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ABSTRACT
In this paper, we introduce a notion of restricted revocable
delegation and study its consequences in language-based se-
curity. In particular, we add this notion by means of delegate
and revoke commands to a simple imperative programming
language. We then define an operational semantics for our
programming language, in the Natural Semantics style of
Gilles Kahn. We briefly discuss our initial ideas about the
security properties of the semantics, which are extensions of
existing variations of the renown non-interference property,
e.g., in the context of delimited information release.

Categories and Subject Descriptors
D.3.1 [Programming Languages]: Formal Definitions and
Theory

Keywords
Language-Based Security, Operational Semantics, Secure In-
formation Flow, Delegation

1. INTRODUCTION
Security-typed programming languages [18] provide a means

to enforce end-to-end information flow security. In these
languages, data types are annotated with security labels in
order to identify the confidentiality and/or integrity policy
for each data element. Such policies specify which principals
or entities are allowed to infer or modify the value of data re-
spectively. The specification of principals in security-typed
programming languages allows modeling different roles in
the application program with different security concerns such
as users, groups and processes. In practical applications,
however, it is often handy to temporarily modify these poli-
cies, i.e., to permit a temporary information flow to a certain
principal and renounce a prior permission. We refer to the
first phenomenon as delegation and to the second as revo-
cation. Next, we mention two practical examples of this
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phenomenon. We use the first example as our running ex-
ample throughout this paper to illustrate different concepts
and issues and their formalization.

Example 1 Consider a clinical system in which the physi-
cian treating a patient can access the medical history of the
patient. Suppose that, in a particular case, the physician
would like to delegate her authority to access the medical
history to a colleague who can provide a second opinion and
add it to the document. However, the physician in charge
as well as the patient do not want to enable the second
physician to delegate this authority further to a third per-
son. This scenario illustrates the essence of restricted del-
egation; in practice the permitted chain/tree of delegation
may of course be much more complicated than the simple
chain sketched above.

Example 2 As a second example, consider an online book-
shop which receives the authorization from a customer to
charge her credit card. Hence, during the transaction the
customer delegates the authority of accessing her credit card
information to the bookshop, with a further permission to
authorize the transaction with (delegate the read and write
permission to) the bank. However, upon finalizing the trans-
action, the client revokes this delegation. After revocation,
the bookshop is not allowed to keep hold of and access
client’s credit card information. This is an example of a
revocation.

Related work..
A general form of delegation is already present in some

security-typed programming languages such as Jif [8, 15].
Using delegation in Jif a principal p can act for another
principal q, i.e., any action taken by principal q is also au-
thorized for principal p. However, this feature does not sup-
port any of the features mentioned above, i.e., restricted and
revocable delegation. These two issues have been studied in
other areas such as access control systems [2] and workflow
management [22]. However, there exists only few attempts
to accommodate these concepts in language-based security
[4, 12, 6, 7]. Our work is inspired by and improves upon [6].
In [6] delegation within a certain scope is introduced and
is used to ensure confidentiality. Our work extends this to
guarantee integrity and adds the aspect of delegation chain-
ing to it. In [7], a dynamic model of information flow is pre-
sented by means of conditional flow rules. We expect that
our delegation and revocation chains can be coded in the
approach of [7] by using auxiliary variables and predicates,



Body ::=(VarDecl | Statement)∗

VarDecl ::=Var “:” SecType “:=” Val “;”
SecType ::=“(”Type“,” Label“)”
Type ::=“Bool” | “Int” | ...
Label ::=Policy∗

Policy ::=Principal [“:” ([“!”]Principal)∗]
Principal ::=“p” | “q” | “r” | ...
Statement::=Var “:=” Exp “;” |

if Exp then Body else Body fi|
while Exp do Body od |
Principal delegates Var(“(*)” |
“(!)” | “(*,!)”) Chain “;” |
Principal revokes Var (“(*)” | “(!)” | “(*,!)”) Chain “;”

Exp ::=Var | Cons | Exp op Exp
Chain ::=Principal | Principal “→” Chain

Figure 1: Syntax of An Imperative Programming
Language.

which are used in the conditional flow rules and are (re)set
in case of delegation (revocation). However, this coding is
very cumbersome and harms the readability of the code, and
moreover, the information leaked through a delegation goes
beyond the control of the grantor and can be accessed after
the revocation.

It has already been observed by several researchers, e.g.,
in [6, 13, 17], that the original notion of non-interference [9]
is too “static” to track the information flow in the presence
of dynamic flow constructs such as those for declassification
[17]. In this paper, we briefly present our initial ideas about
the security properties suitable for the setting with delega-
tion and revocation.

Structure of the paper..
The rest of this paper is structured as follows. In Section

2, we define the syntax and briefly describe the informal se-
mantics of a simple security-typed imperative programming
language which includes restricted delegation and revocation
constructs. In Section 3, we formalize the semantics of our
language in the Natural Semantics style of Gilles Kahn [10].
Section 4 studies security properties, à la non-interference
[9], in the presence of delegation and revocation. Section 5
concludes the paper and presents some directions for future
research.

2. SYNTAX AND INFORMAL SEMANTICS
The syntax of our simple imperative programming lan-

guage is given in Figure 1.
Next, we explain the intuitive meaning of the constructs

presented in Figure 1. A program is a sequential piece of
code, whose body consists of a number of variable declara-
tions and statements. Variables have a security type, which
is an ordinary data type augmented with a security label.
A security label consists of zero or more security policies to
enforce confidentiality and integrity respectively. A security
policy of the form“p : q ; ! r” specifies that principal p is an
owner of the declared variable, while principals q and r can,
respectively, read from and write to the information stored
by p in this variable. Multiple policies may define differ-
ent owners for the same variable, with different readers and
writers for each owner, where the reader can read the owner
data, while the writer can edit her data. The read and write

permission associated with each owner refers to the data val-
ues stored by the owner(s) in that variable. (Intuitively we
take multiple policies to collectively define a set of owners,
readers and writers; if desired, one could modify our pro-
posed semantics to allow for readers and writers defined in
each policy to read from and write on the values assigned by
the owner in the same policy.) Note that this initial policy
can be changed later in the course of program execution by
means of delegation and revocation. A statement can be an
assignment, a conditional or a loop statement. Moreover,
the owner principal of a variable can delegate read/write
authority over the variable to a chain of principles. The
initial element of the chain is the one receiving the author-
ity but may delegate it further to the other elements of the
chain depending on the privileges given to it by the grantor
principal. The dual to delegation is revocation and specifies
that a certain delegation (sub-)chain is not valid anymore
and moreover, no obtained information in the course of del-
egation may be leaked to the principals whose authorities
are revoked. In this paper, we assume that delegation is not
necessarily transitive, i.e., by specifying a chain, the grantor
does also specify the order in which delegation may happen.
A transitive delegation operator can then be defined as a
syntactic sugar. Along the same line, we define revocation
of a sub-chain to result in revoking all the chains following
this sub-chain. Again, an alternative revocation statement
can be defined where the chain is“patched”by concatenating
the rest of the chain to its allowed pre-fix. For simplicity, we
assume that each principal is mentioned only once in each
delegation chain.

To illustrate our syntax, we specify the informal explana-
tion of Example 1 in our syntax.

Example 3 The following program captures the scenario
described in Example 1 using the syntax given in Figure 1.

1: // patient visits phys1
2: history : (String, patient) := SQLQuery;
3: patient delegates history(*,!) phys1;
4: obs1 : (String, phys1 patient) := Observation;
5: history := history + obs1;
6: // phys1 introduces phys2 to patient
7: patient delegates history(*,!) phys1 → phys2;
8: phys1 delegates history(*,!) phys2
9: obs2 : (String, phys2 patient) := NewObs;

10: // phys2 makes some observations
11: history := history + obs2;
12: // phys2 takes a leave and delegates her tasks to phys3
13: phys2 delegates history(*,!) phys3 ; // phys2 dele-

gates the patient’s history to phys3 without any permis-
sion from patient : error

3. SEMANTICS

3.1 Introduction
We aim for providing an operational semantics for the

programming language. We go for a Natural Semantics [10],
because it allows us to more naturally deal with the notion
of scope and its effect of information flow. Using a bit more
of book-keeping one could adapt the given semantics to the
small-step setting.

As stated before, the semantics is supposed to control in-
formation flow in order to prevent information leakage. For



the simplest case of (direct information leak), consider an
assignment of the form x := y and suppose that the secu-
rity label of variable x does not incorporate (i.e., is not more
restrictive than) the security label of variable y. Then, infor-
mation stored in y is made available for reading and writing
to principals that have been granted access by the owner of
variable x.

But information leak might also be indirect and due to
the control structure of the program. Consider a statement
if y = 0 then x := 0 else x := 1. In this case, the information
about variable y is leaked to x via the if-then-else control
structure.

A more intricate form of disallowed information leakage
arises from delegation and revocation. Assume that x and y
have the same original, henceforth called static, security la-
bel and suppose that due to a delegation by a principal p not
mentioned in the static security label of x and y, some in-
formation owned by p is leaked to y. After that p revokes its
delegation, the assignment x := y leaks information owned
by p to x, which should be prevented by the virtue of the
revoked delegation.

Each of the above-mentioned three categories of information-
leakage is prevented using a mechanism in the presented
semantics. For the simple and direct information leakage,
static labels are checked in the premises of the assignment
rule. For the indirect information leakage due to control
structures the status of the program counter is taken into
account, following the approach of [14]. To keep track of
the dynamic nature of delegation and revocation and the
information flow caused by temporary delegations, dynamic
labels of variables are stored and updated in the course of
variable assignments. Note that at this point, we have to
depart from the more static nature of labels in the decen-
tralized label model of [16].

The following types of information are relevant to estab-
lish the execution of the program and to track and control
the information flow.

1. The program counter indicates which principals have
influenced the control-flow of the program so far (by
means of the conditions of if-then-else and while-do
constructs). This is a well-known approach in mod-
eling and preventing undesired implicit information
flows [14].

2. The values of the program variables are relevant since
these are needed to compute values of conditions in
guards of if-then-else and while-do constructs and for
determining the new values for variables in assign-
ments.

3. The static label is the label of the variable from the
variable declaration; this label defines which princi-
pals are initially allowed to write to and read from a
variable.

4. The dynamic label captures the label of the variable as
it changed during the execution of the program due to
delegation and revocation statements.

5. The information flow is the set of principals that have
contributed to the current value of a variable. This in-
formation is needed to prevent information flow from
granting principals to the delegates after the delegation
is revoked. By keeping the information flow explicit,

we can record the influence of principals on variables
and thus prevent further use of information flow that
was made possible due to a (by now revoked) delega-
tion.

3.2 Configuration (Operational State)
The configurations that we will consider for the structured

operational semantics are tuples of the following type: 1

Config = Body × Environment
Environment = Valuation × StaticLabel×

DynamicLabel × Flow

The set Body describes the remaining part of the body of
the program that still needs to be executed. For the lan-
guage described in this paper this is a (possibly empty) list
of variable declarations and statements, as defined by our
BNF syntax. The set Environment defines for each variable
its valuation and the information regarding its allowed and
its actual information flow. A valuation v : Var 7→ Val is a
partial function from variable names to values. For simplic-
ity, we do not care about the types of the values and assume
that they are collectively present in Val . We use this partial
function in such a way that the variables for which the val-
uation is defined are declared (already) and those that are
not in the domain of the valuation are not declared (yet).

A static label is represented by a partial mapping from
variables to a label. A label is a triple of a set of owners, a
set of writers and a set readers. Thus

Label = P(Principal)× P(Principal)× P(Principal)

This means that the static label is nicely captured by

StaticLabel = Var →p Label

Given a static label s and a variable x, assume that s(x) =
(o, w, r); we write owner(s(x)) for o, writer(s(x)) for o∪w,
and reader(s(x)) for o∪r, respectively. Intuitively, writer(s(x))
and reader(s(x)), respectively, refer to the sets of statically
authorized writers and readers of x. Here, we follow the
decentralized label model if [16] for the interpretation of
confidentiality of integrity labels; see [21] for an alternative
interpretation of integrity, which could as well be adopted
in our setting.

The dynamic label defines for each variable two sets of
delegation chains of principals: the first one for recording
the write delegation chains and the second one for the reader
chains. Each chain is a sequence of principal augmented with
a natural number indicating the index of the present actual
delegation. For each variable, a delegation chain specifies
possible delegations in the future; the principals appearing
on and before the index of the write and read delegation
chains are those that can currently, respectively, write and
read the variable in hand due to delegation.

1We use a Z-like notation [20] for mathematical expressions;
in particular, →p stands for partial function, P stands for
power set, Seq for a sequence, _ for sequence concatena-
tion, and ⊕ for function update (i.e., re-defining the value
for an element in the domain, or introducing a value for an
element not in the domain). A sequence of elements is a
mapping from natural numbers to the set of elements. Nat-
ural numbers (and hence the indices of sequences) start from
0.



DynamicLabel = Var →p (P(Chain) × P(Chain))
Chain = (Seq Principal)× N

For a dynamic label d, we write dw : Var →p P(Chain)
to denote the write delegation chains, and dr (of the same
type) to denote the read chains. For a variable x, we write
current(dr(x)) (respectively, current(dw(x))) to denote ac-
tual writers (respectively, readers), i.e., the principals ap-
pearing on and before the index of the corresponding chain
specified by the dynamic label. The tails of such chains spec-
ify the potential writers and readers which may receive the
right to modify or access this variable through the execution
of delegation statements.

An alternative semantic construction could only consider
delegation sequences only; then, each time a delegation takes
place a suffix of the chain in which delegation has taken place
is added to the set of sequences. Without revocation, this
can lead to a much cleaner semantics, but in the presence of
revocation, one should record “where the current delegation
has come from”. Otherwise, one can revoke a delegation
which could have been caused by her but in fact has come
into being by another principal. This is efficiently achieved
by the above-given semantic construction, which keeps the
delegation structure, and only shifts it index forth, each time
a delegation takes place.

Finally, the last component of a configuration is Flow ,
which specifies, for each variable, the set of principal which
influenced it current value:

Flow = Var →p P(Principal)

The program counter PC = P(Principal) is the set of
principals which have influenced the control flow of the pro-
gram thus far. The transition relation defined by the oper-
ational semantic rules given below is of the following type:

PC ` Body × Environment → Environment

I.e., it defines that under a certain context for program
counter, when the body of a program is evaluated under
an environment, the resulting environment is the one speci-
fied by the target of the transition. By default, the evalua-
tion of a program P starts from the following configuration:
∅ ` (P, (∅, ∅, ∅, ∅)), i.e., the PC is not influenced by any prin-
cipal and valuation, static label, dynamic label and informa-
tion flow are all partial functions with an empty domain.

3.3 Variable declaration
A variable can de declared just one. This is expressed by

checking whether or not the variable that is declared is al-
ready in the domain of the valuation. The declared variable
is added to this valuation with the initial value assigned to
it. Both delegation chains for the declared variable are ini-
tially empty and the only principals which have influenced
the (initial) value of this variable so far is its set of owners.

v′ = v ⊕ {x 7→ val} s′ = s⊕ {x 7→ simp(l)}
d′ = d⊕ {x 7→ (∅, ∅)} i′ = i⊕ {x 7→ ext ow(l)}

P ` 〈S, v′, s′, d′, i′〉→ 〈v′′, s′′, d′′, i′′〉
P ` 〈x : (T, l) := val; S, v, s, d, i〉→ 〈v′′, s′′, d′′, i′′〉

In the above deduction rule the mappings simp and ext ow
are simple mappings turning a syntactic label to, respec-
tively, a (semantic) triple and a set of principals as defined

below. In the following definitions l is a syntactic label, pr
and pr′ are principals and prs is a list of principals possibly
annotated by exclamation marks.

simp(l) = (ext ow(l), ext re(l), ext wr(l))

ext ow(ε) = ∅
ext ow(pr : prs l) = {pr} ∪ ext ow(l)

ext re(ε) = ∅
ext re(pr : ε) = ∅
ext re(pr : pr′ prs l) = {pr′} ∪ ext re(pr : prs) ∪ ext re(l)
ext re(pr : !pr′ prs l) = ext re(pr : prs) ∪ ext re(l)

ext wr(ε) = ∅
ext wr(pr : ε) = ∅
ext wr(pr : !pr′ prs l) = {pr′} ∪ ext wr(pr : prs) ∪ ext wr(l)
ext wr(pr : pr′ prs l) = ext wr(pr : prs) ∪ ext wr(l)

Example 4 Consider the first statement of the program
presented in Example 3, given below.

history : (String, patient) := SQLQuery;

Starting from the above statement with the default ini-
tial state (i.e., the empty set for the PC and partial func-
tions with empty domain for all components of the environ-
ment), we arrive in the following environment, by applying
the above-given deduction rule:

env0=({history 7→ SQLQuery}, {history 7→ ({patient}, ∅, ∅)},
{history 7→ (∅, ∅)}, {history 7→ {patient}})

3.4 Assignments
In order for an assignment to make a successful opera-

tional step, one requires that x and all variables that occur
freely in e are defined variables, and

1. either static label and the dynamic information flow
influencing e are more restricted than static label of x,

2. or x is allowed to store the information content of e
due to a delegation statetment.

The first deduction rule given below realizes the first item
and the subsequent rule is dedicated to the second item in
the list.

x ∈ dom(v) vars(e) ⊆ dom(v)
s(e) v s(x) P ∪ i(e) v writers(s(e))

i(e) v writers(s(x))
v′ = v ⊕ {x 7→ v(e)} i′ = i⊕ {x 7→ i(e) ∪ P}

P ` 〈S, v′, s, d, i′〉→ 〈v′′, s′, d′, i′′〉
P ` 〈x := e; S, v, s, d, i〉→ 〈v′′, s′, d′, i′′〉

The symbol v should be read as “less restricted than”
and is defined by the standard order-theoretic approach to
security labels (see, e.g., [16]). We use v both between la-
bels and sets of principals, but this is understood from the
context and should not cause any confusion. Function v is
a mapping that associates with an expression e (over vari-
ables from dom(v)) the value that is obtained by replacing
the variables by their values from v. Note that the label
and the information flow of an expression e is defined in-
ductively based on its structure, int the standard manner.



The above-given rule first checks whether the static label of
the assigned expressions e is more strict than that of the
variable x assigned to it. If so, it checks whether the in-
formation content of the expression is covered by its static
label (no information leakage in the expression due to prior
delegations) and finally, whether the principals influencing
the expression are allowed to influence the variable.

The other case is where the static labels do not allow for
the information flow prescribed by the assignment, but the
delegation statements do allow for this. This is captured by
the following deduction rule.

x ∈ dom(v) vars(e) ⊆ dom(v) s(e) 6v s(x)
readers(s(e)) v current(dr(e)) ∪ readers(s(x))

writers(s(x)) ∪ current(dw(x)) v P ∪ i(e)
v′ = v ⊕ {x 7→ v(e)} i′ = i⊕ {x 7→ i(e) ∪ P}

P ` 〈S, v′, s, d, i′〉→ 〈v′′, s′, d′, i′′〉
P ` 〈x := e; S, v, s, d, i〉→ 〈v′′, s′, d′, i′′〉

In the above deduction rule, the premise readers(s(e))
v current(dr(e)) ∪ readers(s(x)) checks whether the set of
dynamic actual readers (i.e., currently delegated readers) of
e and static readers of x are large enough to contain all static
readers of e. In other words, we check whether the informa-
tion leak caused by this assignment is justified by the combi-
nation of static policies and delegation statements executed
so far. Similarly, writers(s(x))∪ current(dw(x)) v P ∪ i(e),
specifies that those principals that are about to modify x
through the assignment, are among those authorized to write
on x by its static label or by the delegation statements exe-
cuted hitherto.

3.5 If-then-else statements
The semantics of if-then-else statements is presented by

the following two deduction rules, catering for the “then”
and the “else” cases, respectively. Note in both cases that
the program counter in the body of the conditional state-
ment is influenced by the principals affecting its condition;
hence, within the scope of if-then-else, the program counter
is extended with i(b), i.e., the principals which have influ-
enced b so far. This influence does not carry over to the
statements executing after the conditional and hence the
rest of the program is executed under the original value of
the program counter.

vars(b) ⊆ dom(v) s(b) = true
P ∪ i(b) ` 〈S, v, s, d, i〉→ 〈v′, s′, d′, i′〉
P ` 〈S′′, v′, s′, d′, i′〉→ 〈v′′, s′′, d′′, i′′〉

P ` 〈if b then S else S′ fi; S′′, v, s, d, i〉→ 〈v′′, s′′, d′′, i′′〉

vars(b) ⊆ dom(v) s(b) = false
P ∪ i(b) ` 〈S′, v, s, d, i〉→ 〈v′, s′, d′, i′〉
P ` 〈S′′, v′, s′, d′, i′〉→ 〈v′′, s′′, d′′, i′′〉

P ` 〈if b then S else S′ fi; S′′, v, s, d, i〉→ 〈v′′, s′′, d′′, i′′〉

Note that in order to define a small-step semantics for
our programming language, one has to keep track of the
current scope of the program counter. Hence, in a small-step
semantics, instead of a set of principals, a stack (sequence)
of sets of principals should be stored and each time entering
(leaving) a scope an updated set pushed into (popped from)
the stack.

3.6 While-do statements
The semantics of a while loop is presented by the follow-

ing two deduction rules. Besides the standard definition,
the main twist in the following two definition is that the
program counter entities is influenced by the principals in-
volved in defining its boolean condition. This has already
been observed in the semantics of the conditional statement.
However, the program counter for the continuation of the
program is also influenced by the condition of the while loop,
because reaching the continuation depends on the termina-
tion of the while-loop, and hence on its boolean condition.

vars(b) ⊆ dom(v) s(b) = true
P ∪ i(b) ` 〈S; while b do S od;S′, v, s, d, i〉→ 〈v′, s′, d′, i′〉

P ` 〈while b do S od; S′, v, s, d, i〉→ ` 〈v′, s′, d′, i′〉

vars(b) ⊆ dom(v) s(b) = false
P ∪ i(b) ` 〈S′, v, s, d, i〉→ 〈v′, s′, d′, i′〉

P ` 〈while b do S od; S′, v, s, d, i〉→ 〈v′, s′, d′, i′〉

3.7 Delegation statements
The first three deduction rules of the delegates construct

allow for adding a delegation chain by the owner of the vari-
able (for reading, writing or both reading and writing the
variable, respectively). Due to space restrictions, we only
give the deduction rule for the delegation of reading; the
other two rules are almost identical.

x ∈ dom(v) d′ = d⊕ {x 7→ (dw(x), dr(x) ∪ {(c, 0)})}
p ∈ owner(s(x)) P ` 〈S, v, s, d′, i〉→ 〈v′, s′, d′′, i′〉
P ` 〈p delegates x ∗ c; S, v, s, d, i〉→ 〈v′, s′, d′′, i′〉

The remaining three deduction rules specify further del-
egation by a principal previously authorized by the owner
(the head of an existing delegation chain). Note that if a
principal only delegates to a sub-chain (of the original chain
specified by the owner), only the sub-chain will be added for
further delegation.

(c′, j) ∈ dr(x) c′ = c0 _ p _ c _ c1 c′(j) = p
d′ = d⊕ {x 7→ (dw(x), dr(x) \ {(c′, j)} ∪ {(c′, j + 1)})}

P ` 〈S, v, s, d′, i〉→ 〈v′, s′, d′′, i′〉
P ` 〈p delegates x ∗ c; S, v, s, d, i〉→ 〈v′, s′, d′′, i′〉

The above deduction rule requires a chain (c′) to be present
in the set of read delegation chains of x such that p appears
at the current index of delegation (is the last actual reader
in the chain) in c′, and p is immediately followed by c. If
such is the case, the current delegation index in c′ is incre-
mented by 1, thereby granting the read right to the first
principal in c. (Delegating to an empty list shifts an arbi-
trary delegation chain starting with p one principal further.
If this is considered undesired, it can be prevented by adding
a premise requiring c to be non-empty.) The other two de-
duction rules, specifying the delegation of writing and both
reading and writing, are almost identical to the one given
above and are omitted here.

Example 5 Now we have sufficient ingredients to go some-
what further (than Example 4) with the evaluation of the
program in Example 3. To start with, consider a chunk of
this program, given below.



history : (String, patient) := SQLQuery;
patient delegates history(*,!) phys1;
obs1 : (String, phys1 patient) := Observation;
history = history + obs1;

We have already seen that the execution of variable dec-
laration results in the following environment.

env0=({history 7→ SQLQuery}, {history 7→ ({patient}, ∅, ∅)},
{history 7→ (∅, ∅)}, {history 7→ {patient}})

Hence, we can continue with evaluating the rest of the pro-
gram by using the empty set as PC and env as environment.
evaluating the delegation statement results in the following
environment, due to the third deduction rule for delegation
(note that patient is the owner of history):

env1 = ({history 7→ SQLQuery}, {history 7→ ({patient}, ∅, ∅)},
{history 7→ ({(phys1 , 0)}, {(phys1 , 0)})}, {history 7→ {patient}})

Hence in env1 , current(dw(history)) = current(dr(history))
= {phys1}. Evaluating the variable declaration adds obs1 to
the set of declared variables with its initial value, i.e., the
following environment:

env2 = ({history 7→ SQLQuery, obs1 7→ Observation},
{history 7→ ({patient}, ∅, ∅), obs1 7→ ({phys1 , patient}, ∅, ∅)},
{history 7→ ({(phys1 , 0)}, {(phys1 , 0)})},
{history 7→ {patient}, obs1 7→ {patient , phys1}})

Considering the assignment statement, it does not hold that
s(history) v s(history + obs1), because only patient is au-
thorized by its static label to write to history, while history
+ obs1 is influenced by phys1 . However, it does hold that
{patient , phys1}= writers(s(history)) ∪ current(dw(history))
v P ∪ i(history + obs1 ) = {patient , phys1}. Hence, the sec-
ond deduction rule for assignment applies, resulting in the
following environment.

env3 = ({history 7→ SQLQuery + Observation,
obs1 7→ Observation},

{history 7→ ({patient}, ∅, ∅), obs1 7→ ({phys1 , patient}, ∅, ∅)},
{history 7→ ({(phys1 , 0)}, {(phys1 , 0)})},
{history 7→ {patient , phys1}, obs1 7→ {patient , phys1}})

3.8 Revocation statements
The owner of a variable can revoke any delegation (sub-

)chain declared before; the grantor of a delegation can re-
voke only the part of delegation authorized by herself. The
grantor cannot revoke the delegation chain defined by the
owner, however.

d′ = (dw, dr ⊕ {x 7→ {((dr(x)\
{(c′, j) | (c′, j) ∈ dr(x) ∧ c′ = c0 _ c _ c1})∪
{(c0, k) | (c0 _ c _ c1, j) ∈ dr(x) ∧ k = min(j, #c0)})}})
p ∈ owner(s(x)) P ` 〈S, v, s, d′, i〉→ 〈v′, s′, d′′, i′〉
P ` 〈p revokes x ∗ c; S, v, s, d, i〉→ 〈v′, s′, d′′, i′〉

The deduction rule given above, takes out all chains con-
taining the sub-chain c and puts back their prefix to the
index right before the sub-chain in case it has gone beyond
the prefix. An alternative semantics for revocation could put
back c0 _ c1, thereby “patching” the remaining chains; this
alternative semantics is more in-line with a transitive view
of delegation, i.e., if the chain p0 → p1 → p2 is authorized,
then the delegation p0 → p2 is also implicitly authorized.
We consider this somewhat counter-intuitive as it is quite

natural to require a certain delegation to go via a specified
principal. (Revoking an empty chain revokes all delegation
chains for variables owned by x.)

d′=(dw, dr ⊕ {x 7→ ((dr(x)\
{(c′, i) | (c′, i) ∈ dr(x) ∧ c′ = c0 _ p _ c1 _ c _ c2∧

#c0 _ p _ c1 < i})∪
{(c0 _ p _ c1, #c0 _ p _ c1) |

(c′, i) ∈ dr(x) ∧ c′ = c0 _ p _ c1 _ c _ c2∧
#c0 _ p _ c1 < i})})

p /∈ owner(s(x)) P ` 〈S, v, s, d′, i〉→ 〈v′, s′, d′′, i′〉
P ` 〈p revokes x ∗ c; S, v, s, d, i〉→ 〈v′, s′, d′′, i′〉

The rule given above removes those chains containing p
and followed by c such that the current delegation has passed
via p to c (and possibly beyond). After removing such
chains, their prefix before reaching c is put back in the dele-
gation chain and the index is moved back to the index before
the start of c. (Revoking an empty chain revokes all chains
that has gone beyond p and returns the delegation to p.)

There are two pairs of deduction rules dedicated to re-
voking write and both write and read delegation, which are
almost identical to the ones given above and hence, are omit-
ted.

3.9 Termination
Finally, an empty program, denoted by ε, indicates suc-

cessful termination, whose semantics is captured by the fol-

lowing deduction rule.
P ` 〈ε, v, s, d, i〉→ 〈v, s, d, i〉

4. PROPERTIES
Defining a formal semantics is the first step into the world

of formal analysis and hence for the formal analysis to make
sense, the definition of formal semantics has to be shown
“correct”. This is non-trivial, because there is no formal
specification, against which the formal semantics can be
checked. The only possible specifications are intuitive prop-
erties, which are themselves to be formalized. One such
intuitive property is the notion of non-interference, which
requires that a secure program should produce the same
public (“low”) state, from any two states that have the same
valuation on public variables (which may be arbitrarily dif-
ferent on the valuation of private or “high” ones). (As it
is customary in the literature, we assume throughout this
section that we only have two logical principals “low” and
“high”.)

Non-interference is clearly inappropriate for our setting as
the valuation of high variables may justifiably influence that
of low variables due to a delegation; in other words, high and
low only represent the static label of variables and any ap-
propriate notion of security should also cater for the dynamic
labels and information flow. There are two alternatives for
this: either one resorts to a bisimulation-like definition for
non-intereference (e.g., low-bisimulation of [19]), where dy-
namic labels and information flow are tracked in each op-
erational steps and taken into account in the definition of
non-intereference. An alternative approach is to define a
notion of non-interference parameterized by a static context
of delegation; similar approaches in the literature include
the notion indistinguishability relations in [5] and delimited
information release in [17]. The latter approach is more



semantic-independent and can thus serve as a measure for
checking the intuitive properties of the semantics. However,
it is much more restrictive as it requires a static delegation
context, e.g., a sequence of delegation statements that are
executed initially in all runs of the program. To remedy
this, we aim to define a compositionality theorem for such a
parameterized notion of non-interference, e.g., prove that if
two programs are non-interfering, then their sequential and
conditional composition is non-interfering as well (we may
require some further constraints, matching the parameters
of non-interference). Subsequently, by decomposing the pro-
gram into pieces with static delegation structures, proving
their parameterized non-intereference and combining them
back again, we can provide a proof of non-interference for
complete programs with a dynamic delegation and revoca-
tion structure. The details of this approach are yet to be
worked out though. Once we have such a notion of security,
we should prove the following theorem:

A program evaluates in our semantics if and only
if it is secure.

Another (less involved) property that follows from our in-
tuitive description of delegation, and can be checked for our
semantics, is the following:

A program containing delegation evaluates, only
if the delegation is performed by the owner, or
by the delegation statements preceding it.

5. CONCLUSIONS
In this paper, we have added the notions of restricted del-

egation and revocation to a simple imperative programming
language and presented their formal semantics. Then, we
presented some initial ideas regarding extending the notion
of non-interference to cater for delegation and revocation.

Our first research goal is to formalize the ideas presented
in Section 4 and to prove them for our proposed semantics.
Moreover, we are currently implementing our approach and
building up a servers-side scripting language based on our
approach (partly, along the lines of [1, 3, 11]). The semantics
of [11, 1] provide a semantic alternative to the one presented
in this paper, namely, to push the necessary checks for infor-
mation flow to a concurrent monitor. This approach has the
advantage of keeping the programming language and its se-
mantics simple, but requires much communication and syn-
chronization with the monitor, particularly in our case. We
are currently investigating this alternative and its practical
implications for our ongoing implementation effort.
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