
Timing the Untimed: Terminating Successfully

while Being Conservative

J. C. M. Baeten, M.R. Mousavi, and M. A. Reniers

Department of Computer Science,
Eindhoven University of Technology (TU/e),
NL-5600 MB Eindhoven, The Netherlands

Abstract. There have been several timed extensions of ACP-style pro-
cess algebras with successful termination. None of them, to our knowl-
edge, are equationally conservative (ground-)extensions of ACP with suc-
cessful termination. Here, we point out some design decisions which were
the possible causes of this misfortune and by taking different decisions,
we propose a spectrum of timed process algebras ordered by equational
conservativity ordering.

1 The Untimed Past

The term “process algebra” was coined by Jan Bergstra and Jan Willem Klop in
[8] to denote an algebraic approach to concurrency theory. Their process algebra
had uniform atomic actions ai for i ∈ I (with I some index set), sequential
composition · , choice (alternative composition) + and left merge ‖ as the
basic composition operators.1

Much of the core theory of [8] remained intact in the course of more than
20 years of developments in the ACP-school (for Algebra of Communicating
Processes) of process algebra. Their theory has however been subject to a number
of, rather important, extensions and improvements. Next, we list some of the
developments that are most relevant to the subject matter of this paper.

1. A major improvement over the process algebra of [8] was combining the con-
cepts of communication and concurrency in the Algebra of Communicating
Processes (ACP) which was proposed by Bergstra and Klop in [9,10]. In the
process algebra of [8], parallel composition x || y was a shorthand as defined
below.

x || y .
= (x‖ y)+(y‖ x)

There was no possibility for the parallel components to communicate or
synchronize. The situation was improved in [9,10] by introducing a (total)
communication function, defining a communication merge operator | and
raising the parallel composition operator || to a basic composition operator
in the algebra, rather than a defined term.

1 Sequential composition was called “concatenation” and choice was called “union” in
[8].

2. Another major improvement has been the addition of identity elements.
Bergstra and Klop in [8] did study the addition of a constant 0 which is
an identity element for both nondeterministic choice and sequential compo-
sition but then they ruled out this option by observing that the addition of
0 leads to the following counter-intuitive equality:

x · y = (x+ 0) · y = (x · y)+(0 · y) = (x · y)+ y

The above equality states that the sequential composition may forget about
its first argument which is indeed pathological. A couple of years had to pass
to reveal that, as in ordinary rings, two process constants ε and δ can be used
to give · and + their identity elements, respectively [16,22]. (Note that
unlike in rings, left-distributivity of choice over sequential composition is
still prohibited in the extended process algebra.) Hence, the process algebra
PAε

δ of [22] had two extra constants ε and δ. A different proposal for the
interplay of ε and parallel composition was formulated in [4,7]. There, a new
unary function symbol

√
() is added to the signature in order to capture

the possibility of termination for complex terms. ACP of [9,10] had δ as
an identity element for choice but lacked ε. In both [16,22], ε is added to
ACP resulting in ACP ε. The constant ε denotes termination, whereas the
action constant encompasses both the action execution and the termination
afterwards.

3. The third improvement concerning the subject matter of this paper was
the addition of quantitative time. Baeten and Bergstra, in [2], proposed a
real-time-stamped extension of ACP . In [3], they extend ACP with discrete
time using prefix operators σrel. and σabs. for relative and absolute timing,
respectively.

Vereijken tried to extend the result of the first and second improvements
with the third aspect in Chapter 6 of his Ph.D. thesis [20]. There, he introduced
ACPdrt,ε − ID as a discrete time extension of ACP ε (here, −ID denotes the
absence of an immediate deadlock constant). However, as it turns out, the above
three extensions do not match perfectly: while the extensions in each direction
can be interpreted as a conservative one, there is no conservativity result for the
extension of ACP ε with timing. In the next section, we review design decisions on
the way to timing untimed process algebras. Among the design decisions, we try
to find possible cause(s) for this misfortune and will try to improve the situation
by redesigning the extensions. This way, we may deviate from the commonly
accepted principles of ACP , as we see appropriate. The result will be a lattice
of process theories ordered by equational conservativity ordering.

2 Timing the Untimed

The following design decisions have to be taken in order to extend an untimed
process algebra with timing information:

1. Delayable vs. urgent actions: When extending an untimed process algebra
with timing, a natural question is how to deal with the timing behavior
of untimed basic actions. One choice is to regard them as urgent actions
without any timing behavior. Another choice is to allow for an arbitrary
timing behavior and introduce new urgent actions. The same decision has
to be taken for deadlock and successful termination constants. We believe
that taking the untimed actions (deadlock, termination) to be delayable
is the more natural choice. The fact that no timing information is given
should allow for an arbitrary timing of the implementation, rather than
only allowing for the case of the urgent process. Further elaboration of the
arguments can be found in [1].

2. Time stamped actions vs. separation of actions and time: Timing can be
added to actions in terms of time stamps or alternatively, in terms of a
separate delay operator. We choose the second option, as does most of the
literature [17,19,15].

3. Time (non)determinism: Time determinism means that passage of time can-
not make a choice. Usually, in timed extensions of ACP a weaker version of
time determinism is used by forcing that time cannot make a choice unless
one of the options prevents time to pass. In the latter case, a time transition
shall resolve the choice in favor of options that allow for it. This is called
weak time-determinism, and allows for a simple description of a time-out
mechanism.

4. Time domain: Several decisions can be taken for the appropriate time do-
main. Existence or absence of a least element, discreteness or denseness of
the time domain and having a partial (branching) or full (linear) ordering
on the elements of the time domain often lead to different timed theories.
Here, we choose for a discrete time domain with a total linear ordering. This
choice leads to the simplest theory, and is also the choice taken most often
in the literature [17,19,15] (see [20] for an overview).

5. Relative vs. absolute time: The timing information may be taken relative to
the successful termination of causally preceding actions or alternatively, to
a fixed starting point. Here, we take the relative timing approach which is
simpler to deal with. Our discussions carry over to the setting with absolute
timing. We refer to [5] for more information on relative and absolute timing.

Let us take the above design decisions, and let us consider the timed extension
of a simple process algebra, BPAε

δ, the theory BPA of [8] extended with constants
δ and ε (see [20,1] for an overview of the above design decisions). Operational
rules for this theory are given in Table 1.

We fix the notation used for transition system specifications (TSS) in this
paper, as follows. The table containing the TSS is labelled with TSS (Name)
where Name is the name of the process theory for which we are defining a TSS.
For example in Table 1, we define a TSS for BPAε

δ and hence the table is labelled
by it. Then, we name the TSS which we include in the definition, i.e., the TSS
being extended. In an extension, we include the signature, transition relations,
predicates and deduction rules from the original TSS and hence do not re-state

TSS(BPAε
δ(A))

constant: δ, ε, (a)a∈A; binary: · , + ;

↓; (
a
→)a∈A;

x, x′, y, y′;

ε↓ a
a
→ ε

x
a
→ x′

x · y
a
→ x′ · y

x↓ y
a
→ y′

x · y
a
→ y′

x↓ y↓

x · y↓

x↓

x + y↓

y↓

x + y↓

x
a
→ x′

x + y
a
→ x′

y
a
→ y′

x + y
a
→ y′

Table 1. Transition system specification for BPAε
δ(A).

them in the extended TSS. Table 1 does not extend any previous theory and
hence the extension line is empty. Subsequently, we give the signature of the
theory in terms of function symbols and their arities. In Table 1, the signature
consists of constants δ, ε and actions a ∈ A, as well as binary function symbols
. and + for sequential composition and choice, respectively. The transition

relations and predicates being defined by the TSS follow afterwards. In the TSS
of Table 1, → is the transition relation labelled by a ∈ A and ↓ is the termination
predicate. Finally, the set of deduction rules is presented. Most of the deduction
rules given in Table 1 are quite standard and self-explanatory.

Before we continue with the extension of the basic process algebra to the
timed setting, we fix the semantics of TSS’s in terms of their induced transition

relations and predicates. We write TSS (A) � p
l→ q and TSS (A) � P (p), where

p and q are closed terms from the signature of TSS (A), and
l→ is a transition

relation and P is a predicate, and by that we mean formulae p
l→ q and P (p) are

provable in TSS (A). Due to the presence of negative premises (in the TSS’s that
are yet to be presented in this paper), it is not clear what is a proof for negative
premises and several different interpretations exist in the literature (see [13] for
an overview). However, for the purpose of TSS’s presented in this paper all the
existing interpretations coincide (since they are all strictly stratified, see [14,11]
for the definition and details) and hence, it does not matter which interpretation
we choose. Next, we define the notion of stable model as an intuitive semantics
for TSSs with negative premises.

Definition 1 (Stable Model). We say a positive closed formula φ is provable
from a set of positive formulae T and a TSS tss, denoted by (T, tss) ` φ when
there is a well-founded upwardly branching tree with nodes labelled by closed
formulae such that:

– the root node is labelled by φ, and

– if the label of a node q, denoted by ψ, is a positive formula and {ψi | i ∈ I}
is the set of labels of the nodes directly above q, then there is a deduction

rule
{χi | i ∈ I}

χ
in tss (N.B. χi can be a positive or a negative formula) and

a substitution σ such that σ(χ) = ψ and for all i ∈ I, σ(χi) = ψi;

– if the label of a node q, denoted by p
l

9 , is a negative formula then there

exists no p′ such that p
l→ p′ ∈ T (or similarly, if it is of the form ¬p↓ then

p /∈ ↓).
A stable model defined by tss is a set of formulae T such that for all closed

positive formulae φ, φ ∈ T if and only if (T, tss) ` φ.

Using the notion of stable model, we can associate a transition system to
each closed term in the signature. To define an equality on transition systems
and turn them into model for process algebras, we need a notion of behavioral
equivalence. Strong bisimilarity is one such notion of behavioral equivalence
which can be efficiently checked in practice and usually leads to elegant theories.

Definition 2 (Bisimilarity). A symmetric relation R on closed terms is called
a (strong) bisimulation relation with respect to a transition relations → and a
predicates P , when for all (p, q) ∈ R, and for all labels l and closed terms p′,

– if p
l→ p′ then there exists a q′ such that q

l→ q′ and (p′, q′) ∈ R, and
– if p↓ then q↓.

We write TSS (A) � p ↔ p′ for closed terms p and p′ when they are (strongly)
bisimilar with respect to the stable model of TSS (A).

To extend BPAε
δ with timing, we add the unit time transitions 7→ (which can

be considered as an acronym for
1→ where 1 is a fresh label dedicated to time

transitions). At the same time, we add additional constants ε (termination in
the current time slice), δ (deadlock in the current time slice), a (action execution
in the current time slice, for a ∈ A) and σ (unit delay). The resulting extension
is called BPAε

drt,δ; see Table 2.
The first three deduction rules of Table 2 specify the delayable nature of

δ, ε and a whereas the next three rules specify the undelayable nature of δ, ε
and a. Let’s next focus on the last three deduction rules: they specify the time-
deterministic behavior of choice, i.e., time transitions cannot decide about a
choice unless one of the two arguments of choice prohibits time from progressing.
The remaining deduction rules specify the behavior of sequential composition.
These are rather involved since they have to maintain time-determinism. If a
delay can take place in two forms, i.e., by delaying the first argument and by
delaying the second argument after the termination of the first, then both options
are kept open (the first rule). Otherwise, if exactly one of these two forms is
possible then there remains no choice and only possible delay takes place (the
second and the third rule).

TSS(BPAε
drt,δ(A))

TSS(BPAε
δ(A))

constant: δ, ε, (a)a∈A, σ;

7→ ;

x, x′, y, y′;

δ 7→ δ ε 7→ ε a 7→ a ε↓ a
a
→ ε σ 7→ ε

x 7→ x′ x↓ y 7→ y′

x · y 7→ x′ · y + y′

x 7→ x′ x6↓

x · y 7→ x′ · y

x 7→ x′ y 67→

x · y 7→ x′ · y

x 67→ x↓ y 7→ y′

x · y 7→ y′

x 7→ x′ y 7→ y′

x + y 7→ x′ + y′

x 7→ x′ y 67→

x + y 7→ x′

x 67→ y 7→ y′

x + y 7→ y′

Table 2. Transition system specification for BPAε
drt,δ(A).

While this theory can be worked out in full, and indeed has an elegant axiom-
atization, it does lead to complications. These complications have to do with the
fact that the action constants involve both action execution and termination. In
the timed extension, the immediate and delayable options for action execution
and termination lead to four different combinations:

– Action execution after an arbitrary delay, followed by termination after an
arbitrary delay (a);

– Immediate action execution followed by immediate termination (a);

– Action execution after an arbitrary delay, followed by immediate termination
(ε · a);

– Immediate action execution, followed by termination after an arbitrary delay
(a · ε).

In the extension of BPAε
δ with timing, we are forced to take the first option.

The problem is that this does not match with timed extensions of process algebra
without the ε constant. In BPAδ [7,9], the operational rule for action constants

is a
a→ √

, where
√

is not a process expression but a special symbol denoting
termination. Extending with time, time transitions can be added before action
execution, but not afterwards, so we are forced to take the third option.

In [20], the author follows this, so he interprets untimed actions following the
third choice. When extending with ε he gets a = ε · a. As a result, the extension
is not conservative, as the ground equation a · ε = a does not hold any longer in
the timed extension.

To combat this mismatch, in [1] it is proposed to separate action execution
and termination: by replacing action constants by action prefixing, termination
becomes explicit. As we will show further on, separating action execution and
termination by abandoning the idea of basic actions as constructors in the sig-
nature resolves many of the difficulties.

This involves a deviation of a basic design decision in the untimed process
algebra: action prefixing is taken as the basic composition operator instead of
sequential composition, and sequential composition is added later on. However,
both in [1] and in [6] conservativity is not maintained for the operators ‖ and
| that are used to define parallel composition. This inadequacy is solved in the
present paper.

Thus, we choose a departure point for the extension of process algebra with
termination and timing that has action prefixing instead of action constants. Fol-
lowing [1,6], we choose a basic theory called MPT (for Minimal Process Theory)
with deadlock, action prefixing and choice. Then, we extend this theory with
successful termination which results in the theory BSP. Sequential and paral-
lel composition are subsequently added to BSP, resulting in the theories TSP
and TCP, respectively. Observe that ACP cannot be considered a conservative
(ground-)extension of TCP since the signature of TCP is not contained in the
signature of ACP and vice versa TCP is not a conservative (ground-)extension
of ACP since the signature of ACP is not contained in the signature of TCP.
However, it is possible to embed ACP into TCP by mapping the action constants
a ∈ A on the TCP-terms a.ε.

As our goal is to have equationally conservative ground-extensions of process
algebras, we extend our theory with timing at each level and establish the con-
servativity of the extension. In order to make the transition to timed settings
smoother, in addition to the time delay operator σ. , we add an arbitrary time de-
lay operator σ∗. which is very helpful in the axiomatization of complex theories
such as TSP and TCP. The result of the extension of theory X with undelayable
action prefix, undelayable termination and deadlock, (discrete) time delay and
arbitrary delay operators is denoted by Xdrt∗. The lattice of process theories
that we present in this paper (ordered by equational (ground-)conservativity re-
lation) is depicted in Figure 1. Each arrow is labelled by the function symbols
introduced in the target of the extension.

To give a formal meaning to the arrows presented in Figure 1, we define a few
concepts regarding conservativity. The first definition concerns the traditional
notion of operational conservativity.

Definition 3 (Operational Conservativity [12]). Consider TSS’s TSS (A)
and TSS (B) defined on signatures ΣA and ΣB such that TSS (B) includes
TSS (A) in its definition. Also, let C(Σx) denote the set of closed terms built
upon Σx. The TSS TSS (B) is an operationally conservative extension of TSS (A)
when ∀p∈C(ΣA) TSS (A) � p↓ ⇔ TSS (B) � p↓, and ∀p∈C(ΣA) ∀l∈LB

∀p′∈C(ΣB)

TSS (A) � p
l→ p′ ⇔ TSS (B) � p

l→ p′.

TCP TCPdrt∗

TSP TSPdrt∗

BSP BSPdrt∗

MPT MPTdrt MPTdrt∗

a. , ε, δ, σ. , σ∗.

||, ‖ , |

a. , ε, δ, σ. , σ∗.

||, ‖ , |

a. , ε, δ, σ. , σ∗.

. .

ε

a. , δ, σ. σ∗.

ε, ε

Fig. 1. The Lattice of Process Theories and Their Timed Extensions

In the above definition, implicitly it is not allowed to have old relations from
old terms (C(ΣP)) to a new term (C(ΣB)). Note that the transition relations and
predicates in the above definition are taken from the extended TSS, i.e., TSS (B)
and hence an operationally conservative extension denies any new transition or
predicate from the terms from the old syntax, i.e., from C(ΣA). This turns out
to be too restrictive for time extensions since we decided to interpret untimed
basic actions as delayable and hence we have to add timing behavior to them.
This has been noted in [18] where the following alternative and more relaxed
notion of orthogonality was proposed.

Definition 4 (Orthogonality [18]). Consider TSS’s TSS (A) and TSS (B) de-
fined on signatures ΣA and ΣB such that TSS (B) includes TSS (A) in its defi-
nition. The TSS TSS (B) is an orthogonal extension of TSS (A) when

1. ∀p∈C(ΣA) TSS (A) � p↓ ⇔ TSS (B) � p↓ and

∀p,p′∈C(ΣA) ∀l∈LA
TSS (A) � p

l→ p′ ⇔ TSS (B) � p
l→ p′ and

2. ∀p,p′∈C(ΣA) TSS (A) � p ↔ p′ ⇔ TSS (B) � p ↔ p′.

Note that it follows from Definitions 3 and 4 that an operationally conserva-
tive extension is orthogonal [18]. Both operational conservativity and orthogo-
nality are useful means to obtain equational conservativity as defined below.

Definition 5 (Equational Conservativity [18]). An equational theoryB on
signature ΣB is an equationally conservative ground-extension of equational the-

ory A on ΣA if and only if ΣA ⊆ ΣB and for all p, p′ ∈ C(ΣA), A ` p = p′ ⇔
B ` p = p′.

If the axioms of equational theory A are (syntactically) included among the
axioms of equational theory B and B is an equationally conservative ground-
extension of A, then B is an equationally conservative extension of A.

In the above definition X ` p = p′ means that p = p′ is derivable from the
equations in X. In our settings, this means that = is the congruence relation
induced by the equations in X. We drop the prefixes equational and equation-
ally and simply write conservativity and conservative (ground)-extension in the
remainder.

In the outline presented in Figure 1, normal arrows denote equationally con-
servative extensions and dashed arrows denote equationally conservative ground-
extensions. Operational conservativity and orthogonality are mostly used as a
means to prove conservative extensions and conservative ground-extensions, re-
spectively. In the present paper, we focus on the process theories and on their
interrelationships using the previously mentioned notions of conservativity. We
present soundness and ground-completeness theorems for all theories, but omit
their proofs altogether.

3 Minimal Process Theory

3.1 MPT

The equational theory Minimal Process Theory (MPT) is specified in Table 3.

MPT(A)

constant: δ; unary: (a.)a∈A; binary: + ;

x, y, z;

x + y = y + x A1
(x + y) + z = x + (y + z) A2
x + x = x A3
x + δ = x A6

Table 3. MPT(A)

The transition system specification associated to the terms of MPT is given
in Table 4.

It is straightforward to check that the equational theory of MPT is a sound
and ground-complete axiomatization for its transition system semantics modulo
strong bisimulation.

TSS(MPT(A))

constant: δ; unary: (a.)a∈A; binary: + ;

(
a
→)a∈A

x, x′, y, y′;

a.x
a
→ x

x
a
→ x′

x + y
a
→ x′

y
a
→ y′

x + y
a
→ y′

Table 4. Transition system specification for MPT(A).

Theorem 6 (Soundness). Let p and q be two closed MPT(A)-terms. If
MPT(A) ` p = q, then TSS (MPT(A)) � p ↔ q.

Theorem 7 (Ground-completeness). Let p and q be arbitrary closed
MPT(A)-terms. If TSS (MPT(A)) � p ↔ q, then MPT(A) ` p = q.

3.2 MPTdrt

The equational theory of MPT with discrete relative timing (MPTdrt) [1] is spec-
ified in Table 5. It adds undelayable action prefixing a. , undelayable deadlock
δ plus a time delay operator σ. to the signature of MPT and uses no auxil-
iary operators for the axiomatization. Prefixing is binds stronger than the other
operators.

MPTdrt(A)

constant: δ, δ; unary: (a.)a∈A, (a.)a∈A, σ. ; binary: + ;

x, y, z;

x + y = y + x A1 δ = σ.δ DD1
x + (y + z) = (x + y) + z A2 a.x = a.x + σ.a.x DA1

x + x = x A3 a.x + δ = a.x A6DD
x + δ = x A6DRT σ.x + σ.y = σ.(x + y) DRTF

Table 5. MPTdrt(A)

This equational theory is not a conservative extension of MPT since the
axiom x + δ = x of MPT does not hold anymore. The role of deadlock δ (now
called delayable deadlock) as a unit element for alternative composition is taken
over by undelayable deadlock δ, see Axiom A6DRT. The behavior of delayable

deadlock and action prefix is defined recursively by means of the axioms DD1
(Delayable Deadlock) and DA1 (Delayable Action). Axiom A6DD expresses that
delayable deadlock is still a unit element for alternative composition of delayable
processes. Finally, axiom DRTF (Discrete Relative Time Factorization) expresses
that passage of time by itself cannot determine a choice. Hence, this axiom
implements the time-determinism discussed in the previous section.

The transition system specification of MPTdrt is given in Table 6. It consists
of the deduction rules of MPT (Table 4) as well as new deduction rules defining
the time transitions 7→ for MPT terms as well as action and time transitions for
the newly introduced terms.

TSS(MPTdrt(A))
TSS(MPT(A))

constant: δ; unary: (a.)a∈A, σ. ;

7→ ;

x, x′, y, y′;

δ 7→ δ a.x 7→ a.x
x 7→ x′ y 7→ y′

x + y 7→ x′ + y′

x 7→ x′ y 67→

x + y 7→ x′

x 67→ y 7→ y′

x + y 7→ y′

a.x
a
→ x σ.x 7→ x

Table 6. Transition system specification for MPTdrt(A).

Theorem 8 (Soundness). Let p and q be two closed MPTdrt(A)-terms. If
MPTdrt(A) ` p = q, then TSS (MPTdrt(A)) � p ↔ q.

Theorem 9 (Ground-completeness). Let p and q be arbitrary closed
MPTdrt(A)-terms. If TSS (MPTdrt(A)) � p ↔ q, then MPTdrt(A) ` p = q.

As explained before, MPTdrt cannot be a conservative extension of MPT
due to the omission of Axiom A6 (x + δ = x) from MPTdrt. It is a conserva-
tive ground-extension, nevertheless, since for closed MPT-terms x, this axiom is
derivable from the axioms of MPTdrt.

Theorem 10 (Conservative ground-extension). MPTdrt is a conservative
ground-extension of MPT.

Proof. We apply the meta-theorems from [18]. The transition system specifi-
cation that consists of the deduction rules in the first row of Table 6 is source-
preserving and strictly stratified using the number of symbols of terms as a mea-
sure, and the sources of the conclusions cover the syntax of MPT (see [18] for def-
initions of notions used here). Furthermore, the deduction rules in the second row
of Table 6 have source-dependent negative time transitions as a premise. Hence
TSS (MPT(A)) with deduction rules of the first and the second row of Table 6 is
a granting extension of TSS (MPT(A)) and hence an orthogonal extension. The
extension of the resulting transition system specification with deduction rules
of the third row is conservative, hence also orthogonal. Since orthogonality is a
preorder, TSS (MPTdrt(A)) is an orthogonal extension of TSS (MPT(A)). Com-
bined with the facts that both MPT and MPTdrt are sound and complete, we
have that MPTdrt is an equationally conservative ground-extension of MPT.

3.3 MPTdrt∗

A further discrete relative time extension of MPT, called MPTdrt∗ makes use
of an auxiliary operator σ∗ to axiomatize this extension: σ∗p denotes that the
execution of p can be started in any time slice (present or future). Note that
the intuitions of δ and a. are in line with the “any-time-slice” interpretation of
the untimed constants and action prefix operators. This time iteration operator
comes very handy in the axiomatization of delayable actions, particularly in
the more involved theories that we encounter in the rest of this paper. The
axiomatization of MPTdrt∗ is given in Table 7.

MPTdrt∗(A)

constant: δ, δ; unary: (a.)a∈A, (a.)a∈A, σ. , σ∗ ; binary: + ;

x, y, z;

x + y = y + x A1 δ = σ.δ DD1
x + (y + z) = (x + y) + z A2 a.x = a.x + σ.a.x DA1

x + x = x A3 δ = σ∗δ DD2

a.x = σ∗a.x DA2

x + δ = x A6DRT σ.x + σ.y = σ.(x + y) DRTF

σ∗x = x + σ.σ∗x ATS σ∗x + σ∗y = σ∗(x + y) DRTIF
σ∗σ.x = σ.σ∗x DRTA σ∗σ∗x = σ∗x TITI

Table 7. MPTdrt∗(A)

In this equational theory the any time slice constant and action prefix op-
erators are defined in terms of their current time slice counterparts and time
iteration by axioms DD2 and DA2. Axiom ATS (Any Time Slice) recursively

defines time iteration. Axiom DRTIF (Discrete Relative Time Iteration Factor-
ization) expresses that time factorization also applies to time iteration. Axiom
DRTA (Discrete Relative Time Axiom) explains that consecutive occurrences
of time iteration and time delay can be switched. It is in line with the obser-
vation that both σ.σ∗p and σ∗σ.p are solutions to the recursive specification
X = σ.p + σ.X. Axiom TITI (Time Iteration Time Iteration) says that two
consecutive time iterations are equivalent to only one time iteration. As a conse-
quence, any number of consecutive time iterations is considered to be equivalent
to a single one. Note that axioms DD1 and DA1 are derivable from the other
axioms (e.g., δ = σ∗δ = δ + σσ∗δ = σδ).

It is not the case that the newly introduced operators can all be eliminated.
Nevertheless, the newly introduced syntax has some redundancy in the sense
that either the time iteration operator or the delayable deadlock and delayable
action prefixes can be eliminated from closed terms.

The transition system specification associated to the terms of MPTdrt∗ is
given in Table 8. It adds deduction rules defining the behavior of time iteration.

TSS(MPTdrt∗(A))
TSS(MPTdrt(A))

unary: σ∗ ;

x, x′;

x
a
→ x′

σ∗x
a
→ x′

x 7→ x′

σ∗x 7→ σ∗x + x′

x 67→

σ∗x 7→ σ∗x

Table 8. Transition system specification for MPTdrt∗(A).

Theorem 11 (Soundness). Let p and q be two closed MPTdrt∗(A)-terms. If

MPTdrt∗(A) ` p = q, then TSS (MPTdrt∗(A)) � p ↔ q.

Theorem 12 (Ground-completeness). Let p and q be arbitrary closed

MPTdrt∗(A)-terms. If TSS (MPTdrt∗(A)) � p ↔ q, then MPTdrt∗(A) ` p = q.

Theorem 13 (Conservative extension). MPTdrt∗ is a conservative exten-
sion of MPTdrt.

Proof. The sources of the conclusions of all deduction rules from Table 8 mention
a new operator. Therefore, the extension of TSS (MPTdrt(A)) with these deduc-

tion rules is conservative. Hence, TSS (MPTdrt∗(A)) is an orthogonal extension
of TSS (MPTdrt(A)). Since both theories are sound and complete and the axioms

of MPTdrt(A) are included in MPTdrt∗(A), it follows from the meta-results of

[18] that MPTdrt∗ is an equationally conservative extension of MPTdrt.

4 Successful termination: Basic Sequential Processes

In this section, we discuss the extension of the theories MPT and MPTdrt∗ from
the previous section, with a constant denoting successful termination.

4.1 BSP

The process theory MPT is a minimal theory; not much can be expressed in it.
One aspect that cannot be addressed is successful termination. The distinction
between successful and unsuccessful termination turns out to be essential when
sequential composition is introduced. In order to express successful termination,
the new constant ε, referred to as the empty process or the termination constant,
is introduced. The extension of the process theory MPT with the empty process
ε results in process theory BSP, the theory of Basic Sequential Processes. This
section gives the equational theory as well as its term model.

Table 9 defines process theory BSP. The only difference between the signature
of MPT and the signature of BSP is the constant ε. The axioms of BSP, see Table
9, are exactly the axioms of MPT, given in Table 3.

BSP(A)
MPT(A)

constant: ε;

Table 9. BSP(A)

The transition system specification associated to the terms of BSP is given in
Table 10. It adds deduction rules defining the termination behavior of the new
constant ε and of the syntax of MPT.

Theorem 14 (Soundness). Let p and q be two closed BSP(A)-terms. If BSP(A)
` p = q, then TSS (BSP(A)) � p ↔ q.

Theorem 15 (Ground-completeness). Let p and q be arbitrary closed BSP(A)-
terms. If TSS (BSP(A)) � p ↔ q, then BSP(A) ` p = q.

Theorem 16 (Conservative extension). BSP is a conservative extension of
MPT.

Proof. Both MPT and BSP are sound and ground-complete equational theories
for TSS (MPT(A)) and TSS (BSP(A)). Also, following [12], TSS (BSP(A)) is an
operationally conservative (orthogonal) extension of TSS (MPT(A)). Further-
more, axioms of MPT(A) are all included in BSP(A). Thus, we conclude that
BSP(A) is an equationally conservative extension of MPT(A).

TSS(BSP(A))
TSS(MPT(A))

constant: ε;

↓;

x, y;

ε↓
x↓

x + y↓

y↓

x + y↓

Table 10. Transition system specification for BSP(A).

4.2 BSPdrt∗

In this section, the timed process algebra MPTdrt∗ from the previous section is
extended with the constants any time slice termination ε and current time slice
termination ε. The axioms of the process theory BSPdrt∗ are given in Table 11.
The axiom DT (Delayable Termination) defines the any time slice constant in
terms of its current time slice counterpart and time iteration. Note that ε = ε+σε
is derivable from the axioms of Table 11.

BSPdrt∗(A)
MPTdrt∗(A)

constant: ε, ε;

ε = σ∗ε DT

Table 11. BSPdrt∗(A)

The transition system specification associated to the terms of BSPdrt∗ is
given in Table 12. It adds deduction rules defining the termination behavior of
the new constant ε and the time iteration σ∗ and the time behavior of ε.

Theorem 17 (Soundness). Let p and q be two closed BSPdrt∗(A)-terms. If

BSPdrt∗(A) ` p = q, then TSS (BSPdrt∗(A)) � p ↔ q.

Theorem 18 (Ground-completeness). Let p and q be two arbitrary closed

BSPdrt∗(A)-terms. If TSS (BSPdrt∗(A)) � p ↔ q, then BSPdrt∗(A) ` p = q.

Theorem 19 (Conservative ground-extension). BSPdrt∗ is a conservative
ground-extension of BSP.

TSS(BSPdrt∗(A))
TSS(BSP(A)),TSS(MPTdrt∗(A))

constant: ε;

x;

ε↓ ε 7→ ε
x↓

σ∗x↓

Table 12. Transition system specification for BSPdrt∗(A).

Proof. This proof is similar to the proof that MPTdrt∗ is a conservative ground-
extension of MPT. Add the second deduction rule of 12 to the granting part and
the first and third deduction rules of Table 12 to the conservative part. Note
that the deduction rules for σ∗ that are added to TSS (MPTdrt(A)) to obtain

TSS (MPTdrt∗(A)) should be added to the conservative part as well.

Theorem 20 (Conservative extension). BSPdrt∗ is a conservative extension

of MPTdrt∗.

Proof. Both MPTdrt∗ and BSPdrt∗ are sound and ground-complete equational
theories for TSS (MPTdrt∗(A)) and TSS (BSPdrt∗(A)). Also, using the meta-

theory from [12], TSS (BSPdrt∗(A)) is an operationally conservative (orthogo-

nal) extension of TSS (MPTdrt∗(A)). Thus, we conclude that BSPdrt∗(A) is an

equationally conservative extension of MPTdrt∗(A).

5 Sequential composition

5.1 TSP

This section treats the extension with a sequential composition operator. Given
two process terms p and q, the term p · q denotes the sequential composition of p
and q. The intuition of this operation is that upon the successful termination of
process p, process q is started. If process p ends in a deadlock, also the sequential
composition p·q deadlocks. Thus, a pre-requisite for a meaningful introduction of
a sequential composition operator is that successful and unsuccessful termination
can be distinguished. As already explained in Section 4, this is not possible in the
theory MPT as all processes end in deadlock. Thus, as a starting point the theory
BSP of the previous section is used. This theory is extended with sequential
composition to obtain the Theory of Sequential Processes TSP. It turns out that
the empty process is a neutral element for sequential composition: x·ε = ε·x = x.

To obtain the axioms of the process theory TSP, the axioms from Table 13 are
added to the axioms of the process theory BSP from Table 9. Axiom A5 states

TSP(A)
BSP(A)

binary: · ;

x, y, z : P ;

(x + y) · z = x · z + y · z A4 δ · x = δ A7
(x · y) · z = x · (y · z) A5 x · ε = x A8
a.x · y = a.(x · y) A10 ε · x = x A9

Table 13. The process theory TSP(A).

that sequential composition is associative. As mentioned before, and now for-
mally captured in the axioms A8 and A9, the empty process is a neutral element
with respect to sequential composition. Axiom A7 states that after a deadlock
has been reached no continuation is possible. Axiom A4 describes the distribu-
tion of sequential composition over alternative composition from the right. Recall
that the other distributivity property is not desired as it does not respect the
moment of choice. Finally, Axiom A10 describes the relation between sequential
composition and action prefixes.

Theorem 21 (Elimination). For any closed TSP(A)-term p, there exists a
closed BSP(A)-term q such that TSP(A) ` p = q.

Proof. The property is proven by providing a term rewriting system with the
same signature as TSP(A) such that

1. each rewrite step transforms a process term into a process term that is
derivably equal,

2. the term rewriting system is strongly normalizing, and
3. no closed normal form of the term rewriting system contains a sequential

composition operator.

Consider the term rewriting system consisting of the following rewrite rules; for
any a ∈ A, and TSP(A)-terms x, y, z:

(x+ y) · z → x · z + y · z δ · x→ δ
(x · y) · z → x · (y · z) ε · x→ x
a.x · y → a.(x · y)

Each of the rewrite rules is obtained directly from an axiom of TSP by replacing
= by →. As a consequence, each rewrite step transforms a process term in a
process term that is derivably equal.

The second step of the proof, the strong normalization of the given term
rewriting system, is standard.

The last part of the proof is to show that no closed normal form of the above
term rewriting system contains a sequential composition operator. Thereto, let

u be a normal form of the above term rewriting system. Suppose that u contains
at least one sequential composition operator. Then, u must contain a subterm of
the form v ·w for some closed TSP(A)-terms u and v. This subterm can always be
chosen in such a way that v is a closed BSP(A)-term. It follows immediately from
the structure of closed BSP(A)-terms that one of the above rewrite rules can be
applied to v · w. As a consequence, u is not a normal form. This contradiction
implies that u must be a closed BSP(A)-term.

The transition system specification associated to the terms of TSP is given
in Table 14. It adds deduction rules defining action transitions and termination
behavior of sequential composition.

TSS(TSP(A))
TSS(BSP(A))

binary: · ;

x, y, x′, y′;

x
a
→ x′

x · y
a
→ x′ · y

x↓ y
a
→ y′

x · y
a
→ y′

x↓ y↓

x · y↓

Table 14. Transition system specification for TSP(A).

Theorem 22 (Soundness). Let p and q be two closed TSP(A)-terms. If TSP(A)
` p = q, then TSS (TSP(A)) � p ↔ q.

Theorem 23 (Ground-completeness). Let p and q be arbitrary closed TSP(A)-
terms. If TSS (TSP(A)) � p ↔ q, then TSP(A) ` p = q.

Theorem 24 (Conservative extension). TSP is a conservative extension of
BSP.

Proof. Both BSP and TSP are sound and ground-complete equational theo-
ries for TSS (BSP(A)) and TSS (TSP(A)). Also, following [12], TSS (TSP(A)) is
an operationally conservative (orthogonal) extension of TSS (BSP(A)). Further-
more, all axioms of BSP are among the axioms of TSP. Thus, we conclude that
TSP is an equationally conservative extension of BSP.

Now that the process theories have been extended with sequential composi-
tion, the relationship with the process theory BPAε

δ can be considered. Syntac-
tically, there is still a mismatch between BPAε

δ and TSP since the former has
constants a ∈ A and the latter does not have those. There are two (equivalent)

ways to overcome this difference. First, we can extend TSP with such constants,
using axiom

a = a.ε,

or second, we can use the notion of embedding to find that the process theory
BPAε

δ can be embedded into TSP taking a as a.ε.

5.2 TSPdrt∗

In this section, the process theory BSPdrt∗ is extended to the process theory
TSPdrt∗. This extension is obtained by extending the signature of BSPdrt∗ with
the sequential composition operator · . The axioms of the process theory are
given in Table 15.

TSPdrt∗(A)
BSPdrt∗(A);

binary: · ;

x, y, z : P ;

(x + y) · z = x · z + y · z A4 δ · x = δ A7DR

(x · y) · z = x · (y · z) A5 x · ε = x A8DR

a.x · y = a.(x · y) A10DRa ε · x = x A9DR

(σ.x) · y = σ.(x · y) A10DRb
σ∗x · y = σ∗(x · y) A10DRc

Table 15. The process theory TSPdrt∗(A).

Sequential composition is as before, but here the role of unit that was played
by ε in the untimed theory, is taken over by the current time slice termination
constant ε (see Axioms A8DR and A9DR). In this setting it can be derived
that ε · x = σ∗x instead. The sequential composition operator has two left-zero
elements: both undelayable deadlock (see Axiom A7DR) and delayable deadlock
act as such. The axioms δ · x = δ and a.x · y = a.(x · y) from the untimed theory
have disappeared since they are derivable from the remaining axioms2. Axioms
A10DRb and A10DRc express that the passage of time is measured relative to
the previous action and thus has no consequences for the future actions: the
timing of y is relative to the last action of x, regardless the time prefix or time
iteration operator.

Theorem 25 (Elimination). For any closed TSPdrt∗(A)-term p, there exists

a closed BSPdrt∗(A)-term q such that TSPdrt∗(A) ` p = q.

2 If these axiom were the only axioms of TSP that disappear, then one could consider
keeping them, since it would allow for conservativity instead of ground-conservativity.

The transition system specification associated to the terms of TSPdrt∗ is
given in Table 16. It adds deduction rules defining time transitions of sequential
composition.

TSS(TSPdrt∗(A))
TSS(TSP(A)),TSS(BSPdrt∗(A))

x,′ x′, y, y′;

x 7→ x′ x↓ y 7→ y′

x · y 7→ x′ · y + y′

x 7→ x′ x6↓

x · y 7→ x′ · y

x 7→ x′ y 67→

x · y 7→ x′ · y

x 67→ x↓ y 7→ y′

x · y 7→ y′

Table 16. Transition system specification for TSPdrt∗(A).

Theorem 26 (Soundness). Let p and q be two closed TSPdrt∗(A)-terms. If

TSPdrt∗(A) ` p = q, then TSS (TSPdrt∗(A)) � p ↔ q.

Theorem 27 (Ground-completeness). Let p and q be arbitrary closed

TSPdrt∗(A)-terms. If TSS (TSPdrt∗(A)) � p ↔ q, then TSPdrt∗(A) ` p = q.

The process theory TSPdrt∗ is not a conservative extension of TSP as was
the case for all extensions from untimed to timed process algebra. Besides the
untimed identity x + δ = x that does not hold in the timed setting, also the
untimed identity x · ε = x does not hold in the timed extension: ε · ε 6= ε.

Theorem 28 (Conservative ground-extension). TSPdrt∗ is a conservative
ground-extension of TSP.

Proof. We show that for all p and p′ in the syntax of TSP,

1. TSS (TSP(A)) � p
a→ p′ ⇔ TSS (TSPdrt∗(A)) � p

a→ p′,

2. TSS (TSP(A)) � p↓ ⇔ TSS (TSPdrt∗(A)) � p↓,
3. there exists a closed TSP(A)-term q such that TSS (TSPdrt∗(A)) � p 7→ q,

and

4. for all closed TSPdrt∗(A)-terms q such that TSS (TSPdrt∗(A)) � p 7→ q then

TSS (TSP(A)) � p ↔ q and TSS (TSPdrt∗(A)) � p ↔ q.

If we show the above list of items to be true, it follows that TSS (TSPdrt∗(A)) is
an orthogonal extension of TSS (TSP(A)): The first condition of orthogonality

is item 1 in the above list. So, it only remains to show that TSS (TSPdrt∗(A)) �

p ↔ p′ ⇔ TSS (TSP(A)) � p ↔ p′, which follows immediately from the above
items.

To check the first and the second item, one should note that first, a proof in
TSPdrt∗ for an a-transition

a→ with a source term from TSP or a termination
predicate ↓ on a TSP-term only involves deduction rules from TSP. Such deduc-
tion rules do not have negative premises and are source-dependent [18]. Hence,
all such transition and predicate formulae are included in the stable model of
TSP. Second, for the inclusion in the other direction, all proofs in TSP remain
valid in TSPdrt∗ and since deduction rules of TSP do not have negative premises,
all the proven transitions and predicates of TSP are included in the stable model
of TSPdrt∗.

We prove the last two items in one go. To that end, we use a structural
induction on closed TSP(A)-term p.

If p is a constant, i.e., δ or ε, then it can make a self time transition using one
of the following deduction rules (from Table 6 and Table 12 respectively) and
these are the only matching rules for such constants to make a time transition.

δ 7→ δ ε 7→ ε

Bisimilarity (w.r.t. both TSS’s) is reflexive and hence self-transitions satisfy the
criteria of item 4.

If p is of the form a.p′ (for some closed TSP(A)-term p′) then it can make a
self time transition due to the following deduction rule (from Table 6) and this
is the only matching deduction rule for p to make a time transition.

a.x 7→ a.x

If p is of the form p′+q′, then by the induction hypothesis, p′ and q′ can make
time transitions and all their time transitions are to bisimilar terms (w.r.t. both
TSS’s). Then p′ + q′ can make time transitions using the following deduction
rule (from Table 6).

x 7→ x′ y 7→ y′

x+ y 7→ x′ + y′

and since bisimilarity is a congruence for both TSS (TSP(A)) and

TSS (TSPdrt∗(A)) (both TSS’s are in the PANTH format of [21]), time transi-
tions of p′ + q′ that are due to this rule are to bisimilar terms w.r.t. both TSS’s.
Furthermore, p′+q′ cannot make a time transition using the other two deduction
rules for choice in Table 6 since both of them have negative premises denying
a time transition from p′ or q′. Thus, all transitions of p′ + q′ are to bisimilar
terms w.r.t. both TSS’s.

If p is of the form p′ ·q′, then either TSS (TSP(A)) � p′↓ (hence, following item

2, TSS (TSPdrt∗(A)) � p′↓) or ¬TSS (TSP(A)) � p′↓ (hence, TSS (TSPdrt∗(A)) 6�

p′↓). Then, by induction hypothesis, p′ · q′ can make a time transition due to the
first or second deduction rule of Table 16 given below, respectively,

x 7→ x′ x↓ y 7→ y′

x · y 7→ x′ · y + y′
x 7→ x′ x6↓
x · y 7→ x′ · y

and these are the only possibilities for p to make time transitions as the other
two deduction rules of Table 16 deny time transitions of p′ or q′. Suppose that
p′ 7→ p′′, q′ 7→ q′′ and p′ ↔ p′′ and q′ ↔ q′′ w.r.t. both TSS’s. If p′↓ and
the time transition of p is due the left-hand-side deduction rule, then it is easy
to check that p′ ↔ p′ + ε w.r.t. both TSS’s. Hence, p′.q′ ↔ (p′ + ε).q′ ↔
p′.q′ + ε.q′ ↔ p′.q′ + q′ ↔ p′′.q′′ + q′′ (following the axioms of both TSPdrt∗

and TSP, Theorems 22 and 26 and congruence of bisimilarity for both TSS’s).
Hence, in this case pmakes a time transition to bisimilar terms w.r.t. both TSS’s.
If p′ 6↓ and the transition is due to the right-hand-side rule, then p′.q′ ↔ p′′.q′

and again the transition of p is to a bisimilar term w.r.t. both TSS’s.

Theorem 29 (Conservative extension). TSPdrt∗ is a conservative extension

of BSPdrt∗.

Proof. Both BSPdrt∗ and TSPdrt∗ are sound and ground-complete equational
theories for both TSS (BSPdrt∗(A)) and TSS (TSPdrt∗(A)). Also, following [12],

TSS(TSPdrt∗(A)) is an operationally conservative (orthogonal) extension of

TSS(BSPdrt∗(A)). Thus, we conclude that TSPdrt∗ is an equationally conserva-

tive extension of BSPdrt∗.

6 Parallel composition

6.1 TCP

The formal definition of process theory TCP, the Theory of Communicating
Processes, is given in Table 17. The theory includes the encapsulation operator,
as this operator is essential to enforce communication between processes. As
before, it has as a parameter the set of actions A. Besides this, it has as a
second parameter a commutative and associative partial communication function
γ : A × A → A. The signature of process theory TCP extends the signature of
the process theory TSP with the merge operator‖, the left merge operator‖ , the
synchronization merge operator | and the encapsulation operator ∂H . The four
new operators bind stronger than choice but weaker than action prefix.

Following the, by now, standard practice of [9], parallel composition is broken
up into three alternatives: the part where the first step comes from x, the part
where the first step comes from y and the part where x and y execute together.

x‖y = x‖ y + y‖ x+ x | y

To tackle the axiomatization of the left merge operator, the following axioms
are used [8].

a.x‖ y = a.(x‖y) (x+ y)‖ z = x‖ z + y‖ z.
Finally, what remains is the behavior of parallel composition with respect to

the termination constants δ and ε. As the termination behavior of parallel com-
position is coded into the communication merge operator, this is of no concern
here, and the following laws can be put forward.

δ‖ x = δ ε‖ x = δ

Next, the standard axioms of communication merge operator are introduced [9].

(x+ y) | z = x | z + y | z x | (y + z) = x | y + x | z
δ | x = δ x | δ = δ
a.x | b.y = c.(x‖y) if γ(a, b) = c
a.x | b.y = δ if γ(a, b) not defined.

What remains are the cases where ε appears as an argument of the communica-
tion merge operator.

ε | ε = ε
a.x | ε = δ ε | a.x = δ.

The axiom system presented in Table 17 contains an axiom stipulating the com-
mutativity of the communication merge. This allows to save on the number of
axioms required for the communication merge operator.

Theorem 30 (Elimination). For any closed TCP(A, γ)-term p, there exists a
closed TSP(A)-term q such that TCP(A, γ) ` p = q.

The transition system specification associated to the terms of TCP is given
in Table 18. It adds deduction rules defining action transitions and termination
behavior of encapsulation and the parallel composition operators.

Theorem 31 (Soundness). Let p and q be two closed TCP(A, γ)-terms. If
TCP(A, γ) ` p = q, then TSS (TCP(A, γ)) � p ↔ q.

Theorem 32 (Ground-completeness). Let p and q be arbitrary closed
TCP(A, γ)-terms. If TSS (TCP(A, γ)) � p ↔ q, then TCP(A, γ) ` p = q.

Theorem 33 (Conservative extension). TCP is a conservative extension of
TSP.

Proof. Both TSP and TCP are sound and ground-complete equational theories
for TSS (TSP(A)) and TSS (TCP(A, γ)). Also, following [12], TSS (TCP(A, γ))
is an operationally conservative (orthogonal) extension of TSS (TSP(A)). Thus,
we conclude that TCP is an equationally conservative extension of TSP.

The relationship between the theories ACP ε and TCP is similar to the rela-
tionship between BPAε

δ and TSP. One can either extend TCP with the constants
a ∈ A using axioms a = a.ε or one can embed ACP ε into TCP by mapping a
onto a.ε.

TCP(A, γ)
TSP(A);

unary: (∂H)H⊆A; binary: ‖ , ‖ , | ;

x, y, z : P ;

∂H(ε) = ε D1
∂H(δ) = δ D2
∂H(a.x) = δ if a ∈ H D3
∂H(a.x) = a.∂H(x) otherwise D4
∂H(x + y) = ∂H(x) + ∂H(y) D5

x‖y = x‖ y + y‖ x + x | y M x | y = y | x SC1
δ‖ x = δ LM1
ε‖ x = δ LM2 x‖ε = x SC2
a.x‖ y = a.(x‖y) LM3 ε | x + ε = ε SC3
(x + y)‖ z = x‖ z + y‖ z LM4
δ | x = δ CM1 (x‖y)‖z = x‖(y‖z) SC4
(x + y) | z = x | z + y | z CM2 (x | y) | z = x | (y | z) SC5
ε | ε = ε CM3 (x‖ y)‖ z = x‖ (y‖z) SC6
a.x | ε = δ CM4 (x | y)‖ z = x | (y‖ z) SC7
a.x | b.y = c.(x‖y) if γ(a, b) = c CM5
a.x | b.y = δ if γ(a, b) not defined CM6 x‖ δ = x · δ SC8

Table 17. The process theory TCP(A, γ).

TSS(TCP(A, γ))
TSS(TSP(A));

unary: (∂H)H⊆A; binary: ‖ , ‖ , | ;

x, y, x′, y′;

x ↓ y ↓

x‖y ↓

x ↓ y ↓

x | y ↓

x↓

∂H(x)↓

x
a
→ x′ a 6∈ H

∂H(x)
a
→ ∂H(x′)

x
a
→ x′

x‖y
a
→ x′‖y

y
a
→ y′

x‖y
a
→ x‖y′

x
a
→ x′

x‖ y
a
→ x′‖y

x
a
→ x′ y

b
→ y′ γ(a, b) = c

x‖y
c
→ x′‖y′

x
a
→ x′ y

b
→ y′ γ(a, b) = c

x | y
c
→ x′‖y′

Table 18. Transition system specification for TCP(A, γ).

6.2 TCPdrt∗

In this section, the process theory TSPdrt∗ is extended to the process theory
TCPdrt∗. This extension is obtained by extending the signature of TSPdrt∗ with
the current time slice timeout operator ν, the encapsulation operators ∂H (for
H ⊆ A), and the parallel composition operators ‖ , ‖ , and | .

The axioms of the process theory are given in Table 19.
The current time slice time out operator disallows all initial passage of time.

It extracts the part of the behavior that executes an action or performs termi-
nation in the current time slice. The encapsulation operator is as defined before:
encapsulation disallows the actions that occur in the set H and allows all other
behavior including passage of time.

The axioms for parallel composition and the auxiliary operators are such
that parallel processes have to synchronize the passage of time until one of the
processes can terminate, and within each time slice interleave their actions or
communicate. To stay as closely as possible to the interpretation of the axioms in
the untimed setting, it is necessary for both left merge and communication merge
to synchronize the passage of time as well (axioms LM6DR and CM10DR).

Theorem 34 (Elimination). For any closed TCPdrt∗(A, γ)-term p, there ex-

ists a closed TSPdrt∗(A)-term q such that TCPdrt∗(A, γ) ` p = q.

The transition system specification associated to the terms of TCPdrt∗ is
given in Table 20. It adds deduction rules defining the behavior of the “now”
operator and it adds deduction rules defining time transitions of encapsulation
and the parallel composition operators.

Theorem 35 (Soundness). Let p and q be two closed TCPdrt∗(A, γ)-terms. If

TCPdrt∗(A, γ) ` p = q, then TSS (TCPdrt∗(A, γ)) � p ↔ q.

Theorem 36 (Ground-completeness). Let p and q be arbitrary closed TCPdrt∗(A, γ)-

terms. If TSS (TCPdrt∗(A, γ)) � p ↔ q, then TCPdrt∗(A, γ) ` p = q.

Theorem 37 (Conservative ground-extension). TCPdrt∗ is a conservative
ground-extension of TCP.

Proof. Similar to the proof of Theorem 28. We show that for all p and p′ in the
syntax of TCP,

1. TSS (TCP(A, γ)) � p
a→ p′ ⇔ TSS (TCPdrt∗(A, γ)) � p

a→ p′,

2. TSS (TCP(A, γ)) � p↓ ⇔ TSS (TCPdrt∗(A, γ)) � p↓,
3. there exists a closed TCP(A)-term q such that TSS (TCPdrt∗(A, γ)) � p 7→ q,

and
4. for all closed TCPdrt∗(A, γ)-terms q such that TSS (TCPdrt∗(A, γ)) � p 7→ q

then TSS (TCP(A, γ)) � p ↔ q and TSS (TCPdrt∗(A, γ)) � p ↔ q.

TCPdrt∗(A, γ)
TSPdrt∗(A);

unary: ν, (∂H)H⊆A; binary: ‖ , ‖ , | ;

x, y, z : P ;

∂H(ε) = ε D1DR ν(ε) = ε RTO1

∂H(δ) = δ D2DR ν(δ) = δ RTO2

∂H(a.x) = δ if a ∈ H D3DR ν(a.x) = a.x RTO3

∂H(a.x) = a.∂H(x) otherwise D4DR

∂H(x + y) = ∂H(x) + ∂H(y) D5 ν(x + y) = ν(x) + ν(y) RTO4
∂H(σ.x) = σ.∂H(x) D6DR ν(σ.x) = δ RTO5

∂H(σ∗x) = σ∗∂H(x) D7DR ν(σ∗x) = ν(x) RTO6

x | y = y | x SC1 (x | y) | z = x | (y | z) SC5
x‖ε = x SC2DR (x‖ y)‖ z = x‖ (y‖z) SC6

ε | x + ε = ε SC3DR (x | y)‖ z = x | (y‖ z) SC7

(x‖y)‖z = x‖(y‖z) SC4 x‖ δ = x.δ SC8DR

x‖y = x‖ y + y‖ x + x | y M

δ‖ x = δ LM1DR δ | x = δ CM1DR

ε‖ δ = δ LM2DR (x + y) | z = x | z + y | z CM2

a.x‖ y = a.(x‖y) LM3DR ε | ε = ε CM3DR

(x + y)‖ z = x‖ z + y‖ z LM4 a.x | ε = δ CM4DR

σ.x‖ δ = δ LM5DR a.x | b.y = c.(x‖y) if γ(a, b) = c CM5DR

σ.x‖ ε = σ.x LM6DR a.x | b.y = δ if γ(a, b) not defined CM6DR

σ.x‖ (a.y + z) = σ.x‖ z LM7DR σ.x | ν(y) = δ CM7DR

σ.x‖ (ν(y) + σ.z) = σ.(x‖ z) LM8DR σ.x | σ.y = σ.(x | y) CM8DR
σ∗x‖ σ∗ν(y) = σ∗(x‖ σ∗ν(y)) LM9DR σ∗x | σ∗y = σ∗(x | σ∗y + σ∗x | y) CM9DR

Table 19. The process theory TCPdrt∗(A, γ).

TSS(TCPdrt∗(A, γ))
TSS(TCP(A, γ)),TSS(TSPdrt∗(A));

unary: ν();

x, x′, y, y′;

x ↓

ν(x) ↓

x
a
→ x′

ν(x)
a
→ x′

x 7→ x′

∂H(x) 7→ ∂H(x′)

x 7→ x′ y 7→ y′

x‖y 7→ x′‖y′

x 7→ x′ y 7→ y′

x‖ y 7→ x′‖ y′

x 7→ x′ y 7→ y′

x | y 7→ x′ | y′

x 7→ x′ y 67→ y ↓

x‖y 7→ x′

x 67→ y 7→ y′ x ↓

x‖y 7→ y′

x 7→ x′ y 67→ y ↓

x‖ y 7→ x′

Table 20. Transition system specification for TCPdrt∗(A, γ).

From these, it follows that TSS (TCPdrt∗(A, γ)) is an orthogonal extension of
TSS (TCP(A, γ)).

The first and second items in the above list hold trivially since a proof in
TCPdrt∗ for an a-transition

a→ with a source term from TCP or a termination
predicate ↓ on a TCP-term only involves deduction rules from TCP. Such deduc-
tion rules do not have negative premises and are source-dependent [18]. Hence,
all such transition and predicate formulae are included in the stable model of
TCP. For the inclusion in the other direction, all proofs in TCP remain valid
in TCPdrt∗ and since deduction rules of TCP do not have negative premises, all
the proven transitions and predicates of TCP are included in the stable model
of TCPdrt∗.

For the last two items, we use a structural induction on closed TCP-term p.
For function symbols in the signature of TSP, the arguments given in Theorem
28 remain valid. Hence, it only remains to check that for terms of the form
∂H(p′), p′‖q′, p′‖ q′ and p′ | q′ the last two items hold, assuming that these items
hold for p′ and q′ (if applicable).

If p is of the form ∂H(p′), then it can make a time transition due to the
following rule:

x 7→ x′

∂H(x) 7→ ∂H(x′)

Using the above deduction rule, one can only prove self time transitions and
bisimilarity (w.r.t. both TSS’s) is reflexive. Furthermore, the above rule is the
only rule using which ∂H(p′), hence p, can make a time transition.

If p is of the form p′‖q′, it can make a time transition due to the following
rule:

x 7→ x′ y 7→ y′

x‖y 7→ x′‖y′

and given that the time transitions of p′ and q′ are only to bisimilar terms (w.r.t.
both TSS’s) and bisimilarity is a congruence (since both TSS (TCP(A, γ)) and

TSS (TCPdrt∗(A, γ)) are in the PANTH format of [21]), the transition of p′‖q′
or p is also to a bisimilar term (w.r.t. both TSS’s). Furthermore, p cannot make
a time transition due to any of the other two rules for time transitions of merge
since both of them have negative premises denying time transitions from p′ or
q′.

If p is of the form p′‖ q′, it can make a time transition due to the following
rule:

x 7→ x′ y 7→ y′

x‖ y 7→ x′‖ y′

and given that the time transitions of p′ and q′ are only to bisimilar terms (w.r.t.
both TSS’s) and bisimilarity is a congruence, the transition of p′‖ q′ or p is also
to a bisimilar term (w.r.t. both TSS’s). Furthermore, p cannot make a time
transition due to the other rule for time transitions of left merge since it has a
negative premise denying time transitions from q′.

If p is of the form p′ | q′, it can make a time transition due to the following
rule:

x 7→ x′ y 7→ y′

x | y 7→ x′ | y′

and given that the time transitions of p′ and q′ are only to bisimilar terms (w.r.t.
both TSS’s) and bisimilarity is a congruence, the transition of p′ | q′ or p is also
to a bisimilar term (w.r.t. both TSS’s). There is no other deduction rule using
which p can make a time transition and this concludes the proof of the last two
items.

Theorem 38 (Conservative extension). TCPdrt∗ is a conservative exten-

sion of TSPdrt∗.

Proof. Both TSPdrt∗ and TCPdrt∗ are sound and ground-complete equational
theories for TSS (TSPdrt∗(A)) and TSS (TCPdrt∗(A, γ)). Also, following [12],

TSS (TCPdrt∗(A, γ)) is an operationally conservative (orthogonal) extension of

TSS (TSPdrt∗(A)). Thus, we conclude that TCPdrt∗ is an equationally conserva-

tive extension of TSPdrt∗.

7 Concluding remarks

When we extend untimed process algebra with timing, this extension is usually
not a conservative extension, as some axioms of untimed process algebra hold

for untimed processes only. However, what can be achieved is a conservative
ground-extension, a notion that is introduced here. In this paper, we present
timed extensions of an incremental presentation of process algebras, involving
termination constants, alternative composition, sequential composition and par-
allel composition with communication, where in each case it is shown we have
a conservative ground-extension. In previous papers, conservativity was always
violated in some way.

For the realization of these timed extensions, it was necessary to change a
basic design principle of ACP-style process algebra: action constants, involving
both action execution and termination, are replaced by action prefixing.

References

1. J. C. M. Baeten. Embedding untimed into timed process algebra: the case for
explicit termination. Mathematical Structures in Computer Science (MSCS),
13(4):589–618, 2003.

2. J. C. M. Baeten and J. A. Bergstra. Real Time Process Algebra. Formal Aspects
of Computing, 3:142–188, 1991.

3. J. C. M. Baeten and J. A. Bergstra. Discrete time process algebra. Formal Aspects
of Computing, 8(2):188–208, 1996.

4. J. C. M. Baeten and R. J. van Glabbeek. Merge and termination in process algebra.
In K. V. Nori, editor, Proceeding of the Seventh Conference on Foundations of
Software Technology and Theoretical Computer Science (FST&TCS’87), volume
287 of Lecture Notes in Computer Science, pages 153–172. Springer-Verlag, Berlin,
Germany, 1987.

5. J. C. M. Baeten and C. A. Middelburg. Process Algebra with Timing. EATCS
Monographs. Springer-Verlag, Berlin, Germany, 2002.

6. J. C. M. Baeten and M. A. Reniers. Timed process algebra (with a focus on
explicit termination and relative-timing). In M. A. Bernardo and F. Corradini,
editors, Proceedings of the International School on Formal Methods for the Design
of Real-Time Systems (SFM-RT’04), volume 3185 of Lecture Notes in Computer
Science, pages 59–97. Springer-Verlag, Berlin, Germany, 2004.

7. J. C. M. Baeten and W. P. Weijland. Process Algebra, volume 18 of Cambridge
Tracts in Theoretical Computer Science. Cambrdige University Press, 1990.

8. J. A. Bergstra and J. W. Klop. Fixed point semantics in process algebra. Technical
Report IW 206/82, Mathematical Center, Amsterdam, The Netherlands, 1982.

9. J. A. Bergstra and J. W. Klop. Process algebra for synchronous communication.
Information and Control, 60(1-3):109–137, 1984.

10. J. A. Bergstra and J. W. Klop. Algebra of communicating processes. In J. W.
de Bakker, M. Hazewinkel, and J. K. Lenstra, editors, Proceedings of the CWI Sym-
posium Mathematics and Computer Science, pages 89–138. North-Holland, Ams-
terdam, The Netherlands, 1986.

11. R. Bol and J. F. Groote. The meaning of negative premises in transition system
specifications. Journal of the ACM (JACM), 43(5):863–914, Sept. 1996.

12. W. J. Fokkink and C. Verhoef. A conservative look at operational semantics with
variable binding. Information and Computation (I&C), 146(1):24–54, 1998.

13. R. J. van Glabbeek. The meaning of negative premises in transition system speci-
fications II. Journal of Logic and Algebraic Programming (JLAP), 60-61:229–258,
2004.

14. J. F. Groote. Transition system specifications with negative premises. Theoretical
Computer Science (TCS), 118(2):263–299, 1993.

15. M. Hennessy and T. Regan. A process algebra for timed systems. Information and
Computation, 117(2):221–239, 1995.

16. C. P. J. Koymans and J. L. M. Vrancken. Extending process algebra with the
empty process. Technical Report 1, Logic Group Preprint Series, Department of
Philosophy, Utrecht University, Utrecht, The Netherlands, 1985. Extended and
enhanced version appeared as [22].

17. F. Moller and C. M. N. Tofts. A temporal calculus of communicating systems.
volume 458 of Lecture Notes in Computer Science, pages 401–415.

18. M. Mousavi and M. A. Reniers. Orthogonal extensions in structural operational
semantics. In Proceedings of the 32nd International Colloquium on Automata, Lan-
guages and Programming (ICALP’05), volume 3580 of Lecture Notes in Computer
Science, pages 1214–1225. Springer-Verlag, Berlin, Germany, 2005.

19. X. Nicollin and J. Sifakis. The algebra of timed processes ATP: theory and appli-
cation. Information and Computation (I&C), 114(1):131–178, Oct. 1994.

20. J. J. Vereijken. Discrete Time Process Algebra. PhD thesis, Department of Math-
ematics and Computer Science, Eindhoven University of Technology, Eindhoven,
The Netherlands, 1997.

21. C. Verhoef. A congruence theorem for structured operational semantics with pred-
icates and negative premises. Nordic Journal of Computing, 2(2):274–302, 1995.

22. J. L. M. Vrancken. The algebra of communicating processes with empty process.
Theoretical Computer Science, 177(2):287–328, 1997.

