-level behavior of the sys-
tem does not change as a result of performing higher-level transitions.

Decomposition of Logical Formulae. In [37], a logical framework, nowa-
days called the Henessy-Milner logic after the authors’ names, is proposed.
The Hennessy-Milner logic can be used to reason about processes and char-
acterize their equalities. In [42,43] a meta-theory is developed that allows
for decomposing Hennessy-Milner formulae using the structure of terms in a
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generic way by examining deduction rules of the process language in the De
Simone format. This result has been improved in [22] and extended to the
ready simulation format (ntyft/ntyxt format without lookahead). In [23], the
decomposition technique is used to derive congruence formats for the notion of
eta-bisimulation, as an example. Simpson in [68] introduces a compositional
proof system for checking Hennessy Milner formulae on processes specified in
the GSOS format.

Stochasticity. For probabilistic transition systems, it is essential to make
sure that the sum of all probabilities belonging to the same distribution
amounts to 1 (or zero). This is called (semi-)stochasticity. In [41], a restricted
form of the De Simone format is proposed that guarantees semi-stochasticity.
To avoid dealing with negative premises the format of [41] supports ordering
on rules.

Bounded Non-determinism. In [78], a rule format, by imposing restric-
tions on the De Simone format, is proposed which guarantees that the induced
semantics affords only bounded non-determinism, i.e., each closed term has
only finite number of outgoing transitions. Fokkink and Duong Vu in [25]
generalize the result of [78] to a far more general SOS framework.

Timing properties. In [77] a set of syntactic conditions have been defined
that guarantee properties for timed systems, such as time determinism, per-
sistence, maximal progress and patience.
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