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1 Introduction

Programming languages and process calculi have been subject to constant ex-
tensions. It is often crucial to make sure that such extensions do not change the
intuition behind the old subset, or said otherwise, the extensions are conserva-
tive. In the context of languages with Structural Operational Semantics (SOS)
[13], this topic has been studied in depth in [1, 3, 5, 10, 15, 17]. This research has
resulted in meta-theorems proving sufficient conditions for an extension to be
operationally and/or equationally conservative. In the remainder, we mostly re-
fer to [5] which gives the most detailed account of the problem and subsumes
almost all previous results. We do not treat multi-sorted and variable binding
signatures, addressed in [5, 10], in this paper.

So far, operational conservativity has only allowed for extensions that consis-
tently deny the addition of any new behavior to the old syntax. One can imagine
that an extension which grants a new behavior consistently to the old syntax
can also be considered safe or “conservative”. This phenomenon occurs quite
often in practice. For example, designers of many timed extensions of existing
formalisms (e.g., the timed process algebras of [2, 9, 14]) have decided to add
timed behavior homogenously to the terms from the old syntax. Unfortunately,
it turns out that the existing definitions and their corresponding meta-theorems
come short of any formal result about such extensions.



In this paper, we present a more liberal notion of operational conservativity,
called orthogonality, which caters for both possibilities (i.e., denying some types
of behavior from the old syntax while granting some other types). We show that
our notion is useful in the aforementioned cases where the old notions cannot be
used. We formulate orthogonality meta-theorems for languages with Structural
Operational Semantics and prove them correct.

In [15], equational conservativity is considered in the setting where a new
set of axioms is added to an existing set. Then, the extension is called equa-
tionally conservative if it induces exactly the same derivable closed equalities
on the old syntax as the original equational theory. In this paper, we remove
the requirement for including the old set of axioms in the extended equational
theory. This relaxation is motivated by the fact that in many extensions, such
as those of [2, 14], for some axioms, only all closed derivable equalities on the old
syntax are kept and the axioms themselves are removed. Operational conserva-
tivity is usually considered as a means for equational conservativity and we show
that our notion of orthogonality leads to equational conservativity in the same
way as operational conservativity does (no matter which notion of equational
conservativity is chosen, the traditional notion or the relaxed one).

The rest of this paper is structured as follows. Section 2 gives the basic defini-
tions about Structural Operational Semantics, Transition System Specification
(TSS) and equational theory. Section 3 presents the notions of operational and
equational conservativity and gives sufficient conditions for proving operational
conservativity. Orthogonality and related notions are defined in Section 4. Sub-
sequently, Section 5 defines sufficient conditions for orthogonality. In the same
section, we also present theorems establishing the link between orthogonality and
equational conservativity. Finally, Section 6 summarizes the results and presents
future directions. In each section, we provide abstract and concrete examples
from the area of process algebra to motivate the definitions and illustrate the re-
sults. Due to lack of space, we could not present all of the results and the proofs
of the theorems in this extended abstract. Interested readers can find these in
the full version of this paper [11].

2 Preliminaries

2.1 Structural Operational Semantics

Structural Operational Semantics [13] is a logical way of defining operational
semantics which has found lots of applications in different areas of computer
science. A semantic specification in the style of SOS, called a Transition Sys-
tem Specification (TSS), consists of a number of deduction rules which specify
the possibility of a transition (in the conclusion of the rules) in terms of the
(im)possibility of other transition (in the premises). Predicates on states are
other possible ingredients of TSS’s which can both be defined in the conclusion
of the rules and used in the premises. Predicates can always be coded as tran-
sitions with dummy right-hand sides (cf. [16]) and thus, we do not complicate
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the presentation with their formal treatment. Next, we formalize the rest of the
concepts mentioned above.

Definition 1 (Term and Substitution) We assume that the set of process terms,
denoted by T (Σ) with typical members t, t′, ti, . . ., is inductively defined on a
given set of variables V = {x, y, . . .} and a signature Σ. A signature contains a
number of function symbols (composition operators: f, g, . . .) with fixed arities.
Function symbols with arity 0 are called constants. Closed terms, denoted by
C(Σ) with typical members p, q, pi, . . ., are terms that do not contain variables.
The set of variables appearing in term t is denoted by vars(t).

A (closed) substitution σ replaces variables in a term with other (closed)
terms. The set of terms generated by a set of terms S, denoted by G(S), is the
set of all terms t′ = σ(t), for some t ∈ S and some σ such that ∀x∈V σ(x) ∈ S. A
set of terms S covers Σ-terms, if C(Σ) ⊆ G(S).

A transition system specification, defined below, is a logical way of defining
a transition relation on (closed) terms.

Definition 2 (Transition System Specification (TSS)) A transition system spec-
ification is a tuple (Σ, L, D) where Σ is a signature, L is a set of labels (with
typical members l, l′, l0, . . .) and D is a set of deduction rules. For all l ∈ L, and
t, t′ ∈ T (Σ) we define that (t, l, t′) ∈ → and (t, l) /∈ → are formulae (positive
and negative, respectively). To avoid any confusion, note that . . . ∈ → and
. . . /∈ → are used as a syntactic notation and are not intended to denote the
set-theoretic membership at this point. The notion of closed is lifted from terms
to formulae in the natural way. A deduction rule dr ∈ D, is defined as a tuple
(H, c) where H is a set of formulae and c is a positive formula. The formula c is
called the conclusion and the formulae from H are called premises. A deduction
rule with label l in its conclusion is called an l-rule.

Formulae (t, l, t′) ∈ → and (t, l) /∈ → are denoted by the more intuitive
notations t

l→ t′ and t
l9 , respectively. We refer to t as the source of both formulae

and to t′ as the target of the first one. A deduction rule (H, c) is denoted by H
c

in the remainder.

Different interpretations of the transition relation (the set of closed positive
formulae) induced by a TSS are given in the literature. In [6], an extensive
overview of alternative interpretations is provided. We formulate and prove our
main results in such a general way that they remain independent from the chosen
interpretation and can be adopted for several existing ones. In cases where we
need an explicit transition relation, we assume that this transition relation is
uniquely defined by the corresponding TSS using one of the interpretations given
in [6]. In such cases, we use the notation tss � φ to denote that a closed positive
formula φ is in the transition relation induced by tss.

One criterium that guarantees the existence and uniqueness of a transition
relation associated with a TSS is the following concept of (strict) stratification,
which we use for other purposes in this paper, as well.
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Definition 3 (Stratification [8]) A TSS tss is stratified by a function S from
closed positive formulae to an ordinal if and only if for all deduction rules in tss
of the following form:

{ti
li→ t′i|i ∈ I} {tj

lj9 |j ∈ J}

t
l→ t′

and for all closed substitutions σ, ∀i∈IS(σ(ti
li→ t′i)) ≤ S(σ(t l→ t′)) and ∀j∈J

S(σ(tj
lj→ t′′)) < S(σ(t l→ t)), for all terms t′′. If the measure decreases also from

the conclusion to the positive premises, then tss is strictly stratified by S.

The following example illustrates the concepts defined in this section.

Example 1 (Minimal Process Algebra (MPA)) Consider the following deduc-
tion rules defined on a signature with a constant δ, a family of unary operators
a. (for all a ∈ A, where A is a given set of atomic actions) and a binary operator
+ . The labels of transitions are a ∈ A.

(a)
a.x

a→x
(a ∈ A) (c0)

x
a→x′

x + y
a→x′

(c1)
y

a→ y′

x + y
a→ y′

This TSS (called tssm in the remainder) is supposed to define a transition rela-
tion for the Minimal Process Algebra (MPA) of [2], simplified here by removing
the concept of termination, which we use as our running example in the re-
mainder. Deduction rules of MPA are (strictly) stratified using a measure of size
on the terms in the source of formulae and it defines a unique transition rela-
tion by all possible interpretations. The following transitions are among those:
tssm � (a.δ) + δ

a→ δ and tssm � a.(δ + a.δ) a→ δ + a.δ.

2.2 Equational Theory

Equational theories play a central role in process algebras. They capture the
basic intuition behind the algebra, and the models of the algebra are expected
to respect this intuition (e.g., the models induced by operational semantics). To
establish a reasonable link between the operational model and the equational
theory of the algebra, a notion of behavioral equality is needed. This notion
captures when two syntactic terms show the “same behavior” and thus they
should belong to the same equivalence class. There is a spectrum of notions of
behavioral equality in the literature [7]. We take the notion of strong bisimilarity
[12], denoted by ↔ , as the notion of behavioral equivalence, but as we show in
the extended version of this paper [11], our results are valid for a wide range of
notions in this spectrum.

Getting back to the equational side of the algebra, the notion of behavioral
equivalence should ideally coincide with the closed derivations of the equational
theory. One side of this coincidence is captured by the soundness theorem which
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states that all closed derivations of the equational theory are indeed valid with
respect to the particular notion of behavioral equality. The other side of the
coincidence, called completeness, phrases that all induced behavioral equalities
are derivable from the equational theory, as well. These concepts are formalized
in the remainder.

Definition 4 (Equational Theory) An equational theory or axiomatization (Σ,E)
is a set of equalities E on a signature Σ of the form t = t′, where t, t′ ∈ T (Σ).
A closed instance p = p′, for some p, p′ ∈ C(Σ), is derivable from E, denoted by
E ` p = p′ if and only if it is in the smallest congruence relation induced by the
equalities of E.

An equational theory (Σ, E) is sound with respect to a TSS tss (also on
signature Σ) if and only if for all p, p′ ∈ C(Σ), if E ` p = p′, then it holds that
tss ` p ↔ p′. It is complete if the implication holds in the other direction.

An equational theory E on Σ eliminates function symbols from Σ′ ⊆ Σ
if and only if for all p ∈ C(Σ) there exists a term p′ ∈ C(Σ \ Σ′) such that
E ` p = p′.

The following example illustrates the idea of equational theory.

Example 2 (MPA: Equational Theory) Consider the Minimal Process Algebra
of Example 1. The following is an axiomatization of MPA [2].

x + y = y + x x + (y + z) = (x + y) + z x + x = x x + δ = x

It is well-known that this axiomatization is sound and complete with respect to
tssm given in Example 1. The following are examples of derivable equalities from
the above axiomatization: (a.δ) + δ = a.δ and (a.δ) + a.δ = a.δ.

3 Operational and Equational Conservativity

In this section, we define different concepts regarding language extensions. To
extend a language defined by a TSS, one may have to combine an existing sig-
nature with a new one. However, not all signatures can be combined into one
as the arities of the function symbols may clash. To prevent this, we define two
signatures to be consistent when they agree on the arity of the shared function
symbols. Henceforth, we always assume that extended and extending TSS’s are
consistent. The following definition formalizes the concept of operational exten-
sion.

Definition 5 (Extension of a TSS) Consider TSS’s tss0 = (Σ0, L0, D0) and
tss1 = (Σ1, L1, D1). The extension of tss0 with tss1, denoted by tss0 ∪ tss1, is
defined as (Σ0 ∪Σ1, L0 ∪ L1, D0 ∪D1).

Next, we define when an extension of a TSS is called operationally conserva-
tive.
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Definition 6 (Operational Conservativity [15]) Consider TSS’s tss0 = (Σ0, L0, D0)
and tss1 = (Σ1, L1, D1). If ∀p∈C(Σ0) ∀p′∈C(Σ0∪Σ1) ∀l∈L0∪L1 tss0 ∪ tss1 � p

l→ p′

⇔ tss0 � p
l→ p′, then tss0 ∪ tss1 is an operationally conservative extension of

tss0.

Note that in the above definition, the labels and the targets of the tran-
sitions are taken from the extended TSS and thus, any new transition of the
old syntax, even with a new label or a new target is prohibited. The following
example illustrates the idea of extending TSS’s and the concept of operational
conservativity.

Example 3 (Timed MPA: Operational Semantics) Consider the following de-
duction rules (divided into three parts) which are defined on a signature with
two constants δ and δ, a unary function symbol σ. , two families of unary func-
tion symbols a. and a. (for all a ∈ A) and a binary function symbol + . The
set of labels of the TSS is A ∪ {1} (for 1 /∈ A).

(1) (ua)
a.x

a→x
(td)

σ.x
1→x

(2) (tc0)
x

1→x′ y
1→ y′

x + y
1→x′ + y′

(tc1)
x

1→x′ y
19

x + y
1→x′

(tc2)
y

1→ y′ x
19

x + y
1→ y′

(3) (ta)
a.x

1→ a.x
(d)

δ
1→ δ

The above TSS, which we call tsst defines the aspect of timing in terms of new
time transitions 1→ and it is added in [2] to tssm in Example 1 to define a
relative-discrete-time extension of MPA. The intuition behind the new under-
lined function symbols (a. and σ. ) is that they are not delayable in time and
should take their (respectively action and time) transitions immediately. Addi-
tion of the first and/or the second parts of the above TSS (each or both) to
tssm results in an operationally conservative extension of the latter as the newly
added transitions will be restricted to the new syntax. (Note that in the first and
second parts, there is no rule about timed transition of constants in the old syn-
tax.) This claim can be checked formally as an instance of a meta-theorem in the
rest of this section. However, the addition of part (3) violates the conservativity
of the extension as it adds time transitions ( 1→ ) to the behavior of terms from
the old syntax. For example, in combination with the first two parts, it allows for
transitions such as tssm ∪ tsst � a.δ

1→ a.δ and tssm ∪ tsst � (a.δ)+ δ
1→ (a.δ)+ δ,

all of which are prohibited by the original TSS and thus are considered harmful
from the operational conservativity point of view.

Next, we formulate sufficient conditions to prove operational conservativity.
But before that, we need a few auxiliary definitions.

Definition 7 (Source Dependency) All variables appearing in the source of the
conclusion of a deduction rule are called source dependent. A variable of a de-
duction rule is source dependent if it appears in a target of a premise of which all
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the variables of the source are source dependent. A formula is source dependent
when all the variables appearing in it are source dependent. A deduction rule is
source dependent when all its variables are. A TSS is source dependent when all
its rules are.

Definition 8 (Reduced Rules) For a deduction rule d = (H, c), the reduced rule
with respect to a signature Σ is defined by ρ(d, Σ) .= (H ′, c) where H ′ is the set
of all premises from H which have a Σ-term as a source.

Theorem 1 (Operational Conservativity Meta-Theorem [5]) Given two TSS’s
tss0 = (Σ0, L0, D0) and tss1 = (Σ1, L1, D1), tss0 ∪ tss1 is an operationally
conservative extension of tss0 if:

1. tss0 is source dependent;
2. for all d ∈ D1 at least one of the following holds:

(a) the source of the conclusion has a function symbol in Σ0 \Σ1, or
(b) ρ(d, Σ0) has a source-dependent positive premise t

l→ t′ such that l /∈ Σ0

or t′ /∈ T (Σ0).

The following definition formalizes the concept of equational conservativity.

Definition 9 (Equational Conservativity) An equational theory E1 on signa-
ture Σ1 is an equationally conservative extension of E0 on Σ0 if and only if
Σ0 ⊆ Σ1 and for all p, p′ ∈ C(Σ0), E0 ` p = p′ ⇔ E1 ` p = p′.

It is worth mentioning that the above definition is more liberal than the
similar notion in [15] in that there, it is required that the same axioms are
included in the extended equational theory (i.e., E0 ⊆ E1). In practice, some
process algebras do not keep the same axioms when extending the formalism
while they make sure that the closed instantiations of the old axioms with old
terms indeed remain derivable (see for example, [2, 14] and Example 4 in the
remainder). Hence, we believe that the restriction imposed by [15] unnecessarily
limits the applicability of the theory. If, for any reason, one chooses the more
restricted notion of [15], the theorems concerning equational conservativity in
this paper remain valid.

Example 4 (Timed MPA: Equational Theory) Consider the TSS resulting from
extending tssm of Example 1 with (all three parts) of the timed extension defined
in Example 3. The following are a set of sound and complete axioms (w.r.t. strong
bisimilarity) for this TSS:

x + y = y + x x + (y + z) = (x + y) + z x + x = x δ = σ.δ

x + δ = x (σ.x) + σ.y = σ.(x + y) a.x = (a.x) + σ.a.x (a.x) + δ = a.x

The above axiomatization underscores the fact we mentioned before. Namely,
the axioms of the old system do not hold in the new system (e.g., (a.x)+δ 6= a.x
as an instance of x + δ = x) but all closed instantiations of the old axioms by
the old syntax are derivable from the new set of axioms.
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It can be checked that the above axiomatization of timed MPA is indeed an
equationally conservative extension of the axiomatization of MPA in the sense
of Definition 9. Thus, if one considers operational conservativity as a means to
equational conservativity, this example already suggests the need for an extension
of Definition 6. In other words, we believe that the transitions added by the
extension are quite innocent and harmless to the intuition behind the original
semantics, for they are added uniformly to the old syntax without changing
the old behavior or violating previously valid equalities. In the next section, we
formalize our idea of orthogonal extensions which caters for extensions of the
above type.

4 Orthogonality

In this section, we define the notion of orthogonality and an instance of this
notion, called granting extensions, which can be checked syntactically.

Definition 10 (Orthogonal Extension) Consider TSS’s tss0 = (Σ0, L0, D0) and
tss1 = (Σ1, L1, D1). The TSS tss0∪ tss1 is an orthogonal extension of tss0 when
first, ∀p,p′∈C(Σ0) ∀l∈L0 tss0 ∪ tss1 � p

l→ p′ ⇔ tss0 � p
l→ p′ and second, and

∀p,p′∈C(Σ0) tss0 ∪ tss1 � p ↔ p′ ⇔ tss0 � p ↔ p′.

Note that it immediately follows from the above definition that orthogonality
is a preorder, i.e., a reflexive and transitive relation, on TSS’s. Besides strong
bisimilarity, our results in the this paper are valid for orthogonality with respect
to most other notions of behavioral equivalence in the literature (cf. [11]). The
notion of operational conservativity up to φ-equivalence of [15, 3] can be seen as
a variant of orthogonality which only has the second condition. This and other
variants of the notion of orthogonality can also be useful and our results can be
used to establish meta-theorems for these notions. To our knowledge, beyond
operational conservativity results (e.g., in [15]), no systematic study of these
notions (including meta-theorems guaranteeing them) has been carried out.

Corollary 1 An operationally conservative extension is an orthogonal exten-
sion.

Corollary 1 addresses operational conservativity as an extreme case of orthog-
onality which denies all new transitions from the old syntax; the other extreme
is an extension which grants all new behavior to the old syntax. However, for
such an extension to be orthogonal, these transitions should be made to equiv-
alent terms from the old syntax. In particular, if we allow for self transitions,
we are able to prove orthogonality with respect to many notions of behavioral
equivalence. The following definitions and the subsequent theorem substantiate
these concepts.

Definition 11 (Granting Extension) Consider TSS’s tss0 = (Σ0, L0, D0) and
tss1 = (Σ1, L1, D1) with disjoint labels. We call tss0 ∪ tss1 a granting extension
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of tss0 when first, ∀p,p′∈C(Σ0) ∀l∈L0 tss0 � p
l→ p′ ⇔ tss0 ∪ tss1 � p

l→ p′ and

second, ∀p∈C(Σ0) ∀p′∈C(Σ0∪Σ1) ∀l∈L1\L0 tss0 ∪ tss1 � p
l→ p′ ⇔ p = p′.

The above definition states that granting extensions keep the old transitions
on the old terms intact and only add self transitions with all of the new labels
to old terms. This definition does not make any statement about the transitions
on the new terms, i.e., terms from T (Σ0 ∪Σ1) \ T (Σ0).

We are doubtful whether any meaningful relaxation of Definition 11 would
be at all possible that allows for anything coarser than syntactic equality on the
old terms involved in (the left- or the right-hand side of) the new transitions
and still can be captured by simple syntactic checks. This suggests that to for-
mulate syntactic criteria for proving orthogonality, we have to resort to one of
the two extremes (operational conservativity or granting extensions). We admit
that combining these two extremes is interesting. This is partly possible by ex-
ploiting the the transitivity of orthogonal extension relation. This way, one can
interleave the application of granting and operational conservativity theorems
(cf. Example 5). We propose an alternative method of combining operationally
conservative and granting extensions in [11]. Next, we show that granting exten-
sions are indeed orthogonal.

Theorem 2 For TSS’s tss0 and tss1, if tss1 is a granting extension of tss0 then
tss1 is an orthogonal extension of tss0.

5 Meta-Theorems

In this section, we seek sufficient conditions for establishing orthogonality and
equational conservativity.

We start with defining sufficient conditions to prove an extension to be grant-
ing. Hence, we need to define when a deduction rule proves (only) self transitions.
We use unification as a means to this end.

Definition 12 (Unification) A term t is unifiable with t′ using σ, denoted by
t ≈σ t′ if and only if σ(t) = σ(t′). The set of unifiers of t and t′ is defined by
U(t, t′) = {σ | t ≈σ t′}. The set of unifiers of a set of pairs is defined as the
intersection of the sets of unifiers of each pair. The set of unifiers of an empty
set is defined to include all substitutions.

The set of unifiers of a positive formula t
l→ t′ is defined as the set of unifiers

of t and t′. Unification also naturally extends to a set of positive formulae, again,
using intersection.

Next, we characterize the set of rules that induce self transitions. This is
done by only allowing for unifiable (positive) formulae in the premises and the
conclusion of a rule and further, by forcing the unification of the conclusion to
follow from that of the premises.
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Definition 13 (Source Preserving Rules) A deduction rule H
c without negative

premises is source preserving if U(H) 6= ∅ and U(H) ⊆ U(c). A TSS is source
preserving if all its deduction rules are. For a source preserving TSS, the set of
unified conclusions contains conclusions of the deduction rules with their unifiers
applied to them.

Source-preserving rules are safe for the purpose of proving self transitions.
However, there might be other rules in the extending TSS that can be harm-
ful in that they may prove other types of transition for old terms. This may
be prevented by forcing the other (non-source-preserving) rules to have nega-
tive or non-unifiable positive premises addressing the old syntax. The following
definition gives sufficient conditions for an extension to be granting.

Definition 14 (Granting Criteria) Consider a TSS tss = (Σ, L, D) stratified
by S. It grants L0 transitions on Σ0-terms, if tss = tss0 ∪ tss1 (with tssx =
(Σx, Lx, Dx) for x ∈ {0, 1}) such that:

1. tss0 is strictly stratified by S, it is source preserving and for all l ∈ L0, the
set containing sources of unified conclusions of l-rules covers Σ0-terms, and

2. for all deduction rules d ∈ D1 at least one of the following holds:
(a) d has a function symbol from Σ1 \Σ0 in the source of its conclusion, or
(b) ρ(d, Σ0) has a negative source-dependent premise with a label in L1, or
(c) ρ(d, Σ0) has a positive source-dependent premise t

l→ t′ with l ∈ L1 and
U(t, t′) = ∅.

The first condition in the above definition is dedicated to proving self tran-
sitions from the syntax of Σ0, and the the second one takes care of preventing
Σ0-terms from performing other types of transitions while allowing other terms
to do so.

Theorem 3 (Granting Meta-theorem) Consider source-dependent TSS’s tss0 =
(Σ0, L0, D0) and tss1 = (Σ1, L1, D1). If tss1 grants L1 transitions on Σ0-terms
and L0 ∩ L1 = ∅ then tss0 ∪ tss1 is a granting extension of tss0.

The following example applies our meta-theorem to obtain orthogonality of
relative-discrete-time extension of MPA.

Example 5 (Timed MPA: Orthogonality) Consider the tssm of MPA in Exam-
ple 1 and tsst of Example 3. TSS tsst can be decomposed into the following
three parts: tss0

.= ({a. , δ}, A, {(ua), (td)}), tss1
.= ({δ, a. , + }, {1}, {(tc0),

(ta), (d)}) and tss2
.= ({ + }, {1}, {(tc1), (tc2)}).

It follows from Definition 13 that tss1 is source preserving since:

1. the conclusions of (ta) and (d) are unifiable using any substitution, hence
using the unifiers of the empty set of premises,

2. and the conclusion of (tc0) is unifiable using the unifiers of the premises,
i.e., those that evaluate x and x′ to the same term and y and y′ to the same
term.
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It then follows from Definition 14 that tss1∪tss2 grants time transitions over
MPA terms since

1. tss1 is strictly stratified using a simple measure of size on terms, it is source
preserving as shown before, and by applying unifiers to the source of con-
clusion of (tc0), (ta) and (d), i.e., the set {x + y, a.x, δ}, we can cover the
syntax of MPA,

2. in tss2, deduction rules (tc1) and (tc2) have source-dependent negative
premises with label 1 (note that (tc1) and (tc2) are the same as their reduced
versions).

From Theorem 3, it follows that the extension of tssm with tss1 ∪ tss2 is a
granting extension, hence an orthogonal extension. Furthermore, the extension of
tssm ∪ tss1∪ tss2 with tss0 is conservative, hence orthogonal, following Theorem
1. Since orthogonality is a preorder, we conclude that tssm∪tsst is an orthogonal
extension of tssm .

The following theorem establishes the link between orthogonality and equa-
tional conservativity. It is very similar to the theorem stated in [16, 17] about the
relation between operational and equational conservativity. The theorem states
that a sound axiomatization of an operationally conservative extension cannot
induce new equalities on the old syntax.

Theorem 4 (Equational Conservativity Theorem) Consider TSS’s tss0 = (Σ0,
L0, D0) and tss1 = (Σ1, L1, D1) where tss1 is an orthogonal extension of tss0.
Also let E0 be a sound and complete axiomatization of tss0 and E1 be a sound
axiomatization of tss1. If ∀p,p′∈C(Σ0) E0 ` p = p′ ⇒ E1 ` p = p′ then E1 is an
equational conservative extension of E0.

Finally, the last theorem establishes sufficient conditions for a sound equa-
tionally conservative extension to be a complete equational theory for the ex-
tended language.

Theorem 5 (Elimination Theorem) Consider TSS’s tss0 = (Σ0, L0, D0) and
tss1 = (Σ1, L1, D1) where tss1 is an orthogonal extension of tss0. Also let E0

and E1 be sound axiomatizations of tss0 and tss1, respectively. If E0 is also
complete for tss0, E1 is an equational conservative extension of E0 and E1

eliminates terms from Σ1 \Σ0, then E1 is complete for tss1.

A typical line of reasoning starts with taking an orthogonal extension and a
sound axiomatization thereof, and proving equational conservativity using Theo-
rem 4. Then, by proving an elimination result for the newly introduced operators,
one can get completeness of the axiomatization following Theorem 5.

6 Conclusions

In this paper, we defined a more relaxed notion of operational conservativity,
called orthogonality which allows for non-destructive extension of the behavior
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of the old language. We gave a meta-theorem providing sufficient conditions
for this notion. Also, we presented a slightly more general notion of equational
conservativity and established the link between these two notions.

Extending the theory presented in this paper with the concept of variable
binding is an straightforward extension along the lines of [5]. The second en-
hancement of our work concerns operational extensions that require a translation
of labels (using a kind of abstraction function). Finally, investigating the pos-
sibility of other realizations of orthogonality is an interesting subject for future
research.
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