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Abstract. We present several theorems and their proofs which enable using syn-
chronous testing techniques such as input output conformance testing (ioco) in
order to test implementations only accessible through asynchronous commu-
nication channels. These theorems define when the synchronous test-cases are
sufficient for checking all aspects of conformance that are observable by asyn-
chronous interaction with the implementation under test.

1 Introduction

Due to the ubiquitous presence of distributed systems (ranging from distributed em-
bedded systems to the Internet), it becomes increasingly important to establish rigor-
ous model-based testing techniques with an asynchronous model of communication in
mind. This fact has been noted by the pioneering pieces work in the area of formal
conformance testing, e.g., see [7, Chapter 5], [10] and [11], and has been addressed
extensively by several researchers in this field ever since [2, 4–6, 12, 13].

We stumbled upon this problem in our attempt to apply input-output conformance
testing (ioco) [8, 9] to an industrial embedded system from the banking domain [1]. A
schematic view of the implementation under test (IUT) and its environment is given in
Figure 1.(a). The IUT is an Electronic Funds Transfer (EFT) switch, which provides a
communication mechanism among different components of a card-based financial sys-
tem. On one side of the IUT, there are components that the end-user deals with, such as
Automated Teller Machines (ATMs), Point-of-Sale (POS) devices and e-Payment appli-
cations. On the other side, there are Core-Banking systems and the inter-bank network
connecting EFT switches of different financial institutions.

To test the EFT switch, an automated on-line test-case generator is connected to
it; the tester communicates (using an adapter) via a network with the IUT. This com-
munication is inherently asynchronous and hence subtleties concerning asynchronous
testing arise naturally in our context. A simplified specification of the switch in which
these subtleties appear is depicted in Figure 1.(b). In this figure, the EFT switch sends
a purchase request to the core banking system and either receives a response or after
an internal step (e.g., an internal time-out, denoted by τ ) sends a reversal request to
the POS. In the synchronous setting, after sending a purchase request and receiving
a response, observing a reversal request will lead to the fail verdict. This is justified
by the fact that receiving a response should force the system to take the left-hand-side
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Fig. 1. EFT Switch and a simplified specification

transition at the moment of choice in the depicted specification. However, in the asyn-
chronous setting, a response is put on a channel and is yet to be communicated to the
IUT. It is unclear to the remote observer when the response is actually consumed by the
IUT. Hence, even when a response is sent to the system the observer should still expect
to receive a reversal request.

The problems encountered in our practical case study have been encountered by
other researchers. It is well-known that not all systems are amenable to asynchronous
testing since they may feature phenomena (e.g., a choice between accepting input and
generating output) that cannot be reliably observed in the asynchronous setting (e.g.,
due to unknown delays). In other words, to make sure that test-cases generated from the
specification can test the IUT by asynchronous interactions and reach verdicts that are
meaningful for the original IUT, either the class of IUTs, or the class of specifications,
or the test-case generation algorithm (or a combination thereof) has to be adapted.

Related work. In [12, Chapter 8] and [13], both the class of IUTs has been restricted (to
the so-called internal choice specifications) and further the test-case generation algo-
rithm is adapted to generate a restricted set of test-cases. Then, it is argued (with a proof
sketch) that in this setting, the verdict obtained through asynchronous interaction with
the system coincides with the verdict (using the same set of restricted test-cases) in the
synchronous setting. We give a full proof of this result in Section 3 and report a slight
adjustment to it, without which a counter-example is shown to violate the property. It
remains to be investigated what notion of conformance testing is induced by the class
of test-cases proposed in [12, 13].

In [6] a method is presented for generating test-cases from the synchronous specifi-
cation that are sound for the asynchronous implementation. The main idea is to saturate
a test-case with observation delays caused by asynchronous interactions. In this paper,
we adopt a restriction imposed on the implementation inspired by [6, Theorem 1] and
prove that in the setting of ioco testing this is sufficient for using synchronous test-case
for the asynchronous implementation (dating back to [7]).

In [4, 5] the asynchronous test framework is extended to the setting where separate
test-processes can observe input and output events and relative distinguishing power
of these settings are compared. Although this framework may be natural in practice,
we avoid following the framework of [4, 5] since our ultimate goal is to compare asyn-
chronous testing with the standard ioco framework and the framework of [4, 5] is no-
tationally very different. For the same reason, we do not consider the approach of [2],
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which uses a stamping mechanism attached to the IUT, thus observing the actual order
input and output before being distorted by the queues.

To summarize, the present paper re-visits the much studied issue of asynchronous
testing and formulates and proves some theorems that show when it is (im)possible to
synchronize asynchronous testing, i.e., interaction with an IUT through asynchronous
channels and still obtain verdicts that coincide with that of testing the IUT using the
synchronous interaction mechanisms.

Structure of the paper After presenting some preliminaries in Section 2, we give a
full proof of the main result of [12, Chapter 8] and [13] (with a slight modification) in
Section 3. Then, in Section 4, we re-formulate the same results in the pure ioco setting.
Finally, in Section 5, we show that the restrictions imposed on the implementation in
Section 4 are not only sufficient to obtain the results but also necessary and hence
characterize the implementations for which asynchronous testing can be reduced to
synchronous testing. The paper is concluded in Section 6.

2 Preliminaries

In this section, we review some common formal definitions from the literature of labeled
transition systems and ioco testing [9].

Specifications, actions and traces. In our model-based testing approach, systems are
typically formalized using variations of a labeled transition system (LTS). Let τ be a
constant representing an unobservable action.

Definition 1 (LTS). A labeled transition system (LTS) is a 4-tuple 〈S,L,→, s0〉, where
S is a set of states, L is a finite alphabet that does not contain τ ,→⊆ S×(L∪{τ})×S
is the transition relation, and s0 ∈ S is the initial state.

Fix an arbitrary LTS 〈S,L,→, s0〉. We shall often refer to the LTS by referring to its ini-
tial state s0. Let s, s′ ∈ S and x ∈ L∪{τ}. We write s x−→ s′ rather than (s, x, s′) ∈→;
moreover, we write s x−→ when s x−→ s′ for some s′, and s xX−→ when not s x−→. The
transition relation is generalized to (weak) traces by the following deduction rules:

s
ε

=⇒ s

s
σ

=⇒ s′′ s′′
x−→ s′ x 6= τ

s
σx
=⇒ s′

s
σ

=⇒ s′′ s′′
τ−→ s′

s
σ

=⇒ s′

In line with our notation for transitions, we write s σ
=⇒ if there is a s′ such that s σ

=⇒ s′,
and s σX=⇒ when no s′ exists such that s σ

=⇒ s′.

Definition 2 (Traces and Enabled Actions). Let s ∈ S and S′ ⊆ S. We define:

1. traces(s) =def {σ ∈ L∗ | s
σ

=⇒}, and we define traces(S′) =def

⋃
s∈S′ traces(s)

2. init(s) =def {a ∈ L∪{τ} | s
a−→}, and we define init(S′) =def

⋃
s∈S′ init(s),

3. Sinit(s) =def {a ∈ L | s
a

=⇒}, and we define Sinit(S′) =def

⋃
s∈S′ Sinit(s).

A state in an LTS is said to diverge if it is the source of an infinite sequence of τ -labeled
transitions. An LTS is divergent if one of its reachable states diverges.
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Inputs, Outputs and Quiescence. In LTSs labels are treated uniformly. When engaging
in an interaction with an actual implementation, the initiative to communicate is often
not fully symmetric: the implementation is stimulated and observed. We therefore refine
the LTS model to incorporate this distinction.

Definition 3 (IOLTS). An input-output labeled transition system (IOLTS) is an LTS
〈S,L,→, s0〉, where the alphabet L is partitioned into a set LI of inputs and a set LU
of outputs.

Throughout this paper, whenever we are dealing with an IOLTS (or one of its refine-
ments), we tacitly assume that the given alphabet L for the IOLTS is partitioned in sets
LI and LU . In our examples we distinguish inputs from outputs by annotating them
with question- (?) and exclamation-mark (!), respectively. Note that these annotations
are not part of action names.

Quiescence, defined below, is an essential ingredient in the more advanced confor-
mance testing theories. In its traditional phrasing, it characterizes system states that do
not produce outputs and which are stable, i.e., those that cannot evolve to another state
by performing a silent action.

Definition 4 (Quiescence). State s ∈ S is called quiescent, denoted by δ(s), iff
init(s) ⊆ LI . We say s is weakly quiescent, denoted by δq(s), iff Sinit(s) ⊆ LI .

The notion of weak quiescence is appropriate in the asynchronous setting, where the
lags in the communication media interfere with the observation of quiescence: an ob-
server cannot tell whether a system is engaged in some internal transitions or has come
to a standstill. By the same token, in an asynchronous setting it becomes impossible to
distinguish divergence from quiescence; we re-visit this issue in our proofs of synchro-
nizing asynchronous conformance testing.

Testing hypotheses. Several formal testing theories build on the assumption that the
implementations can be modeled by a particular IOLTS; this assumption is part of the
so-called testing hypothesis underlying the testing theory. Not all theories rely on the
same assumptions. We introduce two models, viz., the input output transition systems,
used in Tretmans’ testing theory [9] and the internal choice input output transition
systems, introduced by Weiglhofer and Wotawa [12, 13].

Tretmans’ input-output transition systems are basically plain IOLTSs with the addi-
tional assumption that inputs can always be accepted.

Definition 5 (IOTS). A state s ∈ S in an IOLTS M = 〈S,L,→, s0〉 is input-enabled
iff LI ⊆ Sinit(s). The IOLTS M is an input output transition system (IOTS) iff every
state s ∈ S is input-enabled.

From hereon, we denote the class of input output transition systems ranging overLI and
LU by IOTS(LI , LU ). Weiglhofer and Wotawa’s internal choice input output transition
systems relax Tretmans’ input-enabledness requirement; at the same time, however,
they impose an additional restriction on the presence of inputs.

Definition 6 (Internal choice IOTS). An IOLTS 〈S,L,→, s0〉 is an internal choice
input output transition system (IOTSu) if:
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1. quiescent states are input-enabled, i.e., for all s ∈ S, if δ(s), then LI ⊆ Sinit(s)

2. only quiescent states may accept inputs, i.e., for all s ∈ S, if init(s)∩LI 6= ∅ then
δ(s).

We denote the class of IOTSu models ranging over LI and LU by IOTSu(LI , LU ).
The following Venn-diagram visualizes the relation between the two different testing
hypotheses.

IOTSu(LI , LU ) IOTS(LI , LU ) IOLTS(LI , LU )

We note that the intersection between IOTSu(LI , LU ) and IOTS(LI , LU ) is in a
sense only fulfilled by the most superficial models, viz., those IOLTSs that never
provide proper outputs. If requirement 2 is dropped from Definition 6, then clearly
IOTSu(LI , LU ) subsumes IOTS(LI , LU ).

Example 1. The two labeled transition systems c0 and e0 in Figure 2 model a coffee
machine which after receiving money, either refunds or accepts it, lets the coffee button
be pressed and delivers coffee consequently. IOLTS o0 in Figure 2 models a disordered
coffee machine which after pressing coffee button may or may not deliver coffee. In
IOLTS c0, after doing the first transition, inserting money, there is a choice between
input and output. Although IOLTS e0 does not feature an immediate race between input
and output actions, the possibility of output r ! can be ruled out by providing input b?.
In the IOLTS o0, however, there is a moment of time after which no output can be
observed, i.e., after taking the unobservable transition the system reaches the quiescent
state and the input b? is accepted by the system.

IOLTSs c0 and e0 are not internal choice IOTSs while o0 is. None the aforemen-
tioned IOLTSs are IOTSs; they can be made IOTSs by adding self-loops for all absent
input transitions at each and every state.

5



Testing. We next define the notion of a test case. We assume that it can, in the most
general case, be described by a tree-shaped IOLTS. Such a test case prescribes when
an input should be fed to the implementation-under-test and when its possible outputs
should be observed. In a test case, the observation of quiescence is modeled using a
special θ symbol.

Definition 7 (Test case). A test case is an IOLTS 〈S,L,→, s0〉, where S is a finite set
of states reachable from s0 ∈ S, the terminal states pass and fail are part of S, and
we have θ ∈ LI . In addition, the transition relation→ is acyclic and deterministic such
that:

1. pass and fail states appear only as targets of transitions labeled by an element of
LI , and

2. for all s ∈ S \ {pass, fail}, we require that init(s) = (LI \ {θ}) ∪ {x} for some
x ∈ LU ∪ {θ}.

We denote the class of test cases ranging over inputs LI and outputs LU by
TTS(LU , LI).

Notice that the observation θ is an input to a test case; this is in line with the view
that outputs produced by an implementation are inputs to a test case. Moreover, we note
that a test case has no transitions labeled with the silent action τ .

We formalize the way a test case communicates with an actual implementation,
modeled by an IOLTS.

Definition 8 (Synchronous execution). Let M = 〈S,L,→, s0〉 be an IOLTS, and let
〈T, L′,→, t0〉 be a test case, such that LI = L′U and LU = L′I \ {θ}. Let s, s′ ∈ S and
t, t′ ∈ T . Then the synchronous execution of the test case and M is defined through the
following inference rules:

s
τ−→ s′ (R1)

te|s τ−→ te|s′
t

x−→ t′ s
x−→ s′ (R2)

te|s x−→ t′e|s′
t

θ−→ t′ δ(s)
(R3)

te|s θ−→ t′e|s

Finally, we state what it means for an implementation to pass a test case.

Definition 9 (Verdict). Let implementation M be given by IOLTS 〈S,L,→, s0〉, and
let 〈T, L ∪ {θ},→, t0〉 be a test case. We say that state s ∈ S passes the test case,
denoted s passes t0 iff there is no σ ∈ (L ∪ {θ})∗ and no state s′ ∈ S, such that
t0e|s

σ
=⇒ faile|s′.

3 Adapting IOCO to Asynchronous Setting

In order to perform conformance testing in the asynchronous setting in [12] and [13]
both the class of implementations and test cases are restricted. Then, it is argued (with a
proof sketch) that in this setting, the verdict obtained through asynchronous interaction
with the system coincides with the verdict (using the same set of restricted test-cases)
in the synchronous setting. In this section, we re-visit the approach of [12] and [13],
give full proof of their main result and point out a slight imprecision in it.

6



3.1 Test Cases for Internal Choice Implementations

Asynchronous communication delays obscure the observation of the tester; for exam-
ple, the tester cannot precisely establish when the input sent to the system is actually
consumed by it.

Internal choice test-cases, formally defined below, only allow for providing an input
if quiescence has been observed beforehand.

Definition 10 (Internal choice test case). A test case 〈S,L,→, s0〉 is an internal
choice test case (abbreviated to TTSu) if for all s ∈ S, all x ∈ LU and all σ ∈ L∗, if
σx ∈ traces(s) then σ = σ′ · θ.

We denote the class of internal choice test cases ranging over inputs LI and outputs LU
by TTSu(LU , LI).

Example 2. Figure 3 shows an internal choice test case for o0 in Figure 2. In this test
case, inputs for the implementation are enabled only in states reached by a θ-transition.

The property given below illustrates that, indeed, the interaction between an internal
choice test case and an IOLTS proceed in an orchestrated fashion: the IOLTS is only
provided stimuli whenever it has reached a stable situation.

Property 1. Let 〈S,L,→, s0〉 be an arbitrary IOLTS and 〈T, L′,→, t0〉 be an internal
choice test case. Let x ∈ L′U \ {θ} (= LI), σ ∈ L′∗, s, s′ ∈ S and t, t′ ∈ T . We have
the following property:

te|s σ·x
=⇒ t′e|s′ implies ∃σ′ ∈ L′∗ : σ = σ′ · θ

3.2 Asynchronous Communication

Asynchronous communication, as described in [7, Chapter 5], can be simulated by mod-
elling the communications with the implementation through two dedicated FIFO chan-
nels. One is used for sending the inputs to the implementation, whereas the other is used
to queue the outputs produced by the implementation. We assume that the channels are
unbounded. By adding channels to an implementation, its visible behavior changes.
This is formalized below.

Definition 11 (Queue operator). Let 〈S,L,→, s0〉 be an arbitrary IOLTS, σi ∈ L∗I ,
σu ∈ L∗U and s, s′ ∈ S. The unary queue operator [σu� �σi] is then defined by the
following axioms and inference rules:

[σu�s�σi]
a−→ [σu�s�σi·a], a ∈ LI (A1)

[x·σu�s�σi]
x−→ [σu�s�σi], x ∈ LU (A2)

s
τ−→ s′ (I1)

[σu�s�σi]
τ−→ [σu�s

′
�σi]

s
a−→ s′ a ∈ LI (I2)

[σu�s�a·σi]
τ−→ [σu�s

′
�σi]
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s
x−→ s′ x ∈ LU (I3)

[σu�s�σi]
τ−→ [σu·x�s

′
�σi]

We abbreviate [〈〉�s�〈〉] to Q(s). Given an initial state s0 of an IOLTS M , the
initial state of M in queue context is given by Q(s0).

Observe that for an arbitrary IOLTS M with initial state s0, Q(s0) is again an IOLTS.
We have the following property, relating the traces of an IOLTS to the traces it has in
the queued context.

Property 2. Let 〈S,L,→, s0〉 be an arbitrary IOLTS. Then for all s, s′ ∈ S, we have
s

σ
=⇒ s′ implies Q(s)

σ
=⇒ Q(s′).

The possibility of internal transitions is not observable to the remote asynchronous
observer and hence, in [12, 13], weak quiescence is adopted to denote quiescence in the
queue context.

Definition 12 (Synchronous execution in the queue context). LetM = 〈S,L,→, s0〉
be an IOLTS, and let 〈T, L′,→, t0〉 be a test case, such that LI = L′U and LU =
L′I \ {θ}. Let s, s′ ∈ S and t, t′ ∈ T . Then the synchronous execution of the test case
and Q(M) is defined through the following inference rules:

[σu�s�σi]
τ−→ [σ′u�s

′
�σ′i] (R1’)

te|[σu�s�σi]
τ−→ te|[σ′u�s

′
�σ′i]

t
x−→ t′ [σu�s�σi]

x−→ [σ′u�s
′
�σ′i] (R2’)

te|[σu�s�σi]
x−→ t′e|[σ′u�s

′
�σ′i]

t
θ−→ t′ δq([σu�s�σi])

(R3’)

te|[σu�s�σi]
θ−→ t′e|[σu�s�σi]

The property below characterizes the relation between the test runs obtained by
executing an internal choice test case in the synchronous setting and by executing a test
case in the queued setting.

Property 3. Let 〈S,L,→, s0〉 be an IOLTS and let 〈T, L′,→, t0〉 be a TTSu. Consider
arbitrary states s, s′ ∈ S and t, t′ ∈ T and an arbitrary test run σ ∈ L′∗. We have the
following properties:

1. te|s σ
=⇒ t′e|s′ implies te|Q(s)

σ
=⇒ t′e|Q(s′)

2. Sinit(te|s) = Sinit(te|Q(s)).

The proposition below proves to be essential in establishing the correctness of our
main results in the remainder of Section 3. It essentially establishes the links between
the internal behaviors of an implementation in the synchronous and the asynchronous
settings.
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Proposition 1. Let 〈S,L,→, s0〉 be an IOLTS and let 〈T, L′,→, t0〉 be a TTSu. For all
states t ∈ T , s, s′ ∈ S, all σi ∈ L∗I and σu ∈ L∗U , we have:

1. s ε
=⇒ s′ iff te|s ε

=⇒ te|s′ (R1∗)

2. [σu�s�σi]
ε

=⇒ [σu�s
′
�σi] iff s ε

=⇒ s′(I1∗).

3.3 Sound Verdicts of Internal Choice Test Cases

In [13, 6], it is argued that providing inputs to an IUT only after observing quiescence
(i.e., in a stable state), eliminates the distortions in observable behavior, introduced by
communicating to the IUT using queues. Hence, a subset of synchronous test-cases,
namely those which only provide an input after observing quiescence, are safe for test-
ing asynchronous systems. This is summarized in the following (non)theorem from [13,
12] (and paraphrased in [6]):

Claim (Theorem 1 in [13]). Let M be an arbitrary IOTSu with initial state s0, and let
〈T, L,→, t0〉 be a TTSu. Then s0 passes t0 iff Q(s0) passes t0.

In [6], the claim is taken for granted, and, unfortunately, in [13, 12] only a proof sketch
is provided for the above claim; the proof sketch is rather informal and leaves some
room for interpretation, as illustrated by the following excerpt:

“...An implementation guarantees that it will not send any output before receiv-
ing an input after quiescence is observed...”

As it turns out, the above result does not hold in its full generality, as illustrated by the
following example.

Example 3. Consider the internal choice test case with initial state t0 in Figure 3.
Consider the implementation modeled by the IOTSu depicted in Figure 2, starting
in state o0. Clearly, we find that o0 passes t0; however, in the asynchronous setting,
Q(oo) passes t0 does not hold. This is due to the divergence in the implementation,
which gives rise to an observation of quiescence in the queued context, but not so in the
synchronous setting.

The claim does hold for non-divergent internal choice implementations. Note that
divergence is traditionally also excluded from testing theories such as ioco. In this sense,
assuming non-divergence is no restriction. Apart from the following theorem, we tacitly
assume in all our formal results to follow that the implementation IOLTSs are non-
divergent.

Theorem 1. LetM = 〈S,L,→, s0〉 be an arbitrary IOTSu and let 〈T, L′∪{τ},→, t0〉
be a TTSu. If M is non-divergent, then s0 passes t0 iff Q(s0) passes t0.

Given the pervasiveness of the original (non-)theorem, a formal correctness proof
of our corrections to this theorem (i.e., our Theorem 1) is highly desirable. In the re-
mainder of this section, we therefore give the main ingredients for establishing a full
proof for Theorem 1. We start by establishing a formal correspondence between obser-
vations of quiescence in the synchronous setting and observations of weak quiescence
in the asynchronous setting. (Due to space limit, some proofs are omitted here, but can
be found in the technical report [3].)
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Lemma 1. Let 〈S,L,→, s0〉 be an IOTSu. Let s ∈ S be an arbitrary state. Then
δq(Q(s)) implies δ(s′) for some s′ ∈ S satisfying s ε

=⇒ s′.

The above lemma results that all inputs a TTSu gives as stimuli to an implementa-
tion, modeled as an IOTSu, can be consumed. Note that this is a non-trivial statement,
given that an IOTSu is not input-enabled in all states. The proposition below as a conse-
quence of the given property, states that every test execution can lead to a state in which
both communication queues are empty.

Proposition 2. Let 〈S,L,→, s0〉 be an IOTSu, and let 〈T, L′,→, t0〉 be a TTSu. As-
sume arbitrary states t′ ∈ T and s, s′ ∈ S, and an arbitrary test run σ ∈ L′∗. Then for
all σi ∈ L∗I and σu ∈ L∗U :

t0e|Q(s)
σ

=⇒ t′e|[σu�s
′
�σi] implies ∃s′′ ∈ S • t0e|Q(s)

σ
=⇒ t′e|Q(s′′)

As a consequence of the above proposition, we find the following corollary. It states
that each asynchronous test execution can be chopped into individual observations such
that before and after each observation the communication queue is empty.

Corollary 1. Let 〈S,L,→, s0〉 be an IOTSu, and let 〈T, L′,→, t0〉 be a TTSu. Assume
arbitrary states t′ ∈ T and s, s′ ∈ S, and an arbitrary test run σ ∈ L′∗ and x ∈ L′.
Then t0e|Q(s)

σ·x
=⇒ t′e|Q(s′) implies ∃t′′ ∈ T, s′′ ∈ S • t0e|Q(s)

σ
=⇒ t′′e|Q(s′′)

x
=⇒

t′e|Q(s′). Moreover, if x = θ then δq(Q(s′)).

The lemma below establishes a correspondence between the test runs that can be exe-
cuted in the asynchronous setting and those runs one would obtain in the synchronous
setting. The lemma is basic to the correctness of our main results in this section.

Lemma 2. Let 〈S,L,→, s0〉 be an IOTSu, and let 〈T, L′,→, t0〉 be a TTSu. Let
s, s′ ∈ S and t′ ∈ T be arbitrary states. Then, for all σ ∈ L′∗, such that t0e|Q(s)

σ
=⇒

t′e|Q(s′), there is a non-empty set S ⊆ {s′′ ∈ S | s′ ε
=⇒ s′′} such that

1. {s′′ ∈ S | δ(s′′) ∧ s′ ε
=⇒ s′′} ⊆ S if ∃σ′ ∈ L′∗ • σ = σ′ · θ

2. s′ ∈ S if @σ′ ∈ L′∗ • σ = σ′ · θ
3. ∀s′′ ∈ S • t0e|s

σ
=⇒ t′e|s′′.

Proof. We prove this lemma by induction on the length of σ ∈ L′∗.

– Induction basis. Assume that the length of σ is 0, i.e., σ = ε. Assume that
t0e|Q(s)

ε
=⇒ t0e|Q(s′). By Proposition 1(2) we have s

ε
=⇒ s′. Set S =

{s′′ | s′ ε
=⇒ s′′}. Let s′′ ∈ S be an arbitrary state. Proposition 1(1) leads

to t0e|s
ε

=⇒ t0e|s′ and t0e|s′
ε

=⇒ t0e|s′′; by transitivity, we have the desired
t0e|s

ε
=⇒ t0e|s′′. It is also clear that s′ ∈ S. We thus find that S meets the de-

sired conditions.
– Inductive step. Assume that the statement holds for all σ′ of length at most n − 1.

Suppose that the length of σ is n. Assume that t0e|Q(s)
σ

=⇒ t′e|Q(s′). By Corol-
lary 1, there is some sn−1 ∈ S, a tn−1 ∈ T and σn−1 ∈ L′∗ and x ∈ L′, such that
σ = σn−1 · x and t0e|Q(s)

σn−1
=⇒ tn−1e|Q(sn−1)

x
=⇒ t′e|Q(s′).

By induction, there must be a set Sn−1 ⊆ {s′′ ∈ S | sn−1
ε

=⇒ s′′}, such that
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1. {s′′ ∈ S | δ(s′′) ∧ sn−1
ε

=⇒ s′′} ⊆ Sn−1 if ∃σ′ ∈ L′∗ • σ = σ′ · θ
2. sn−1 ∈ Sn−1 if @σ′ ∈ L′∗ • σ = σ′ · θ
3. ∀s′′ ∈ Sn−1 • t0e|s

σn−1
=⇒ tn−1e|s′′.

We next distinguish three cases: x ∈ LI , x ∈ LU and x /∈ LI ∪ LU .
1. Case x = θ. We thus find that tn−1e|Q(sn−1)

θ
=⇒ tne|Q(s′). As a result of

Corollary 1, we have δq(s′). We then find as a result of Lemma 1, there must
be some state s′′ ∈ S such that sn−1

ε
=⇒ s′

ε
=⇒ s′′ and δ(s′′). Consider the

set Sn = {s′′ ∈ S | δ(s′′) ∧ s′ ε
=⇒ s′′}.

Let s′′ be an arbitrary state in Sn. Distinguish between cases sn−1 /∈ Sn−1 and
sn−1 ∈ Sn−1. In the case, sn−1 /∈ Sn−1, we know from the construction of
Sn−1 that s′′ ∈ Sn−1 and s′′ ε

=⇒ s′′ always holds. In the case sn−1 ∈ Sn−1,
we have that sn−1

ε
=⇒ s′

ε
=⇒ s′′. We thus find that ∀s′′ ∈ Sn ∃s̄ ∈ Sn−1 •

t0e|s
σn−1
=⇒ tn−1e|s̄

ε
=⇒ tn−1e|s′′

θ−→ t′e|s′′.
Thus Sn has the desired requirement that t0e|s

σn−1·x
=⇒ t′e|s′′ for all s′′ ∈ Sn.

Also, {s′′ ∈ S | δ(s′′) ∧ s′ ε
=⇒ s′′} ⊆ Sn is concluded from construction of

Sn. Hence, Sn satisfies all desired conditions.
2. Case x ∈ LI . By Property 1, we find that the last step in σn−1 must be θ. It

follows from corollary 1 that Q(sn−1) is weakly quiescent and consequently
δq(sn−1). By induction we have that {s′′ ∈ S | δ(s′′)∧sn−1

ε
=⇒ s′′} ⊆ Sn−1.

Consider the set Sn = {s′′ ∈ S | s′ ε
=⇒ s′′}.

Transition tn−1e|Q(sn−1)
x

=⇒ t′e|Q(s′) implies that sn−1
x

=⇒ s′. By Lemma
1 and Definition 6, we know that ∃s̄ ∈ S such that sn−1

ε
=⇒ s̄

x
=⇒ s′ and

δ(s̄). From construction of Sn−1, we know that s̄ is in Sn−1. We thus have
∀s′′ ∈ Sn ∃s̄ ∈ Sn−1 • t0e|s

σn−1
=⇒ tn−1e|s̄

x
=⇒ t′e|s′′.

It is clear form construction of Sn that s′ ∈ Sn as the required condition that
s′ ∈ Sn if the last step of σ is not θ-labeled transition. We thus find that Sn
fulfills all desired requirements.

3. Case x ∈ LU . Analogous to the previous case.

We are now in a position to establish the correctness of Theorem 1. We provide the
proof below:

Proof (Theorem 1). We prove the theorem by contraposition.

1. Case ⇒. Suppose not Q(s) passes t0. By Definition 9 and Proposition 2,

t0e|Q(s)
σ′

=⇒ faile|Q(s′), for some σ′ ∈ L′∗ and s′ ∈ S. As a result of Lemma
2, there is a non-empty set S ⊆ {s′′ ∈ S | s′ ε

=⇒ s′′} such that for all s′′ ∈ S,

t0e|s
σ′

=⇒ faile|s′′, which was what we needed to prove.
2. Case ⇐. Assume, that not s passes t0. Then there are σ′ ∈ L′∗ and s′′ ∈ S,

t0e|s
σ′

=⇒ faile|s′′. Using Property 3 leads to t0e|Q(s)
σ′

=⇒ faile|Q(s′′).

4 Adapting Asynchronous Setting to IOCO

In this section, we re-cast the results of the previous section to the setting with ioco
test-cases. We first define ioco and then show that the results of the previous section
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cannot be trivially generalized to the ioco-setting. Then using an approach inspired by
[7, Chapter 5] and [6], we show how to re-formulate Theorem 1 in this setting.

4.1 Input Output Conformance

The ioco testing theory formalizes the conformance of an implementation to its specifi-
cation. In this theory, implementations are assumed to behave according to an (unkown)
IOTS; as a consequence, implementations are assumed to be input enabled. Contrary
to implementations, specifications are not required to be input enabled; this facilitates
under-specifying the behavior of a system. Informally, the ioco conformance relation
captures whether the observable behaviors of the implementation are valid observable
behaviors, given a specification. The observable behaviors are essentially augmented
traces, called suspension traces, consisting of inputs, outputs and quiescence.

For a given set of states S of an arbitrary IOLTS with transition relation→⊆ S ×
(L ∪ {τ}) × S, suspension traces are defined through an auxiliary transition relation
=⇒δ⊆ S × (L ∪ {δ})∗ × S, specified by the following deduction rules:

s
ε

=⇒δ s

s
σ

=⇒δ s
′ δ(s′)

s
σδ

=⇒δ s
′

s
σ

=⇒δ s
′′ s′′

x
=⇒ s′

s
σx
=⇒δ s

′

Henceforth, given an alphabet L, we write Lδ to denote the set L ∪ {δ}.

Definition 13 (Suspension traces, Out and After). Let 〈S,L,→, s0) be an IOLTS.
Let s ∈ S be an arbitrary state, S′ ⊆ S and σ ∈ L∗δ .

1. The set of suspension traces of s, denoted Straces(s) is the set {σ ∈ L∗δ | s
σ

=⇒δ};
we set Straces(S′) =

⋃
s′∈S′ Straces(s

′)

2. The outputs of s, denoted out(s) is the set {x ∈ LU | s
x−→} ∪ {δ | δ(s)}; we set

out(S′) =
⋃
s′∈S′ out(s

′)

3. The σ-reachable states of s, denoted safterσ is the set {s′ ∈ S | s σ
=⇒δ s

′}; we
set S′ afterσ =

⋃
s′∈S′ s

′ afterσ.

The above abbreviations are used in the intensional characterization of the ioco testing
relation, given below.

Definition 14 (ioco). Let 〈I, L,→, i0〉 be an IOTS, and let IOLTS 〈S,L,→, s0〉 be a
specification. We say that implementation i0 is input-output conform specification s0,
denoted i0 ioco s0, iff

∀σ ∈ Straces(s0) • out(i0 afterσ) ⊆ out(s0 afterσ)

The ioco testing relation has been shown to admit a sound and complete test case
generation algorithm, see, e.g., [9]. Soundness means, intuitively, that the algorithm
will never generate a test case that, when executed on an implementation, leads to a fail
verdict if the test runs are in accordance with the specification. Completeness is more
esoteric: if the implementation has a behavior that is not in line with the specification,
then there is a test case that, in theory, has the capacity to detect that non-conformance.
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Fig. 4. An ioco test case
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Fig. 5. A delay right-closed IOTS

As the exact workings of the algorithm are impertinent to our main results in this sec-
tion, we will forego an explanation of it.

In the following example, we motivate that the definitions and the constraints used
in the previous section cannot be used for the ioco setting.

Example 4. Figure 4 shows a test case for IOLTS o0 in Figure 2, which is an internal
choice IOTS. Assume that at the same time o0 is also used as the implementation;
o0 is not input-enabled in all states, and making it input-enabled violates the internal
choice assumption. In fact, as observed in Section 2, the intersection of IOTSs and
internal choice IOTSs only include pathological IOTSs that do not produce any output.
For the purpose of this example, we use the theory of ioco on internal choice IOTSs
nevertheless.

For o0 as specification and implementation, we have that o0 ioco o0. How-
ever, we can reach a fail verdict for o0 under the queue context when using
the test case t′0. Consider the sequence m?b?r !; in the queue context, the ex-
ecution t′0e|Q(o0)

m?−→ t′1e|[ε�o0�m?]
ε

=⇒ t′1e|Q(o1)
ε

=⇒ t′1e|[r !�o2�ε]
b?−→

t′2e|[r !�o2�b?]
r !−→ faile|[ε�o2�b?] is possible, which leads to the fail state. Note that

the fail verdict is reached even if we omit divergence from the implementation o0. This
shows that Theorem 1 cannot be trivially generalized to the ioco setting (even when
excluding divergence and allowing for non-input-enabled states).

4.2 Synchronizing Theorem for ioco

In this section, we investigate implementations for which ioco test cases cannot distin-
guish between synchronous and asynchronous modes of testing. To this end, we con-
sider the relation between traces of a system and those of the system in queue context.

Definition 15 (Delay relation). Let L be a finite alphabet partitioned in LI and LU .
The delay relation @⊆ L∗δ × L∗δ is defined by the following deduction rules:

σ @ σ
REF

ρi, σi ∈ L∗I σu ∈ L∗U
ρi · σu · σi @ ρi · σi · σu

PUSH
σ @ σ′ ρ@ρ′

σ · ρ @ σ′ · ρ′ COM

Proposition 3. Let 〈S,L,→, s0〉 be an IOTS. Let s ∈ S and σ ∈ L∗δ . Then σ ∈
Straces(Q(s)) implies there is a σ′ ∈ Straces(s) such that σ′ @ σ.
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Definition 16 (Delay right-closed IOTS). Let M = 〈S,L,→, s0〉 be an IOTS. A set
L′ ⊆ L∗δ is delay right-closed iff for all σ ∈ L′ and σ′ ∈ L∗δ , if σ @ σ′ then σ′ ∈ L′.
The IOTS M is delay right-closed iff Straces(s0) is delay right-closed.

We denote the class of delay right-closed IOTSs ranging over LI and LU by
IOTS@(LI , LU ). The property below gives an alternative characterisation of delay
right-closed IOTSs.

Property 4. Let M = 〈I, L,→, i0〉 be an IOTS. The IOTS M is delay right-closed if
for all σ ∈ L∗δ , all x ∈ LU and a ∈ LI , we have:

σ · x · a ∈ Straces(i0) then σ · a · x ∈ Straces(i0)

Example 5. Consider the IOTS s0 given in Figure 5. It is not hard to check that s0 is
delay right-closed.

As stated in the following theorem, the verdicts obtained by executing an arbitrary
test case on a delay right-closed IOTS do not depend on the execution context. That is,
the verdict does not change when the communication between the implementation and
the test case is synchronous or asynchronous.

Theorem 2. Let 〈I, L,→, i0〉 be a delay right-closed IOTS and let 〈T, L′,→, t0〉 be an
arbitrary test case. Then i0 passes t0 iff Q(i0) passes t0.

Before we address the proof of the above theorem, we first establish the correctness
of the lemma below, stating that the suspension traces of a delay right-closed IOTS, as
observed in an asynchronous setting are indistinguishable from the set of suspension
traces observable in the synchronous setting.

Lemma 3. Let 〈S,L,→, s0〉 be a delay right-closed IOTS. Then Straces(Q(s0)) =
Straces(s0).

Proof. We divide the proof obligation into two parts: Straces(Q(s0)) ⊆ Straces(s0)
and Straces(s0) ⊆ Straces(Q(s0)). It is not hard to verify that the latter holds vacu-
ously, even for arbitrary IOTSs.

It therefore remains to show that Straces(Q(s0)) ⊆ Straces(s0). Consider a σ ∈
Straces(Q(s0)); by Proposition 3, ∃σ′ ∈ Straces(s0) • σ′ @ σ. As s0 is delay right-
closed, we obtain the required σ ∈ Straces(s0).

The above lemma is at the basis of the correctness of Theorem 2.

Proof (Theorem 2). Using the lemma given above, the proof of the theorem follows
from the observation that for all test cases 〈T, L′,→, t0〉 and all σ ∈ L′∗:

∃i′ ∈ I•t0e|i0
σ

=⇒ faile|i′ iff ∃i′ ∈ I, σi ∈ L∗I , σu ∈ L∗U•t0e|Q(i0)
σ

=⇒ faile|[σu�i
′
�σi]

Theorem 3. Let 〈I, L,→, i0〉 be a delay right-closed IOTS and let IOLTS 〈S,L,→, s0〉
be a specification. Then i0 ioco s0 iff Q(i0) ioco s0.

Proof. Follows from the existence of a sound and complete test suite that can test for
ioco, and the proof of Theorem 2.
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5 Necessary and Sufficient Conditions

In the previous section, we presented a class of implementation, called delay right-
closed, whose synchronous and asynchronous test executions lead to the same verdict.
We now show that delayed right-closedness of implementations is also a necessary
condition to ensure the same verdict in the synchronous and the asynchronous setting.

Theorem 4. Let M = 〈I, L,→, i0〉 be an IOTS. If for every test case 〈T, L′,→, t0〉,
we have i0 passes t0 ⇔ Q(i0) passes t0, then M is a delay right-closed IOTS.

Proof. We prove the theorem by contraposition, i.e., we show that if we test a non-delay
right-closed IOTS, there is a test case that can detect this by giving a pass verdict in the
synchronous setting but a fail verdict in the asynchronous setting.

Let 〈I, L,→, i0〉 be an IOTS that is not delay right-closed. Thus, there is some
x ∈ LU , a ∈ LI such that σ · x · a ∈ Straces(i0), but not σ · a · x ∈ Straces(i0). Let
〈T, L′,→, t0〉 be a test case such that there is a t′ ∈ T satisfying:

1. t0
σ

=⇒ t′,
2. t′ a−→ t′′, and t′′ x−→ fail.
3. for all σ′ such that t0

σ′
=⇒ fail we have σ′ = σ · a · x.

Observe that the existence of such a test case is immediate. Then there are σi ∈ L∗I ,
σu ∈ L∗U and a state i ∈ (i0 afterσ) such that t0e|Q(i0)

σ·a·x
=⇒ faile|[σu�i�σi·a], i.e.,

not Q(i0) passes t0. However, we do not have t0e|i0
σ·a·x
=⇒ faile|i. By construction of

the test case, we find that i0 passes t0.

6 Conclusions

In this paper, we presented theorems which allow for using test-cases generated from
ordinary specifications in order to test asynchronous systems. These theorems establish
sufficient conditions when the verdict reached by testing the asynchronous system (re-
motely, through FIFO channels) corresponds with the local testing through synchronous
interaction. In the case of ioco testing theory, we show that the presented sufficient con-
ditions are also necessary.

It remains to find an intensional characterization of the notion of conformance in-
duced by the class of test-cases generated in the approach of [13]. The presented condi-
tions for synchronizing ioco are semantic in nature and we intend to formulate syntactic
conditions that imply the semantic conditions presented in this paper. For example, it is
interesting to find out which composition of programming constructs and / or patterns
of interaction satisfy the constraints established in this paper. The research reported in
this paper is inspired by our practical experience with testing asynchronous systems
reported in [1]. We plan to apply the insights obtained from this theoretical study to
our practical cases and find out to what extent the constraints of this paper apply to the
implementation of our case studies.
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