
Rule Formats for Distributivity⋆

Luca Aceto1, Matteo Cimini1, Anna Ingolfsdottir1,
MohammadReza Mousavi2, and Michel A. Reniers3

1 ICE-TCS, School of Computer Science, Reykjavik University,
Menntavegur 1, IS 101 Reykjavik, Iceland

2 Department of Computer Science, Eindhoven University of Technology,
P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands

3 Department of Mechanical Engineering, Eindhoven University of Technology,
P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands

Abstract. This paper proposes rule formats for Structural Operational
Semantics guaranteeing that certain binary operators are left distributive
with respect to a set of binary operators. Examples of left-distributivity
laws from the literature are shown to be instances of the provided for-
mats.

1 Introduction

Over the last three decades, Structural Operational Semantics (SOS), see, e.g., [7,
20, 22], has proven to be a powerful way to specify the semantics of programming
and specification languages. In this approach to semantics, languages can be
given a clear behaviour in terms of states and transitions, where the collection
of transitions is specified by means of a set of syntax-driven inference rules. This
behavioural description of the semantics of a language essentially tells one how
the expressions in the language under definition behave when run on an idealized
abstract machine.

Designers of languages often have expected algebraic properties of language
constructs in mind when defining a language. For example, one expects that a
sequential composition operator be associative and, in the field of process al-
gebra [11, 16, 17], operators such as nondeterministic and parallel composition
are often meant to be commutative and associative with respect to bisimilarity.
Once the semantics of a language has been given in terms of state transitions,
a natural question to ask is whether the intended algebraic properties do hold
modulo the notion of behavioural equivalence or preorder of interest. The typical
approach to answer this question is to perform an a posteriori verification: based

⋆ The work of Aceto, Cimini and Ingolfsdottir has been partially supported by the
projects ‘New Developments in Operational Semantics’ (nr. 080039021) and ‘Meta-
theory of Algebraic Process Theories’ (nr. 100014021) of the Icelandic Research
Fund. The work on the paper was partly carried out while Luca Aceto held an Abel
Extraordinary Chair at Universidad Complutense de Madrid, Spain, supported by
the NILS Mobility Project.

2 L. Aceto, M. Cimini, A. Ingolfsdottir, M. Mousavi, and M. Reniers

on the semantics in terms of state transitions, one proves the validity of the de-
sired algebraic laws, which describe semantic properties of the various operators
in the language. An alternative approach is to ensure the validity of algebraic
properties by design, using the so called SOS rule formats [2]. In this approach,
one gives syntactic templates for the inference rules used in defining the opera-
tional semantics for certain operators that guarantee the validity of the desired
laws by design. Not surprisingly, the definition of rule formats is based on finding
a reasonably good trade-off between generality and ease of application. On the
one hand, one strives to define a rule format that can capture as many examples
from the literature as possible, including ones that may arise in the future. On
the other, the rule format should be as easy to apply as possible and, preferably,
the syntactic constraints of the format should be algorithmically checkable.

The literature on SOS provides rule formats for basic algebraic properties of
operators such as commutativity [19], associativity [15], idempotence [3] and the
existence of unit and zero elements [5, 8]. The main advantage of this approach
is that one is able to verify the desired property by syntactic checks that can
be mechanized. Moreover, it is interesting to use rule formats for establishing
semantic properties since the results so obtained apply to a broad class of lan-
guages. Apart from providing one with an insight as to the semantic nature of
algebraic properties and its link to the syntax of SOS rules, rule formats like
those presented in the above-mentioned references may serve as a guideline for
language designers who want to ensure, a priori, that the constructs under design
enjoy certain basic algebraic properties.

In the present paper, we develop two rule formats guaranteeing that certain
binary operators are left distributive with respect to others modulo bisimilarity.
A binary operator � is left distributive with respect to a binary operator �,
modulo some notion of behavioural equivalence, whenever the equation (x �
y) � z = (x� z) � (y � z) holds.

A classic example of left-distributivity law within the realm of process algebra
is (x + y)∥ z = (x∥ z) + (y∥ z), where ‘+’ and ‘∥ ’ stand for nondeterministic
choice and left merge, respectively, from [11, 17]. (The reader may find many
other examples in the main body of this paper.) Distributivity laws like the
aforementioned one play a crucial role in (ground-)complete axiomatizations
of behavioural equivalences over fragments of process algebras (see, e.g., the
above-mentioned references and [4]), and their lack of validity with respect to
choice-like operators is often the key to the nonexistence of finite (in)equational
axiomatizations of behavioural semantics—see, for instance, [6, 18].

In the rule formats, for the sake of simplicity, the � operator ‘behaves like’
some form of nondeterministic choice operator. Both rule formats are based on
syntactic conditions that are decidable over finite language specifications.

We provide a wealth of examples showing that the validity of several left-
distributivity laws from the literature on process algebras can be proved using
the proposed rule formats.

Roadmap of the paper The paper is organized as follows. Section 2 reviews some
standard definitions from the theory of SOS that will be used in the remainder

Rule Formats for Distributivity 3

of this study. Section 3 presents our first rule format guaranteeing that a bi-
nary operator � is left-distributive with respect to a binary operator � modulo
bisimilarity. The rule format is defined in Section 3.2 and some examples of its
application are given in Section 3.3. We extend our rule format in Section 4
by allowing for a wider set of terms appearing in the target of deduction rules.
Examples that can be handled using the second rule format are offered in the
same section. We refer the reader to [1] for proofs and further results.

2 Preliminaries

In this section we recall some standard definitions from the theory of SOS. We
refer the readers to, e.g., [7] and [20] for more information.

2.1 Transition System Specifications and Bisimilarity

Definition 1 (Signatures, terms and substitutions) We let V denote an
infinite set of variables and use x, x′, xi, y, y

′, yi, . . . to range over elements of
V . A signature Σ is a set of function symbols, each with a fixed arity. We call
these symbols operators and usually represent them by f, g, An operator with
arity zero is called a constant. We define the set T(Σ) of terms over Σ as the
smallest set satisfying the following constraints.

– A variable x ∈ V is a term.
– If f ∈ Σ has arity n and t1, . . . , tn are terms, then f(t1, . . . , tn) is a term.

We use s, t, u, possibly subscripted and/or superscripted, to range over terms. We
write t1 ≡ t2 if t1 and t2 are syntactically equal. The function vars : T(Σ) → 2V

gives the set of variables appearing in a term. The set C(Σ) ⊆ T(Σ) is the
set of closed terms, i.e., terms that contain no variables. We use p, q, p′, pi, . . .
to range over closed terms. A substitution σ is a function of type V → T(Σ).
We extend the domain of substitutions to terms homomorphically and write σ(t)
for the result of applying the substitution σ to the term t. If the range of a
substitution is included in C(Σ), we say that it is a closed substitution. For a
sequence x1, . . . , xn of distinct variables and a sequence t1, . . . , tn of terms, we
write [x1 7→ t1, . . . , xn 7→ tn] for a substitution that maps each xi to ti, 1 ≤ i ≤ n.

Definition 2 (Transition system specification) A transition system speci-
fication (TSS) is a triple (Σ,L, D) where

– Σ is a signature.
– L is a set of labels (or actions) ranged over by a, b, l. If l ∈ L and t, t′ ∈ T(Σ),

we say that t
l→ t′ is a positive transition formula and t

l9 is a negative
transition formula. Such formulae are called t-testing. A transition formula
(or just formula), typically denoted by ϕ or ψ, is either a negative transition
formula or a positive one.

4 L. Aceto, M. Cimini, A. Ingolfsdottir, M. Mousavi, and M. Reniers

– D is a set of deduction rules, i.e., tuples of the form (Φ, ϕ) where Φ is a set
of formulae and ϕ is a positive formula. We call the formulae contained in
Φ the premises of the rule and ϕ the conclusion.

We write vars(Φ) to denote the set of variables appearing in a set of formulae
Φ. We say that a formula or a deduction rule is closed if all of its terms are
closed. Substitutions are also extended to formulae and sets of formulae in the
natural way. A set of positive closed formulae is called a transition relation.

We often refer to a positive transition formula t
l→ t′ as a transition with t

being its source, l its label, and t′ its target. A deduction rule (Φ, ϕ) is typically
written as Φ

ϕ . For the sake of consistency with SOS specifications of specific

operators in the literature, in examples we use ϕ1...ϕn

ϕ in lieu of {ϕ1,...,ϕn}
ϕ .

An axiom is a deduction rule with an empty set of premises. We write ϕ for
an axiom with ϕ as its conclusion, and often abbreviate this notation to ϕ when
this causes no confusion.

Definition 3 Given a rule d of the form Φ

f(t1,...,tn)
a→ t

, we say that d is f-

defining, and write op(d) = f , d is a-emitting, and toc(d) = t, the target of the
conclusion of d. We also denote by D(f, a) the set of a-emitting and f-defining
rules in a set of deduction rules D.

Example 1 (Choice operators). The choice operator from [17] is defined by the
following rules, where a ranges over the set of actions:

(chla)
x

a→x′

x+ y
a→x′

(chra)
y

a→ y′

x+ y
a→ y′

.

For each action a, the rules (chla) and (chra) are a-emitting and +-defining. For
rule (chla), we have that toc(chla) = x′.

The meaning of a TSS is defined by the notion of least three-valued stable
model [23]. We write T ⊢ p

a→ p′ if the transition p
a→ p′ is in the least three-

valued stable model of T . Since the precise definition of this notion does not
play a role in the remainder of this paper, we omit it for the sake of brevity and
refer our readers to [1] for details.

Definition 4 (Bisimulation and bisimilarity) Let T be a transition system
specification with signature Σ and label set L. A relation R ⊆ C(Σ)×C(Σ) is a
bisimulation relation if and only if R is symmetric and, for all p0, p1, p

′
0 ∈ C(Σ)

and l ∈ L,

(p0 R p1 ∧ T ⊢ p0
l→ p′0) ⇒ ∃p′1 ∈ C(Σ). (T ⊢ p1

l→ p′1 ∧ p′0 R p′1).

Two terms p0, p1 ∈ C(Σ) are called bisimilar, denoted by p0 ↔–– p1, when there
exists a bisimulation relation R such that p0 R p1.

Bisimilarity is extended to open terms by requiring that s, t ∈ T(Σ) are
bisimilar when σ(s) ↔–– σ(t) for each closed substitution σ : V → C(Σ).

Rule Formats for Distributivity 5

3 The Left-distributivity Rule Formats

In this section, we present a rule format guaranteeing that a binary operator �
is left-distributive with respect to a binary operator � modulo bisimilarity. The
rule format suffices to handle many examples from the literature.

Definition 5 (Left-distributivity law) We say that a binary operator � is
left-distributive with respect to a binary operator � (modulo bisimilarity) if the
following equality holds:

(x� y) � z ↔–– (x� z) � (y � z). (1)

For all closed terms p, q, r, proving the algebraic law (1) involves two proof
obligations:

– Firability: ensuring that (p� q) � r
a→ if, and only if, (p� r) � (q � r)

a→ ,
for each action a;

– Matching conclusions: ensuring that, for each closed term p1, if (p� q)�
r

a→ p1, then there exists some closed term p2 such that (p�r)� (q�r)
a→ p2

and p1 ↔–– p2, and vice versa.

3.1 The Firability Condition

We begin by introducing the conditions on sets of rules for two binary operators� and � that we shall use to guarantee the firability condition for them. First
of all, we present syntactic constraints on the rules for those operators that we
shall use throughout the remainder of the paper.

Definition 6 We say that a deduction rule is of the form (R1) when it has the
structure

Φy

x� y
a→ t

or
{x a→x′} ∪ Φy

x� y
a→ t

,

where

– the variables x, x′, y are pairwise distinct, and
– Φy is a (possibly empty) set of (positive or negative) y-testing formulae such

that x, x′ ̸∈ vars(Φy).

A deduction rule is of the form (R2) when it has the structure

{x a→x′}

x� y
a→ t

or
{y a→ y′}

x� y
a→ t

or
{x a→x′, y

a→ y′}

x� y
a→ t

,

where the variables x, x′, y, y′ are pairwise distinct. A rule of the form (R1) or
(R2) is non-left-inheriting if x ̸∈ vars(t), that is, if x does not appear in the
target of the conclusion of the rule. An operation f specified by rules of the form
(R1) or (R2) is non-left-inheriting if so are all of the f-defining rules.

6 L. Aceto, M. Cimini, A. Ingolfsdottir, M. Mousavi, and M. Reniers

Definition 7 (Firability constraint) Given a TSS T , let � and � be binary
operators in the signature of T . For each action a, we write Fire(�,�, a) when-
ever the following conditions are met:

– if D(�, a) ̸= ∅ then D(�, a) ̸= ∅,
– each d ∈ D(�, a) is of the form (R1), and
– each d ∈ D(�, a) is of the form (R2).

Example 2. Recall the choice operator +, presented in Example 1. As our readers
can easily check, Fire(+,+, a) holds for each action a.

The firability constraint in Definition 7 is sufficient to guarantee the afore-
mentioned firability condition.

Theorem 1 (Firability Theorem). Given a TSS T , let � and � be binary
operators from the signature of T . Suppose that Fire(�,�, a) holds for some
action a. Then,

(p� q) � r
a→ if, and only if, (p� r) � (q � r)

a→ ,

for all closed terms p, q, r.

The import of Theorem 1 is that, when proving the validity of (1), we can
guarantee the firability condition for action a just by showing that Fire(�,�, a)
holds. Theorem 1 underlies the soundness of the rule formats we present in what
follows.

The reader will have already noticed that the rule form (R1) does not place
any restriction on tests for the variable y. This is possible because the second
argument of the terms (p � q) � r, p � r and q � r is always the same, i.e. the
term r. This means that, for each �-defining rule, the same tests performed on
the second argument on one side of (1) are performed on the other. Roughly
speaking, one side of (1) may fire as much as the other does, insofar the second
argument is concerned.

3.2 The Matching-conclusion Condition

Theorem 1 tells us that any rule format, whose constraints imply condition
Fire(�,�, a) for each action a, guarantees the validity of (1) provided that the
matching-conclusion condition is met. Intuitively, in order to guarantee syntac-
tically that the matching-conclusion condition is satisfied, the targets of the
conclusions of �-defining and �-defining rules should ‘match’ when those op-
erators are used in the specific contexts of the left- and the right-hand sides
of (1). In what follows, we shall examine two different ways of ensuring the
above-mentioned ‘match’ of the targets of the conclusions of �-defining and �-
defining rules. The first relies on assuming that the targets of the conclusions
of �-defining rules are target variables of premises of rules of the form (R2).
The resulting rule format, which we present in this section, is based on easily
checkable syntactic constraints and covers a large number of left-distributivity
laws from the literature.

Rule Formats for Distributivity 7

The First Rule Format The rule format that we present deals with examples
of left distributivity with respect to operators whose semantics is given by rules of
the form (R2) that, like those for the choice operator we mentioned in Example 1,
have target variables of premises as targets of their conclusions. The following
definition presents the syntactic constraints of the rule format.

Definition 8 (First rule format) Let T be a TSS, and let � and � be binary
operators in the signature of T . We say that the rules for � and � are in the
first rule format for left distributivity if the following conditions are met:

1. Fire(�,�, a) holds for each action a,
2. � is non-left-inheriting,
3. each �-defining rule has a target variable of one of its premises as target of

its conclusion and
4. for each action a, either there is no a-emitting and �-defining rule that tests

both x and y, or if some a-emitting and �-defining rule tests its left argument
x then so do all a-emitting and �-defining rules.

Theorem 2 (Left distributivity over choice-like operators). Let T be a
TSS, and let � and � be binary operators in the signature of T . Assume that
the rules for � and � are in the first rule format for left distributivity. Then

(x� y) � z ↔–– (x� z) � (y � z) .

Remark 1. Condition 4 in Definition 8 is necessary for the soundness of the rule
format for left distributivity proved in the above theorem. To see this, consider
the operations � and � with rules

{x a→x′, y
a→ y′}

x� y
a→x′

{x a→x′, y
a→ y′}

x� y
a→x′ � y

{y a→ y′}

x� y
a→ y′

.

The above rules satisfy all the conditions in Definition 8 apart from condition 4.
Now, let a be a constant with rule a

a→0, where 0 is a constant with no rules.
As our readers can easily check,

(a� a) � (0 � a) ̸↔–– (a� 0) � a.

Indeed, the term (a � a) � (0 � a) can perform a sequence of two a-labelled
transitions, whereas (a� 0) � a cannot because a� 0 affords no transitions.

3.3 Examples of Application of the Rule Format

Theorem 2 provides us with a simple, yet rather powerful, syntactic condition in
order to infer left-distributivity laws for operators like +. Many of the common
left-distributivity laws are automatically derived from Theorem 2, as witnessed
by the examples we now proceed to discuss.

8 L. Aceto, M. Cimini, A. Ingolfsdottir, M. Mousavi, and M. Reniers

Example 3 (Left merge and interleaving parallel composition). The operational
semantics of the classic left-merge and interleaving parallel composition opera-
tors [11, 13, 17] is given by the rules below:

x
a→x′

x∥ y a→x′ ∥ y

x
a→x′

x ∥ y a→x′ ∥ y

y
a→ y′

x ∥ y a→x ∥ y′
.

Theorem 2 yields the validity of the following law.

(x+ y)∥ z ↔–– (x∥ z) + (y∥ z)

Example 4 (Synchronous parallel composition). Consider the synchronous par-
allel composition from CSP [16]4 specified by the rules below, where a ranges
over the set of actions:

x
a→x′ y

a→ y′

x ∥s y
a→x′ ∥s y′

.

Theorem 2 yields the validity of the following law.

(x+ y) ∥s z ↔–– (x ∥s z) + (y ∥s z)

Example 5 (Join and ‘/’ operators). Consider the join operator on from [12] and
the ‘hourglass’ operator / from [4] specified by the rules below, where a, b range
over the set of actions:

x
a→x′ y

a→ y′

x on y
a→x′ ∓ y′

x
a→x′ y

b→ y′

x/y
a→x′/y′

,

where ∓ denotes the delayed choice operator from [12]. (The operational spec-
ification of the delayed choice operator is immaterial for the analysis of this
example.) Theorem 2 yields the validity of the following laws.

(x+ y)on z ↔–– (xon z) + (y on z) (x+ y) / z ↔–– (x / z) + (y / z)

Example 6 (Disrupt). Consider the following disrupt operator I [9, 14] with
rules

x
a→x′

xI y
a→x′ I y

y
a→ y′

xI y
a→ y′

.

Theorem 2 yields the validity of the following law.

(x+ y)I z ↔–– (xI z) + (y I z)

4 In [16], Hoare uses the symbol ∥ to denote the synchronous parallel composition
operator. Here we use that symbol for parallel composition.

Rule Formats for Distributivity 9

Example 7 (Unless operator). The unless operator ▹ from [10] and the operator
∆ from [4, page 23] are specified by the rules

x
a→x′ y

b9 for a < b

x ▹ y
a→x′

x
a→x′ y

b9 for a < b

x ∆ y
a→ θ(x′)

,

where < is an irreflexive partial order over the set of actions and θ denotes
the priority operator from [10]. (The operational specification of the priority
operator is immaterial for the analysis of this example.) Theorem 2 yields the
validity of the following laws.

(x+ y) ▹ z ↔–– (x ▹ z) + (y ▹ z) (x+ y)∆ z ↔–– (x ∆ z) + (y ∆ z)

4 Analyzing Targets of Conclusions of Deduction Rules

In this section, we extend the first rule format by generalizing the matching-
conclusion conditions. We do so by examining different possible targets of the
conclusions of the �- and �-defining rules. By analyzing different possible syn-
tactic shapes for terms, we check which pairs of shapes can be related (possibly
under some further requirements) while preserving the left-distributivity law.

Table 1 summarizes our results. Even though the offered list is not exhaustive,
which, at first sight, seems a challenging task to achieve, we believe Table 1 offers
enough cases to cover almost all practical cases, as demonstrated by the examples
presented in the remainder of this section and in the full version of this paper.

Table 1. Analysis of the targets of conclusions

toc(d1) toc(d2) result further requirements

1 x′ � y x p � r

2 x′ � y y q � r

3 x x′ � y′ p � q D(�, a) = {d1}
4 x′ x′ � y′ p′ � q′ D(�, a) = {d1}
5 x � t x′ � y′ (p � q) � σ(t) D(�, a) = {d1}, x, x′ ̸∈ vars(t)

6 x′ � t x′ � y′ (p′ � q′) � σ(t) D(�, a) = {d1}, x, x′ ̸∈ vars(t)

7 t x′ � y′ σ(t) � idempotent, D(�, a) = {d1}, x, x′ ̸∈ vars(t)

8 t x′ σ′(t) Condition 4 of Definition 8, x ̸∈ vars(t)

9 t y′ σ′(t) Condition 4 of Definition 8, x ̸∈ vars(t)

with σ = [y 7→ r, yi 7→ ri (i ∈ I)] and σ′ = [y 7→ r, x′ 7→ p′, yi 7→ ri (i ∈ I)]

In Table 1, x and y are considered as the variables for the first and second
argument, respectively, for both �- and �-defining rules. When the variable x′

is mentioned, implicitly the considered rule has a premise x
a→x′ (for a-emitting

10 L. Aceto, M. Cimini, A. Ingolfsdottir, M. Mousavi, and M. Reniers

rules). Similarly, when the variable y′ is mentioned, implicitly the rule consid-

ered has a premise y
a→ y′. The term t stands for a generic open term from the

signature, and p, q and r are hypothetical closed terms applied to the distribu-
tivity equation in this way: (p� q) � r ↔–– (p� r) � (q � r). The symbols p′, q′,
and ri are considered as targets of possible transitions from p, q and r.

Table 1 is to be read as follows. First of all, d1 ∈ D(�, a) and d2 ∈ D(�, a),
for some action a. In each row, the first column (column toc(d1)) specifies the
form of the target of the conclusion of the �-defining rule d1 (e.g., x in case of
row 3), and the second column (column toc(d2)) specifies the form of the target
of the conclusion of the �-defining rule d2 (e.g., x′ � y′ in case of row 3). If the
conditions in the column further requirements are satisfied (e.g., in row 3, d1
is the only �-defining and a-emitting rule), then the result of the transition of
terms (p�q)�r and (p�r)�(q�r) is specified by the term given in column result
(e.g., p�q in row 3). In rows 5–6, the stated result is up to one application of the
left-distributivity equation (1). The requirement � idempotent means that the
operator � can be proved idempotent, e.g., by means of the rule format offered
in [3].

The reader may want to notice that the first rule format of Section 3.2 is
partly based on the analysis which leads to rows 8 and 9.

Theorem 3 (Soundness of Table 1). Let T be a TSS. Let � and � be binary
operations in the signature of T satisfying

1. Fire(�,�, a), and
2. if D(�, a) ̸= ∅ then for each d1 ∈ D(�, a) and for each d2 ∈ D(�, a), the

rules d1 and d2 match a row in Table 1.

It holds that:

(x� y) � z ↔–– (x� z) � (y � z).

In what follows, we apply the rule format provided in this section in order to
check some examples of left-distributivity laws whose validity cannot be inferred
using Theorem 2.

Example 8 (Unit-delay operator and the choice operator from ATP). Consider
any TSS T containing the unit-delay operator ⌊ ⌋ and the choice operator +∗

from ATP [21]5 and for which the transition relation
χ→ is deterministic. (The

distinguished symbol χ denotes the passage of one unit of time.) The semantics
of those operators is defined by the following rules, where a ̸= χ:

(uda)
x

a→x′

⌊x⌋(y) a→x′
(udχ)

⌊x⌋(y) χ→ y
(extTime)

x
χ→x′ y

χ→ y′

x+∗ y
χ→x′ +∗ y′

5 In [21], the symbol of this operator is �, whose use we prefer to avoid in this paper
for the sake of clarity.

Rule Formats for Distributivity 11

(extChla)
x

a→x′

x+∗ y
a→x′

(extChra)
y

a→ y′

x+∗ y
a→ y′

.

Table 1 can be used to match the targets of the conclusions as follows: the
combination of uda and extChla follows from row 8, the combination of uda and
extChra follows from row 9, and finally the combination of udχ and extTime
follows from row 7.

Example 9 (Timed left merge and the choice operator from ATP). Consider the
TSS for ATP with the timed extension of the left-merge operator from Example 3
specified by the following rules, where a ̸= χ:

(mergea)
x

a→x′

x∥ y a→x′ ∥ y
(mergeχ)

x
χ→x′ y

χ→ y′

x∥ y χ→x′∥ y′
.

Table 1 can be used to match the targets of the conclusions as follows:
the combination mergea, extChla follows from row 8, the combination mergea,
extChra follows from row 9 and the combination mergeχ, extTime follows from
row 6.

In the extended version of this paper [1], we apply our rule formats to several
more examples and also show how they can be applied to obtain distributivity
for unary operators. The full version of the paper also offers a much more gen-
eral format for left distributivity based on a notion of distributivity compliance
between rules of which Table 1 is an approximation.

References

1. Aceto, L., Cimini, M., Ingolfsdottir, A., Mousavi, M.R., Reniers, M.A.: Rule for-
mats for distributivity. Technical Report CSR-10-16, TU/Eindhoven (2010)

2. Aceto, L., Ingolfsdottir, A., Mousavi, M.R., Reniers, M.A.: Algebraic properties
for free! Bulletin of the European Association for Theoretical Computer Science
99 (October 2009) 81–104 Columns: Concurrency.

3. Aceto, L., Birgisson, A., Ingolfsdottir, A., Mousavi, M.R., Reniers, M.A.: Rule
formats for determinism and idempotence. In Arbab, F., Sirjani, M., eds.: Fun-
damentals of Software Engineering, Third IPM International Conference, FSEN
2009, Kish Island, Iran, April 15-17, 2009, Revised Selected Papers. Volume 5961
of Lecture Notes in Computer Science, Springer-Verlag (2010) 146–161

4. Aceto, L., Bloom, B., Vaandrager, F.W.: Turning SOS rules into equations. Inf.
Comput. 111(1) (1994) 1–52

5. Aceto, L., Cimini, M., Ingolfsdottir, A., Mousavi, M.R., Reniers, M.A.: On rule
formats for zero and unit elements. In: Proceedings of the 26th Conference on the
Mathematical Foundations of Programming Semantics (MFPS XXVI). Volume 265
of Electronic Notes in Theoretical Computer Science, Ottawa, Canada, Elsevier
B.V., The Netherlands (2010) 145–160

12 L. Aceto, M. Cimini, A. Ingolfsdottir, M. Mousavi, and M. Reniers

6. Aceto, L., Fokkink, W., Ingolfsdottir, A., Luttik, B.: Finite equational bases in
process algebra: Results and open questions. In: Processes, Terms and Cycles.
Volume 3838 of Lecture Notes in Computer Science, Springer-Verlag (2005) 338–
367

7. Aceto, L., Fokkink, W., Verhoef, C.: Structural operational semantics. In: Hand-
book of Process Algebra. Elsevier (2001) 197–292

8. Aceto, L., Ingolfsdottir, A., Mousavi, M.R., Reniers, M.A.: Rule formats for unit
elements. In van Leeuwen, J., Muscholl, A., Peleg, D., Pokorný, J., Rumpe, B.,
eds.: SOFSEM 2010, 36th Conference on Current Trends in Theory and Prac-
tice of Computer Science, Špindleruv Mlýn, Czech Republic, January 23-29, 2010.
Proceedings. Volume 5901 of Lecture Notes in Computer Science, Springer-Verlag
(2010) 141–152

9. Baeten, J., Bergstra, J.: Mode transfer in process algebra. Technical Report Report
CSR 00–01, Eindhoven University of Technology (2000)

10. Baeten, J., Bergstra, J., Klop, J.W.: Syntax and defining equations for an interrupt
mechanism in process algebra. Fundamenta Informaticae IX(2) (1986) 127–168

11. Baeten, J., Basten, T., Reniers, M.A.: Process Algebra: Equational Theories of
Communicating Processes. Volume 50 of Cambridge Tracts in Theoretical Com-
puter Science. Cambridge University Press (2009)

12. Baeten, J., Mauw, S.: Delayed choice: An operator for joining Message Sequence
Charts. In Hogrefe, D., Leue, S., eds.: Formal Description Techniques VII, Pro-
ceedings of the 7th IFIP WG6.1 International Conference on Formal Description
Techniques, Berne, Switzerland, 1994. Volume 6 of IFIP Conference Proceedings,
Chapman & Hall (1995) 340–354

13. Bergstra, J., Klop, J.W.: Fixed point semantics in process algebras. Report IW
206, Mathematisch Centrum, Amsterdam (1982)

14. Brinksma, E.: A tutorial on LOTOS. In: Proceedings of the IFIP WG6.1 Fifth
International Conference on Protocol Specification, Testing and Verification V,
Amsterdam, The Netherlands, The Netherlands, North-Holland Publishing Co.
(1985) 171–194

15. Cranen, S., Mousavi, M.R., Reniers, M.A.: A rule format for associativity. In van
Breugel, F., Chechik, M., eds.: Proceedings of the 19th International Conference on
Concurrency Theory (CONCUR’08). Volume 5201 of Lecture Notes in Computer
Science, Toronto, Canada, Springer-Verlag, Berlin, Germany (2008) 447–461

16. Hoare, C.: Communicating Sequential Processes. Prentice-Hall International, En-
glewood Cliffs (1985)

17. Milner, R.: Communication and Concurrency. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA (1989)

18. Moller, F.: The importance of the left merge operator in process algebras. In
Paterson, M., ed.: Proceedings 17th ICALP, Warwick. Volume 443 of Lecture Notes
in Computer Science, Springer-Verlag (July 1990) 752–764

19. Mousavi, M.R., Reniers, M.A., Groote, J.F.: A syntactic commutativity format
for SOS. Information Processing Letters 93 (March 2005) 217–223

20. Mousavi, M.R., Reniers, M.A., Groote, J.F.: SOS formats and meta-theory: 20
years after. Theor. Comput. Sci. 373(3) (2007) 238–272

21. Nicollin, X., Sifakis, J.: The algebra of timed processes, ATP: Theory and appli-
cation. Information and Computation 114(1) (1994) 131–178

22. Plotkin, G.D.: A structural approach to operational semantics. J. Log. Algebr.
Program. 60-61 (2004) 17–139

23. Przymusinski, T.: The well-founded semantics coincides with the three-valued
stable semantics. Fundamenta Informaticae 13(4) (1990) 445–463

