
Operational and Epistemic Approaches to

Protocol Analysis: Bridging the Gap

Francien Dechesne1, MohammadReza Mousavi1,2, and Simona Orzan1

1 Department of Computer Science, Eindhoven University of Technology,
P.O. Box 513, NL-5600MB, Eindhoven, The Netherlands

2 Department of Computer Science, Reykjav́ık University,
Kringlan 1, IS-103, Reykjav́ık, Iceland.

Abstract. Operational models of (security) protocols, on one hand, are
readable and conveniently match their implementation (at a certain ab-
straction level). Epistemic models, on the other hand, are appropriate
for specifying knowledge-related properties such as anonymity or secrecy.
These two approaches to specification and verification have so far devel-
oped in parallel and one has either to define ad hoc correctness criteria
for the operational model or use complicated epistemic models to specify
the operational behavior. We work towards bridging this gap by propos-
ing a combined framework which allows for modeling the behavior of a
protocol in a process language with an operational semantics and sup-
ports reasoning about properties expressed in a rich logic which combines
temporal and epistemic operators.

1 Introduction

Knowledge-related aspects are currently being recognized as very relevant when
expressing and analyzing correctness requirements of complex distributed algo-
rithms and communication protocols, from the fundamental ones like consensus
in a network, to applications like information flow control and security protocols
(secrecy, anonymity, fair exchange). Many approaches based on epistemic logics
have been developed for the analysis of such protocols: BAN logic [BAN96], the
theory of function views [HS04], interpreted systems [FHMV95,HO05,RL06] etc.

They allow for natural and effective representations of subtle effects of com-
munication acts such as classified information leaking to attackers or participants
gaining the common knowledge that the protocol they were running meets its
goal. But on the other hand, modeling protocols using epistemic-logic-based ap-
proaches requires a high degree of expertise and verification of functional prop-
erties is often very complex. The information updates generating the transitions
between epistemic states are especially tedious to specify, because logics are
geared to expressing properties rather than operational steps of a protocol.

The operational behavior of protocols is, however, easily and conveniently
specified in languages such as process algebras [BHR84,Mil80,AG99] and message
sequence charts [CVB06]. Functional requirements such as liveness and safety
are then easily verified by model checking applied on the underlying transition

systems. Unfortunately, these standard and successful verification schemes use
temporal logics that are not well-suited for expressing knowledge-related proper-
ties, therefore complex specialized solutions need to be sought in order to make
process algebras suitable for the analysis of epistemic-flavored properties like
anonymity [SS96,COPT07]. See [HS04,EO06] for a more detailed comparison of
epistemic-based vs. process-based protocol verification.

In this paper, we propose a framework that allows one to benefit the best
of the two worlds, i.e., one can specify the behavior of a protocol in a process
language and verify properties expressed in a logic with both temporal and epis-
temic operators. To achieve this, the key idea is to introduce explicit identities in
our process language PAi and allow every action to be annotated with a visibility
range — i.e., a set of identities that may observe it and a “public appearance” —
i.e., an alternative action that is observed by the identities outside the visibility
range. We give an operational semantics for PAi in terms of annotated labeled
transition systems (ALTSs), which are LTSs with, for every identity, an extra
indistinguishability relation on states. These relations model the uncertainties of
the identities (typically principals in a protocol) about the current state, similar
to the way uncertainties are represented in standard possible-world semantics for
epistemic logics [FHMV95]. Thanks to the combination of transitions and indis-
tinguishability relations, ALTSs naturally support verification of logic formulae
containing both temporal and epistemic operators. We introduce a rich logic,
Eµ (epistemic µ-calculus with past) and give it an interpretation on ALTSs.

Due to the explicit use of identities, PAi allows a precise specification of the
information hiding behavior within protocols, and it is therefore more expressive
and flexible than traditional process algebras. It is also more intuitive and more
formal than epistemic logics, when it comes to behavior modeling. Also Eµ
is more expressive than the usual temporal logics used in traditional protocol
verification. The resulting model checking framework PAi+Eµ soundly extends
the traditional process-based and epistemic model checking settings.

Related work The fact that the two verification approaches, process algebraic
and epistemic, are complementary and that they should ideally be combined
has already been recognized in [HS04], where the aim is, just as here, to pro-
vide a framework in which both protocol specification and correctness criteria
can be specified succinctly and intuitively (and the authors indeed put the two
approaches in sharp contrast). They introduce the notion of function view to
represent partial information and uses it to precisely formalize several subtle
information hiding properties. Since the focus of that theory is proper formal-
ization of requirements, we believe that it is complementary to ours and that it
could possibly be used in our PAi models, for defining suitable visibility ranges.

BAN-logic [BAN96], designed for the analysis of authentication in security
protocols, is very popular, but it is a known problem that a clear semantics,
linking the high-level BAN-specification to runs of the protocol, is still miss-
ing. Also in other interesting recent work concerning Dynamic Epistemic Logic
[GG97,Bal01,HMV04] with an operational flavor, it turns out that protocol spec-

2

ification is rather subtle and ad hoc, just as in tool-supported temporal epistemic
approaches [RL06,HW02], where existing temporal specification languages are
used, but the embedding of the epistemic aspects remains (for a large part) in-
formal. We start from the other side - a process specification language with a
formal semantics, and work towards properly integrating epistemic aspects.

Interpreted Systems [FHMV95,RL06,HO05] are close to the operational se-
mantics of our process language. In fact, it is possible to translate ALTSs defined
by our SOS rules to interpreted systems. Our key improvement is the introduc-
tion of a process specification language with a formal semantics, which enables
the modeling of systems at a reasonable abstraction level. In [HO05], interpreted
systems are used to model different complex notions of (probabilistic) anonymity,
using also an epistemic logic. Our approach is related to and complements that
one, by providing a way of verifying, on process-based specifications, anonymity
notions as defined by [HO05].

The concept of indistinguishability used here bears resemblances to the data
independence technique in [Bro01]. We consider runs of a protocol indistinguish-
able if they appear equal to a principal (as defined by the visibility range of
actions and their public appearance). It is worthwhile to investigate an exten-
sion of our framework along the lines of [Bro01], by allowing the visibility range
of actions to be dynamically updated.

Concurrently with our work, efforts have been made towards the development
of a rich language C3 [BKN06] and a powerful logic CPL [Kra06] for analyzing
cryptographic protocols. That framework is comparable to ours, although specif-
ically geared towards cryptography. The aim there is integrating a wide range of
features, from deontic and spatial operators to probabilities, in one unified set-
ting. C3+CPL is therefore very expressive, but complex and seems difficult to
implement, while our basic language with an easy to grasp operational semantics
can immediately serve as basis for a practical verification toolset. In fact, a pro-
totype implementation already exists [PAi]. Furthermore, there is a fundamental
difference between our underlying logics, namely, that of [Kra06] is a state-based
logic (à la LTL) while our logic is action-based (à la modal µ-calculus).

Overview Section 2 introduces our generic process language for specifying pro-
tocols and a transition-system semantics for it. Section 3 defines our tempo-
ral epistemic logic Eµ and the interpretation of Eµ formulas on the transition
systems. Then we show that this construction does indeed bridge the gap be-
tween process-based and epistemic-logic-based approaches to protocol analysis,
by proving that its projections on the two worlds are consistent with established
definitions in the two worlds separately (Section 4). Section 5 shows an example
and Section 6 concludes the paper and presents directions for future research.

Acknowledgments We thank Luca Aceto, Dave Clarke, Jan van Eijck and Michel
Reniers for comments on earlier versions of this work. Michael Huth pointed out
the link between our work and data independence [Bro01].

3

2 PAi : Syntax and Operational Semantics

In this section, we present the syntax and the operational semantics of a simple
modeling language which we call process algebra with identities (PAi). PAi has
generic features, that can be adapted to match constructs of any classical oper-
ational modeling language (such as CCS [Mil80], CSP [BHR84] or Spi-Calculus
[AG99]). It mostly resembles Milner’s CCS, but we deviate from CCS in a few
ways. Apart from adding identities, we use sequential composition instead of ac-
tion prefixing (and thus, we also introduce a termination predicate), since this is
very handy in writing protocol specifications. Also, we do not hide the result of
a communication automatically and leave this, if at all desired, to the renaming
function since the communicated message can be of relevance in the correctness
specification of the protocol.

PAi : syntax Let Act be a finite set of action names which will be ranged over
by a, b, a0, ?a, !a, . . ., and let Id be a finite set of identities typically denoted
by by i, j, . . . i1, i2, We designate an action τ ∈ Act to denote the internal
(silent) action; in addition to its common process-algebraic meaning, an internal
action here represents a message that offers no new information to the observer
principal. Question mark and exclamation mark (preceding actions) represent
the receiving and the sending parts of a communication, respectively, and an
action without such marks is the outcome of the communication.

Proc ::= 0 | D | Proc; Proc | Proc + Proc | Proc||Proc
D ::= (J)α

0 denotes inaction (the process that has terminated). d = (J)α ∈ D denotes a
decorated action and has the following intuitive meaning: action α ∈ Act is taken
and is visible to principals i ∈ J ⊆ Id, while principals j /∈ J observe ρ(α) being
taken, where ρ : Act→ Act is a global renaming function, which assigns to every
action its “public appearance”. The renaming function ρ should be defined by the
specifier of a protocol but we assume that ρ(τ) is always defined to be τ . For any
other action a, if ρ(a) = τ , then (J)a becomes unobservable to the principals
not in J. The combination of identity annotations on actions and the action
renaming provides different views on the behavior of the system, according to
different principals. Modeling passive observation of a system by hiding parts of it
to specific principals is already done in the literature [SS96], but we will generate
the views for all principals simultaneously. This enables talking about properties
such as “i knows that j knows that k has communicated message a”. Proc;Proc
denotes sequential composition, Proc + Proc denotes nondeterministic choice,
and Proc ||Proc denotes parallel composition.

Example 1. Take P = (1)a ; (1, 2)d + (1)b + (1)c, with the renaming function
ρ(a) = ρ(b) = ρ(c) = dum where dum is a dummy basic action and over the
identity set Id = {1, 2}. P denotes the process that executes one of the actions
a,b,c, but only principal 1 is aware of the exact action taking place. 1 could
be the principal making a choice between actions a,b and c, and 2 could be

4

an observer who only notices that a choice has been made, but not what the
outcome was. This is a process-style formalization of the private communication
from epistemic modeling, where a party learns something while other parties are
watching and learn that the party learned something, but not precisely what.
After the first step, the process terminates or, if the first step was a, continues
with the execution of d. Since principal 2 is allowed to observe the execution of d,
she may now conclude that the first step must have been a, although 2 was not
actually allowed to observe the a. This is exactly the type of information leaks
that we aim at capturing with our verification framework. The rightmost model
in Figure 3 is the state space generated from this process specification, using
the semantic rules introduced in the next section. The fact that 2 is not aware
which first step has been taken is represented by 2 not being able to distinguish
between the three possible destination states.

PAi : operational semantics We introduce the notion of Annotated Labeled
Transition Systems (ALTS) as labeled transition systems extended with an-
notations that denote when two states are deemed indistinguishable from the
viewpoint of a principal, based on the actions taken so far. This is determined
by the information that a principal receives in the course of protocol execution,
which in turn is determined by the visibility annotations.

Definition 1 (ALTS). Given the set Act, an ALTS is a 5-tuple 〈St, → ,X, I, s0〉,
where St is the set of operational states, → ⊆ St × Act × St is the transition
relation, X ⊆ St is the termination predicate, I ⊆ St× Id× St is the indistin-
guishability relation and s0 is the initial state.

For readability, we denote statements (s, l, s′) ∈ → , s ∈ X and (s, i, s′) ∈ I

by s
l
→ s′, sX and s

i
· · · s′, respectively, for each s, s′ ∈ St, l ∈ Act and i ∈ Id.

In the above definition, the transition relation → has exactly the same role
and meaning as in the standard notion of LTS. Formula sX means that in state

s it is possible to terminate. Expression s0
i
· · · s1 denotes that the principal

with identity i cannot distinguish s0 from s1 since both s0 and s1 are reachable
through paths that look identical as far as as principal i can observe and distin-

guish. It is desirable for
i
· · · to be an equivalence relation for each i ∈ Id since

this leads to a natural representation of knowledge (i.e., S5 Kripke models in
modal logic, see [FHMV95]).

In Figure 1, we associate ALTS’s to PAi processes by means of a seman-
tics in the SOS style of [Plo04]. The operational state of PAi is a pair (p, π)
where p ∈ Proc is a PAi process and π is a finite sequence of decorated actions
recording the perception of the process gathered so far. First we define auxil-

iary relations
d
⇒ ⊆ St × St and

i
=⊆ D∗ ×D∗ for each decorated action d and

identity i. Transition relation
d
⇒ defines transitions among operational states

labeled with decorated action d and
i
= defines when two traces are deemed in-

distinguishable by principal i. Note that each process p in the state (p, π) has

5

(0)
(0, π)X

(a)
(d, π)

d
⇒ (0, π _ d)

(s0)
(x0, π)

d
⇒ (y0, π

′)

(x0; x1, π)
d
⇒ (y0; x1, π

′)
(s1)

(x0, π)X (x1, π)
d
⇒ (y1, π

′)

(x0; x1, π)
d
⇒ (y1, π

′)
(s2)

(x0, π)X (x1, π
′)X

(x0; x1, π
′′)X

(n0)
(x0, π)

d
⇒ (y0, π

′)

(x0 + x1, π)
d
⇒ (y0, π

′)
(n2)

(x0, π)X

(x0 + x1, π
′)X

(p0)
(x0, π)

d
⇒ (y0, π

′)

(x0 ||x1, π)
d
⇒ (y0 ||x1, π

′)

(p2)
(x0, π)X (x1, π

′)X

(x0 ||x1, π
′′)X

(p3)
(x0, π)

(J)?a
⇒ (y0, π

′) (x1, π)
(J′)!a
⇒ (y1, π

′′)

(x0 ||x1, π)
(J∪J

′)a
⇒ (y0 || y1, π _ (J ∪ J′)a)

(= refl)
π

i
= π

(= ρ0)
π

i
= π′ a = b i ∈ J ∩ J′

π _ (J)a
i
= π′ _ (J′)b

(= ρ1)
π

i
= π′ ρ(a) = ρ(b) i /∈ J′ ∪ J

π _ (J)a
i
= π′ _ (J′)b

(= ρ2)
π

i
= π′ a = ρ(b) i ∈ J \ J′

π _ (J)a
i
= π′ _ (J′)b

(= τ0)
π

i
= π′ i /∈ J ρ(a) = τ

π _ (J)a
i
= π′

(= τ2)
π

i
= π′

π _ (J)τ
i
= π′

(strip)
(x, π)

(J)a
⇒ (y, π′)

(x, π)
a
→ (y, π′)

(I)
π0

i
= π1

(x0, π0)
i
· · · (x1, π1)

Fig. 1. SOS of PAi

one past trace π and possibly many futures. That is why, for example, in the
deduction (p3) both parallel arguments x0 and x1 are assumed to start from
the same history π, which is the common history of x0 ||x1. In the deduction
rule (strip), we strip off the extra information on the labels (concerning the
visibility range) and apply encapsulation (leaving out individual send and re-
ceive actions) and obtain the transition relation → .3 Deduction rule (I) lifts
the concept of indistinguishability from traces to operational states. For brevity,
we omitted symmetric rules (n1), (n3), (p1), (p4), (= ρ3), (= τ1), and (= τ3)
. Termination of a process is orthogonal to its past history, so we use different
meta-variables for the traces in the premises and the conclusion of rules (s2),
(n2), and (p2). The transition relation ⇒ and indistinguishability relation · · ·
are the sets of all closed statements provable using the deduction rules (plus their
symmetric versions) from Figure 1. The semantics of a process p is defined by the
ALTS with pairs of processes and decorated traces as states, → as transition

3 We could have used an explicit encapsulation (restriction) operator but decided not
to do so to keep the presentation simple.

6

relation, X as termination relation, · · · as indistinguishability relation, and (p, [])
as the initial state, where [] denotes the empty sequence of decorated actions.

The following lemma states that
i
· · · is an equivalence relation.We intentionally

did not add deduction rules to enforce symmetry and transitivity of
i
= explicitly

in order to preserve the inductive structure of our SOS specification.

Lemma 1. Relation
i
· · · is an equivalence relation.

3 An epistemic mu-calculus

We introduce an epistemic mu-calculus with past (Eµ) which combines temporal,
epistemic, and fixed point constructs. We give our logic an interpretation on the
operational model introduced in Section 2.

Syntax The syntax of Eµ is given by the following grammar:

φ ::= > | X | φ ∧ φ | ¬φ | 〈a〉φ | 〈a〉φ | Kiφ | νX.φ(X)

(if X occurs only positively in φ),

where a ranges over the set of actions (a ∈ Act). Then 〈a〉φ stands for “after
some execution of a, φ holds”; 〈a〉φ has the same intuition as 〈a〉φ, except that
it refers to the past, i.e., there is a state in which φ holds and from which it is
possible to take an a-step to the current state. Kiφ should be read as “principal
i knows that φ holds”. The greatest fixed point operator νX.φ(X) is used to
define recursive concepts. It intuitively means that the current state is in the
largest set X of states that satisfy φ(X). (Here X is a variable ranging over
propositional formulas, which can be identified by the sets of states in which
such a formula is true. This is made formal by introducing valuations, but we
leave this correspondence informal here.) For convenience, we define and use the
following abbreviations for commonly used logical formulae:

[a]φ i.e., ¬〈a〉¬φ and intuitively means that after all a-transitions, φ holds.
µX.φ(X) (with X occurring positively in φ) is the least fixed point operator,

which is defined by ¬νX.¬φ(¬X) (X also occurs positively in ¬φ). The
current state is in the smallest set of states satisfying φ(X).

〈�〉φ (similarly, 〈�〉φ) stands for
�

a∈Act
〈a〉φ (

�
a∈Act

〈a〉φ), which is by itself
an abbreviation for a finite number of disjunctions. Intuitively, it means
that after (before) some transition φ holds.

�a (similarly, a�) is an abbreviation for µX.〈a〉> ∨ 〈x〉.X (or µX.〈a〉> ∨
〈x〉.X). So, it is possible to reach a state in the future where an a-
transition is possible (or go back to a state in the past that results
from an a-transition).

[�∗]φ (similarly, [�∗]φ) is an abbreviation for µX.φ∨ [�]X (or µX.φ∨ [�]φ). The
intuition behind this abbreviation is that all future paths will (paths in
the past) lead to a state, in which there is a state satisfying φ. (〈�∗〉φ
and 〈�∗〉φ are defined accordingly.)

CJφ stands for νX.(�
i∈J

Ki(X ∧ φ)) [FHMV95], meaning: “it is common
knowledge among the principals in the set J that φ holds”.

7

Common knowledge is a very powerful construction, expressing that agents in
J not only know that φ holds, but also that all agents in J know that φ holds,
and that all agents in J know that all agents in J know that φ holds, and so
on. This property has so far not been amenable to specification and verification
with standard operational techniques, while it is in fact very interesting, par-
ticularly for protocols where trust is an issue. Common knowledge can express,
for instance, that participants in a multiparty fair exchange protocol trust each
other and the protocol they are running.

Let Eµ-forms denote the set of Eµ formulas.

Interpreting Eµ formulas on ALTSs We now define what it means for a
formula φ ∈ Eµ-forms to be satisfied in the ALTS A.

Definition 2 (satisfaction). Let A = 〈S, → ,X, I, s0〉 be an ALTS. The satis-
faction relation |= for formulas φ ∈ Eµ-forms is defined inductively as follows:

A, s |= > iff true
A, s |= φ1 ∧ φ2 iff A, s |= φ1 and A, s |= φ2

A, s |= ¬φ iff A, s |= φ is not true

A, s |= 〈a〉φ iff there is an s′ ∈ S s.t. s
a
→ s′ and A, s′ |= φ

A, s |= 〈a〉φ iff there is an s′ ∈ S s.t. s′
a
→ s and A, s′ |= φ

A, s |= Kiφ iff for all reachable s′ ∈ S s.t. s
i
· · · s′ : A, s′ |= φ

A, s |= νX.φ(X) iff s ∈ �{S′ ⊆ S|∀s′ ∈ S′.A, s′ |= φ(X := S′)}

A satisfies a formula φ, denoted A |= φ, if s0 |= φ.

The most noticeable of the rules above is the one for Kiφ. It expresses the
fact that i knows φ if φ holds in all states considered possible by i when residing

in s, that is in all states belonging to the
i
· · · equivalence class of s. The semantic

rules in the previous section constructed this relation based on what i was al-
lowed to observe from the run of the protocol. The intention behind the formula
Kiφ is not to check what i learned in terms of explicit information the principal
received (e.g., as contents of some message), but what i learned through obser-
vation. Observation (partial observation) of what actually happens, can reduce
a principal’s uncertainties and thereby ‘leak’ information. Particularly, if princi-
ples are familiar with the protocol, they may derive from certain actions taking
place, that the previous action must have been a particular one, even if they did
not know it before. This is the case in the example depicted in Figure 3, where
principal 2 learns from observation of action d, that the choice made before must
have been a. More exactly, sequences of actions which are not properly protected

by the visibility restrictions ρ may lead to a refinement of the
i
· · · class which is

sufficient for i to distinguish between a state where agent’s j secret key is 100
and a state where agent j’s secret key is 200, even if i never participated in a
direct communication over j’s key. This process of learning by the refinement of
the indistinguishability relations along the traces is captured in the definition of
A, s |= Kiφ. Our logic satisfies the standard axioms for a logic of knowledge:

8

PAi

EµALTS

PA

LTS µ

|=

|=µKS E|=E

Fig. 2. Projecting into process-theoretic domain and epistemic domain. A dashed arrow
x 99K y means that x is an extension of y. The arrow x → y means y is the semantic
model of x. The links between ALTS, LTS, KS, Eµ, µ, E are discussed in this paper.
The connection with the process languages PAi and PA (a pure process theoretic
formalism) is explained in our technical report [DMO07].

Theorem 1. The so-called S5 axioms (cf. [FHMV95, p.59]) hold in Eµ:

K : Kiφ ∧Ki(φ→ ψ) → Kiψ 4 : Kiφ→ KiKiφ (positive introspection)
T : Kiφ→ φ (reflexivity) 5 : ¬Kiφ→ Ki¬Kiφ (negative introspection)

The definition of satisfaction provides a model checking algorithm, that will
be decidable on the finite trees generated by the semantics of our PAi . Since the
Eµ satisfaction relation on ALTSs rests on classically accepted definitions for
similar but less expressive models, we expect that it should be possible to reuse
and extend existing efficient model checking tools.

An interesting and non-trivial question is to find a behavioral equivalence
that is characterized by Eµ. We expect the answer to be some notion of bisimi-

larity that considers both
a
→ and

i
· · · as transition relations. Due to the presence

of past temporal operators, we may have to resort to some notion of bisimilarity
that takes backward steps also into account (a notion of forward-backward or
history-preserving bisimilarity).

4 Bridging the gap: relation to existing theories

In this section we show that the framework introduced in this paper is a conser-
vative extension of the traditional process theoretic modeling on the one hand,
and epistemic modeling on the other hand. To this end, we prove that the satis-
faction relation defined in Section 3 preserves the standard satisfaction relations
of µ (µ-calculus with past) formulae on labeled transition systems and of E
(epistemic logic) formulae on Kripke structures. Figure 3 illustrates the three se-
mantic models discussed in this section: the existing LTS and KS, and the newly
introduced ALTS. Figure 2 provides an overview of the connections between the
various notions.

Projecting into the process-theoretic domain A Labeled Transition Sys-
tem (LTS) is a standard semantic domain for process-theoretic formalisms. For-
mally, an LTS over a set of labels L is a tuple 〈St, → ,X, s0〉, where St is the

9

1, 2

1, 2 1, 2

1, 2

1, 2

22

2

a

b

c

d

1, 2

1, 2 1, 2

1, 2

1, 2

22

2

a

b

c

d

Fig. 3. An ALTS A (rightmost), together with its projections: ’the temporal part’
lts(A) (leftmost) and ’the epistemic part’ em(A) (center). In lts(A), the points are
states, the arrows are transitions. In em(A), points are possible worlds and lines are
indistinguishability relations labeled with identities of agents. In (A), the points are
states and possible worlds simultaneously. Both temporal and epistemic relations are
present. The epistemic valuation in a state is given by the actions executed from the
initial state to that state. In the initial state, combined temporal epistemic formulae
hold like 〈a〉(K1a

�∧¬K2a
�) — expressing that after an a-action, it is known to principal

1 that action a has been executed, but 2 doesn’t know that. However, 2 knows that
one of the actions a,b,c has been executed (〈a〉(K2(a

� ∨ b� ∨ c�))). More interestingly,
after step d is executed, 2 has learned that a must have been the first step: 〈a〉〈d〉K2a

� .
Modeling this phenomenon of agents learning facts that were never explicitly told to
them is exactly the power of epistemic logic approaches, that we took over in the
combined framework.

set of operational states, → ⊆ St× L× St is the transition relation, X ⊆ St is
the termination predicate and s0 is the initial state. It typically represents the
behavior of a reactive system in terms of states and transitions. Then require-
ments formulated in a temporal logic are matched against this behavior in the
process of model checking.

A very general logical language to reason about processes is the µ-calculus
with past (µ) [Nie98], which is obtained by leaving out the knowledge construct
Kiφ from the syntax of our logic presented in Section 3. That a state s in the
LTS T = 〈S, → ,X, s0〉 satisfies a µ formula φ (denoted T, s |=µ φ) is defined
inductively as follows:

T, s |=µ > iff true
T, s |=µ ¬φ iff T, s 6|=µ φ
T, s |=µ φ1 ∧ φ2 iff T, s |=µ φ1 and s |=µ φ2

T, s |=µ 〈a〉φ iff exists s′ ∈ S, s.t. s
a
→ s′ and T, s′ |=µ φ

T, s |=µ 〈a〉φ iff exists s′ ∈ S, s.t. s′
a
→ s and T, s′ |=µ φ

T, s |=µ νX.φ(X) iff s ∈ �{S′ ⊆ S|∀s′ ∈ S′.T, s′ |=µ φ(X := S′)}

We prove that the ALTS + Eµ model checking framework properly extends the
LTS + µ model checking framework, in the sense that whatever was possible
in the latter, is still possible and has the same meaning in the former. This is
witnessed by the fact that LTS + µ can be immediately obtained by simply

10

stripping the ALTS from the I relations and the Eµ logic from the epistemic
operator Ki. The following theorem formalizes this.

Theorem 2. Consider a PAi process p and the ALTS A = 〈St, → ,X, I, s0〉
obtained as semantics of (p, []) by following the SOS rules in Figure 1. Let (q, π)
be a state in A, reachable from (p, []) (i.e. in the transitive closure of → from
s0 = (p, [])). Let us define lts(A) = (St, → ,X, s0). Then, for each µ formula φ,
A, (q, π) |= φ iff lts(A), q |=µ φ.

This means that for purely temporal aspects of correctness, one can safely ignore
the epistemic aspects of our semantics and our logic.

Projecting into the epistemic domain Epistemic logics are mainly con-
cerned with expressing subtle properties of communication acts, related to the
knowledge, beliefs and intentions of communicating parties. In standard epis-
temic logic (following [Hin62]), epistemic properties are validated in static rich
snapshots of communications (epistemic models), that don’t express the tem-
poral evolution of the system. The language of epistemic logic with common
knowledge is defined by:

φ ::= p | ¬φ | φ1 ∧ φ2 | Kiφ | CJφ

Here the p comes from a given set of propositional variables Prop. These propo-
sitions represent the atomic facts the agents may know about. The subscript i
ranges over a given set of agents I, and J over subsets of I. The standard read-
ing of the epistemic modalities Ki and CJ is the same as ours in the previous
section: “i knows that. . . ” and “it is common knowledge among the agents in J
that. . . ”, respectively.

An epistemic (S5-)model is a Kripke structure 〈W, {Ri|i ∈ I}, V 〉, where W
is a nonempty set of possible worlds, Ri is an equivalence relation on W for
each i ∈ I, and V : Prop → P(W) is a valuation function assigning to each
propositional variable the set of worlds in which it holds. Given an epistemic
model M and world s ∈W , satisfaction (|=E) is defined recursively as follows:

M, s |=E p iff s ∈ V (p)
M, s |=E ¬φ iff it is not true that M, s |=E φ
M, s |=E φ1 ∧ φ2 iff M, s |=E φ1 and M, s |=E φ2

M, s |=E Kiφ iff for all M, s′ ∈ W, if sRis
′ then M, s′ |=E φ

M, s |=E CJφ iff for all M, s′ ∈ W, if s(∪i∈JRi)
∗s′ then M, s′ |=E φ

To isolate ‘the epistemic part’ of our framework, we make suitable choices for
the set of propositions, and the set of agents. In the context of our PAi -processes
we associate with every action a ∈ Act a proposition a (which can be read as “a
has been executed sometime before”), and we let Prop := {a|a ∈ Act} ∪ {>}.
Furthermore, we let I be our set of identities Id. We call the resulting logic E.

We can then say that our modeling and verification framework is also con-
servative when it comes to purely epistemic aspects. Namely, if we restrict the
ALTS associated with a PAi process to the I relations, we obtain an epistemic
model where purely epistemic formulas hold exactly when they hold in the origi-
nal ALTS, according to the Eµ satisfaction relation. Let us define an embedding

11

E : E-forms → Eµ-forms of formulas into Eµ formulas, by taking E(a) = a� and
extending from there:

E(>) = > E(φ1 ∧ φ2) = E(φ1) ∧ E(φ2)
E(a) = a� E(Kiφ) = KiE(φ)
E(¬φ) = ¬E(φ) E(CJφ) = νX.(�

i∈J
Ki(X ∧ φ)).

The following theorem formally expresses the conservativeness of Eµ w.r.t. E.

Theorem 3. Consider a PAi process p over the set of actions Act. Let A =
〈St, → ,X, I, s0〉 be the ALTS obtained as semantics of (p, []) by following the
SOS rules in Figure 1. Let us define its associated epistemic model as em(A) =

〈St, {
i
· · · |i ∈ Id}, V 〉, with propositions from Prop, V (a) = {s ∈ St|A, s |= E(a)}

and V (>) = St. Then for any E formula φ and any possible world s ∈ St,
A, s |= E(φ) iff em(A), s |=E φ.

5 An example protocol: Dining Cryptographers

In order to illustrate the relative advantages of the combined framework com-
pared to using exclusively the operational approach or the epistemic one, we
discuss the Dining Cryptographers protocol [Cha88], which has already been in-
dependently and extensively analyzed using both operational [SS96,BP05] and
epistemic approaches [HS04,HO05,RL04]. The story, a metaphor for anonymous
broadcast, is about three cryptographers having dinner together. The bill is paid
anonymously by one of them, or by the National Security Agency (NSA). They
respect each other’s right to anonymity, but they wish to find out whether the
payer was NSA or not. To this end, they come up with the following protocol:
each neighboring pair of cryptographers generates a shared bit, by flipping a
coin; then each cryptographer computes the exclusive or (XOR) of the two bits
she sees, then announces the result — or the flipped result, if she was herself the
payer. The XOR of the three publicly announced results indicates whether the
payer was an insider or NSA.

Model A model of this protocol in our process language is shown in Figure 4. In-
spired by the input construction in the algebraic specification language µCRL, we
use

∑
x:{x1...xn} P (x) as an abbreviation for P (x1)+. . .+P (xn), where {x1 . . . xn}

is a finite set and P (xi) denotes the process expression P (x) in which xi has been
substituted for x. The model is rather close to the CSP description presented
in [SS96], the only significant difference being that the actions are annotated
with identities from the set Id = {1, 2, 3,M}. Note that the parameters used in
the basic actions and process definitions are just generic names for the concrete
instances resulting from instantiating them. For example, ?pay(i, b) is not de-
fined in our process language but rather it stands for a number of instances such
as ?pay(1,>), ?pay(i,⊥) each of which are basic actions (obtained by globally
replacing i and b with a member of Id and {⊥,>} in the process definition each
time). The behavior of the ith cryptographer is specified by the process Crypt(i)

12

Crypt(i) = �b:Bool
((i)?pay(i, b); CryptF lip(i, b))

CryptF lip(i, b) = �
c:Bool

((i)flip(i, c); CryptShare(i, b, c))

CryptShare(i, b, c) = �
d:Bool

(((i)!share(i mod 3 + 1, c) || (i)?share(i, d)) ;
CryptBcast(i, b, c, d))

CryptBcast(i, b, c, d) = ((i)!bcast(i, b ⊕ c ⊕ d) ; (i)!bcast(i, b ⊕ c ⊕ d))
||�

x,y:Bool
(((i)?bcast(i + 1 mod 3 + 1, x)

|| (i)?bcast(i mod 3 + 1, y)) ;
nsa(i,¬(b ⊕ c ⊕ d ⊕ x ⊕ y)))

Master = (M)!pay(1,>); (M)!pay(2,⊥); (M)!pay(3,⊥)
+ (M)!pay(1,⊥); (M)!pay(2,>); (M)!pay(3,⊥)
+ (M)!pay(1,⊥); (M)!pay(2,⊥); (M)!pay(3,>)
+ (M)!pay(1,⊥); (M)!pay(2,⊥); (M)!pay(3,⊥)

Fig. 4. A PAi model of The Dining Cryptographers protocol. ⊕ denotes exclusive or.

and the behavior of the whole DC system as a parallel composition of Crypt(i)’s
and the Master process, DC3 = Crypt(1) ||Crypt(2) ||Crypt(3) ||Master. A
cryptographer process executes a series of actions corresponding to the three big
steps of the protocol: decide whether to pay or not, flip the coins together with
the neighbors, and announce the result of XOR-ing the two coins and her own
paying bit. The first step is modeled as a statement pay(i, b), which is in fact a
communication step with the Master. The second step is modeled by the pro-
cesses CryptF lip(i) and CryptShare(i). In other existing models [SS96,BP05],
the shared coins are represented by separate processes, but in order to keep the
specification simple, we merge the behavior of the ith coin with the behavior of
the ith cryptographer. Therefore, process Crypt(i) will execute a flip action and
then share the result with the right-hand neighbor, by executing an action !share
which will synchronize with the ?share from the next cryptographer in the ring.
CryptBcast models the last phase, announcing the result of one’s computation
(!bcast), receiving the results from all the others (?bcast) and concluding for
itself that NSA paid or not (nsa(i,>), nsa(i,⊥)).

The renaming function ρ specifies how much of a cryptographers’ actions is
visible for observing parties. For any i ∈ {1, 2, 3} and b ∈ {>,⊥}, we define

ρ(pay(i, b)) = pay(i) ρ(bcast(i, b)) = bcast(i, b) ρ(share(i, c)) = share(i)
ρ(flip(i, b)) = flip(i) ρ(nsa(i, b)) = nsa(i, b)

where pay(1), bcast(1,>), . . . are basic actions.

Analysis Figure 5 shows the top part of the ALTS generated by the rules in
Figure 1 from the process specification in Figure 4. We check relevant functional

13

pay(1,>) pay(1,⊥)

pay(3,>)

pay(2,>) pay(2,⊥)

pay(3,⊥)

pay(2,>) pay(2,⊥)

pay(3,>)pay(3,>)pay(3,>)

pay(3,⊥)pay(3,⊥)pay(3,⊥)

2,3

2,3

2,3

1,31,3 3

1,2
1,2 1,2 1,2

1,3 1,3

1,31,3 3

3

2,3

2,3

2,3

Fig. 5. A small fragment from the ALTS generated for the DC specification. For read-

ability, we omitted some
i
· · · relations that can be generated by the reflexive and tran-

sitive closure rules.

and epistemic properties of this protocol by matching Eµ formulas against this
ALTS, as dictated by the satisfaction relation |= (Definition 2).

First of all, we can check functional correctness, by asking for instance that
in all executions where one of the cryptographers paid, the action nsa(1,>)
is eventually observable, meaning that the first cryptographer draws the right
conclusion that the payer was an insider. This requirement is a purely temporal
formula, for each i ∈ {1, 2, 3}: [pay(i,>)]

∧
j∈{1,2,3}[�

∗]nsa(j,⊥).
Better yet, we can also check the powerful epistemic statement that “every-

body knows that the payer is an insider” eventually becomes common knowledge
among the three cryptographers. This is expressed as: for every i ∈ {1, 2, 3}, it

holds that [pay(i,>)][�∗]C{1,2,3}(
∧

j∈{1,2,3} nsa(j,⊥)
�
).

Anonymity, the main goal of the protocol, is not expressible as a purely
temporal property, but it is conveniently expressible as a temporal epistemic
property. The anonymity of cryptographer i (holding in the initial state of our

model) is expressed by the formula [pay(i,>)]
∧

j∈{1,2,3}\{i} ¬〈�
∗〉Kj(pay(i,>)

�
).

All these properties are satisfied by our PAi model, according to the satisfaction
relation |= defined in Section 3.

Comparison to other DC models PAi allows a simple and operational mod-
eling, just as intuitive as any other process language, see also for instance a CSP
model [SS96] and a pi-calculus model [BP05] of the Dining Cryptographers. All
these models are definitely closer to the protocol description than logic mod-
els [HW02,RL06] and moreover, they are supported by a semantics which for-
mally links the description of a protocol to its actual behavior model.

On the other hand, epistemic logic models allow expressing and checking
anonymity as epistemic formulae, which is much more natural than the equiv-
alence checking method employed in the process theoretic approach. More pre-
cisely, operational approach to verification of anonymity requires writing down
new descriptions for each anonymity property that has to be checked, because

14

these properties are dependent on the point of view of the observer. In the ALTS
that our specification generates, all points of view are simultaneously present,
thus a direct and natural (epistemic) verification is possible.

6 Conclusion

Motivated by protocols and properties where much importance is given to the
participating entities and not only to the actual evolution of the system — like
certain security protocols, information flow — we presented a simple process
language where the concept of identity is explicitly present. We gave it an oper-
ational semantics in terms of an extended form of labeled transition systems and
defined a satisfaction relation for properties expressed in a rich logic combining
temporal and epistemic operators. The result is a specification and verification
framework that combines the best parts of two complementary approaches to
protocol analysis: process algebras and epistemic logics.

Our framework is particularly suitable for modeling and verification of pro-
tocols on top of authenticated secret channels, ensured for instance by a Public
Key Infrastructure. In these protocols, the security threats typically do not come
from an external intruder controlling the communication channels, but from the
participants themselves. Examples are protocols for fair exchange, voting, auc-
tions, anonymity. In security protocols with cryptography or active attackers,
some behavioral choices are determined by the current knowledge of the princi-
pals. In particular, a principal can distinguish more traces by gaining access to
keys. To properly accommodate this, our framework should be extended, possi-
bly by allowing dynamic update of indistinguishability relation in the course of
protocol execution. Note however that the current framework is just as powerful
in modeling cryptography aspects as any other (traditional) process algebra. So,
for these cases, more research is needed in order to find the best way of integrat-
ing the elegance of representing knowledge by indistinguishability relations with
the ease of specifying the protocol operationally.

Future work First of all, we will build tool support for model checking Eµ
properties on ALTSs. Ideally, this can be achieved by embedding the new frame-
work in an existing verification tool-set. The starting point will be our already
existing Maude prototype [PAi].

Then we wish to experiment with applying this technique to protocols from
the categories mentioned above. On a more theoretical direction, a question is
whether it is possible to extend the sequent-based compositional proof system
developed for the SOS + Hennessy-Milner Logic [Sim04] in order to cope with
Eµ formulas, as well. Finally, this framework can support a direct comparison
of the operational and epistemic definitions of various properties. For instance,
anonymity is defined operationally as (trace) equivalence between certain pro-
cesses, while epistemically it is simply a negative knowledge formula. The issue
of which of these definitions is stronger, if any, is not clear yet and deserves
further investigation.

15

References

[AG99] M. Abadi and A.D. Gordon. A calculus for cryptographic protocols: The
spi calculus. Information and Computation, 148(1):1–70, 1999.

[Bal01] A. Baltag. Logics for insecure communication. In Proceedings of the 8th
conference on Theoretical aspects of rationality and knowledge (TARK ’01),
pages 111–121, 2001.

[BAN96] M. Burrows, M. Abadi, and R. Needham. A logic of authentication. In
Practical Cryptography for Data Internetworks. IEEE Computer Society
Press, 1996. Reprinted from the Proceedings of the Royal Society, volume
426, number 1871, 1989.

[BHR84] D. Brookes, C.A.R. Hoare, and A.W. Roscoe. A theory of communicating
sequential processes. Journal of the ACM, 31(3):560–599, 1984.

[BKN06] J. Borgström, S. Kramer, and U. Nestmann. Calculus of cryptographic
communication. In Proceedings of FCS-ARSPA, 2006.

[BP05] M. Bhargava and C. Palamidessi. Probabilistic anonymity. In Proc. 16th
International Conference on Concurrency Theory (CONCUR’05, volume
3653 of LNCS, pages 171–185. Springer, 2005.

[Bro01] P.J. Broadfoot. Data Independence in the Model Checking of Security Pro-
tocols. PhD thesis, Oxford University, 2001.

[Cha88] D. Chaum. The dining cryptographers problem: Unconditional sender and
recipient untraceability. Journal of Cryptology, 1:65–75, 1988.

[COPT07] T. Chothia, S.M. Orzan, J. Pang, and M. Torabi Dashti. A framework for
automatically checking anonymity with mCRL. In Proceedings TGC’06,
LNCS, 2007. To appear.

[CVB06] C. Caleiroa, L. Viganò, and D. Basin. On the semantics of Alice & Bob
specifications of security protocols. Theoretical Computer Science, 367(1-
2):88–122, 2006.

[DMO07] F. Dechesne, M.R. Mousavi, and S. Orzan. Operational and epistemic ap-
proaches to protocol analysis: Bridging the gap. Tech. Rep. CS 07-15,
Technische Universiteit Eindhoven, June 2007. http://alexandria.tue.

nl/repository/books/628987.pdf.

[EO06] J. van Eijck and S.M. Orzan. Epistemic verification of anonymity. In
Proceedings VODCA’06, volume 168 of ENTCS, 2006.

[FHMV95] R. Fagin, J.Y. Halpern, Y. Moses, and M.Y. Vardi. Reasoning About
Knowledge. MIT Press, 1995.

[GG97] J. Gerbrandy and W. Groeneveld. Reasoning about information change.
Journal of Logic Language and Information, 6:147–169, 1997.

[Hin62] J. Hintikka. Knowledge and Belief. Cornell University Press, 1962.

[HMV04] A. Hommersom, J.-J. Ch. Meyer, and E.P. de Vink. Update semantics of
security protocols. Synthese, 142:229–267, 2004.

[HO05] J.Y. Halpern and K.R. O’Neill. Anonymity and information hiding in mul-
tiagent systems. Journal of Computer Security, pages 483–514, 2005.

[HS04] D. Hughes and V. Shmatikov. Information hiding, anonymity and privacy:
A modular approach. Journal of Computer Security, 12(1):3–36, 2004.

[HV88] J.Y. Halpern and M.Y. Vardi. Reasoning about knowledge and time in
asynchronous systems. In Proceedings of the 20th Annual ACM Symposium
on Theory of Computing (STOC’88), pages 53–65, New York, NY, USA,
1988. ACM Press.

16

[HW02] W. van der Hoek and M. Wooldridge. Model checking knowledge and
time. In Dragan Bosnacki and Stefan Leue, editors, Proceedings of the 9th
International Workshop on Model Checking of Software (SPIN’02), volume
2318 of Lecture Notes in Computer Science, pages 95–111. Springer, 2002.

[Kra06] S. Kramer. Logical concepts in cryptography. Cryptology ePrint Archive,
Report 2006/262, 2006. http://eprint.iacr.org/.

[Mil80] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture
Notes in Computer Science. Springer-Verlag, 1980.

[Nie98] M. Nielsen. Reasoning about the past. In Proceedings of the 23rd In-
ternational Symposium on Mathematical Foundations of Computer Science
(MFCS ’98), pages 117–128, London, UK, 1998. Springer-Verlag.

[PAi] A Maude implementation of PAi. http://www.win.tue.nl/∼mousavi/pai.
htm.

[Plo04] G. D. Plotkin. A structural approach to operational semantics. Journal of
Logic and Algebraic Progamming, 60:17–139, 2004.

[RL04] F. Raimondi and A. Lomuscio. A tool for specification and verification of
epistemic properties in interpreted systems. Electronic Notes in Theoretical
Computer Science, 85(4), 2004.

[RL06] F. Raimondi and A. Lomuscio. Automatic verification of deontic inter-
preted systems by model checking via OBDD’s. Journal of Applied Logic,
2006. In Press.

[Sim04] A. K. Simpson. Sequent calculi for process verification: Hennessy-Milner
logic for an arbitrary GSOS. Journal of Logic and Algebraic Programming,
60–61:287–322, 2004.

[SS96] S. Schneider and A. Sidiropoulos. CSP and anonymity. In Elisa Bertino,
Helmut Kurth, Giancarlo Martella, and Emilio Montolivo, editors, Proceed-
ings of 4th European Symposium on Research in Computer Security (ES-
ORICS’96), volume 1146 of LNCS, pages 198–218, 1996.

17

