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Abstract

While studying the specification of the operational semantics of different programming languages and for-
malisms, one can observe the following three facts. First, Plotkin’s style of Structural Operational Semantics
has become a standard in defining operational semantics. Secondly, congruence with respect to some notion
of bisimilarity is an interesting property for such languages and it is essential in reasoning. Third, there are
numerous languages that contain an explicit data part in the state of the operational semantics. The first two
facts have resulted in a line of research exploring syntactic formats of operational rules to derive the desired
congruence property for free. However, the third point (in combination with the first two) is not sufficiently
addressed and there is no standard congruence format for operational semantics with an explicit data state.
In this article, we address this problem by studying the implications of the presence of a data state on the
notion of bisimilarity. Furthermore, we propose a number of formats for congruence.
© 2005 Elsevier Inc. All rights reserved.

Keywords: Formal semantics; Structural operational sematics; Bisimulation; Congruence; SOS formats

� A preliminary and summarized version of this article appeared as [28].
∗ Corresponding author.
E-mail address: m.r.mousavi@tue.nl (M.R. Mousavi).

0890-5401/$ - see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.ic.2005.03.002



108 M.R. Mousavi et al. / Information and Computation 200 (2005) 107–147

1. Introduction

StructuralOperational Semantics (called SOS for short) [30–32] has been very popular in defining
operational semantics for different formalisms and programming languages. Congruenceproperties
of notions of (bi-)simulation have been investigated for many of these languages as a key property
for compositional reasoning and refinement.Congruence simplymeans that if one replaces a compo-
nent in an arbitrary system with a (bi-)similar counterpart, the resulting system is (bi-)similar to the
original one. Proofs of congruence for SOS are usually standard but very tedious and lengthy [18,36].
This has resulted in a line of research for defining standard syntactical formats for different types of
SOS in order to obtain the congruence property for a given notion of bisimilarity automatically.
From the early beginning, SOS has been used for languages with data as an integral part of

their operational state (e.g., the original report on SOS contains several examples of state-bearing
transition system specifications [30]). As systems get more complex, the integration of a data state
in their semantics becomes more vital. Besides the systems that have an explicit notion of data such
as [16,11], real-time languages [4,10,21,24] and hybrid languages [14,6] are other typical examples of
systems in which a data state shows itself in the operational semantics in one way or another. How-
ever, the introduction of data turns out not to be as trivial as it seems and leads to new semantical
issues such as adapted notions of bisimilarity [10,21,14,27].
To the best of our knowledge, no standard congruence format for these different notions of

bisimilarity with a data state has been proposed so far. Hence, most of the congruence proofs are
done manually [27] or are just neglected by making a reference to a standard format that does not
cover the data state [10]. The proposal that comes closest [9] is unfinished and encodes rules for
state-bearing processes into rules without a state, for which a format is given.
In this article,weaddress the implicationsof thepresenceofadata stateon thenotionsofbisimilar-

ityandpropose standard formats that inducecongruencewith respect to thesenotionsofbisimilarity.
The rest of this article is structuredas follows. InSection2,we review the relatedwork in theareaof

congruence formats for SOS. Then, in Section 3, we set the scene by defining transition system speci-
fications with data and several notions of bisimilarity. In this section, we also sketch the relationship
between these notions of bisimilarity and point out their application areas. The main contribution
of this article is introduced in Section 4, where we define standard syntactic formats for proving
congruence with respect to the defined notions of bisimilarity. Furthermore, we give a full compar-
ison between congruence results for the notions of bisimilarity with data. Subsequently, Section 5
presents applications of the proposed theory on transition system specifications from the literature
in the domains of coordination languages, real-time process algebra, and hybrid process algebra.
Finally, Section 6 concludes the article and presents possible extensions of the proposed approach.

2. Related work

The first standard format for congruence of a transition system specification was proposed by
De Simone in [17]. The De Simone format allows for deduction rules of the following form:

{xi li→ yi | i ∈ I}
f(x0, . . . , xn−1)

l→ t
[P(−→li , l)],
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where xi and yi are distinct variables ranging over process terms, f is an n-ary function from the sig-
nature (e.g., sequential composition, parallel composition, etc.), I is a subset of the set {0, . . . , n− 1}
(indices of arguments of f ), t is a process term that does not have repeated occurrences of any
variable (so-called architectural term, disallowing copying of variables), and P is a predicate stating
the relationship between the labels of the premises and the label of the conclusion. (It turns out
that side conditions of this kind do not play any role on the congruence result and thus we do not
mention them in the rest of this article.)
Bloom et al. [8], in their study of the relationship between bisimilarity and completed-trace con-

gruence, define an extension of the De Simone format, called GSOS (for Structural Operational
Semantics with Guarded recursion), to capture reasonable language definitions. GSOS extends the
De Simone format to cover negative premises. In other words, it allows for deduction rules of the
following form:

{xi lij→ yij | i ∈ I , j � mi} ∪ {xj ljk� | j ∈ J , k � nj}
f(x0, . . . , xn−1)

l→ t
.

All common notations in the rule above have the same intuition as those of the De Simone format,
J is a subset of indices of f (similar to I ) and mj’s and nk ’s are natural numbers (to set an upper
bound on the number of premises) and t is a term with variables only among xk ’s (0 � k < n) and
yij’s (i ∈ I and j � mi).
Another orthogonal extension of the De Simone format, called tyft/tyxt, which allows for look-

ahead in the premises of a rule, is proposed in [23] (tyft/tyxt is the code summarizing the structure
of SOS rule in this format). This format allows for arbitrary terms in the left-hand sides (called
sources) of the premises and in the right-hand side (called target) of the conclusion but requires
the source of the conclusion to be a variable or a function applied to variables only, the targets of
premises to be variables, and all these variables to be distinct. In other words, it allows for deduction
rules of the following forms:

{ti li→ yi | i ∈ I}
f(x0, . . . , xn−1)

l→ t
,

{ti li→ yi | i ∈ I}
x
l→ t

.

Again, all notations share the same intuition with those of the De Simone format, apart from I ,
which is now an arbitrary (possibly infinite) set. The only further restriction on the set of premises,
imposed for proving the congruence theorem in [23], is the acyclicity of the variable dependency graph
for each deduction rule. A variable dependency graph has variables as its nodes and there exists an
edge from one variable to another if the former appears in the source and the latter in the target
of a premise. Later, in [19] it is shown that the acyclicity constraint can be relaxed and that for ev-
ery tyft/tyxt rule with a non-well-founded set of premises (with respect to the variable dependency
ordering) there exists a rule that induces the same transition relation and is indeed well-founded.
The merits of the two extensions were merged in [20] where negative premises were added to the

tyft/tyxt format, resulting in the ntyft/ntyxt format. In the premises of ntyft/ntyxt rules negative

transition relations of the form ti
li
� can appear as well, provided that the transition system specifi-
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cation can be stratified. Stratification is concerned with defining a measure that decreases from the
conclusion to negative premises and that does not increase from the conclusion to positive premises.
Finally, the PATH format [5] (for Predicates And Tyft/tyxt Hybrid format) and the PANTH

format [39] (for Predicates And Negative Tyft/tyxt Hybrid format) extend tyft/tyxt and ntyft/ntyxt
with predicates, respectively. A deduction rule in PANTH format may have predicates, negative
predicates, transitions and negative transitions in its premises, and a predicate or a transition in its
conclusion.
In [25], the PANTH format is extended for multi-sorted variable binding. This covers the prob-

lem of operators such as recursion or choice over a time domain. The issue of binding operators for
multi-sorted process terms is also briefly introduced in [2].
In an unpublished note [9], the issue of state-bearing and parameterized processes is treated and

a congruence format is proposed (called Super-SOS). The approach of [9] relies on transforming
state-bearing processes to multi-sorted ones and thus state-bearing transition system specifications
cannot be dealt with in their original representation (whilst this is possible in our approach). The
notion of bisimilarity in [9] (for processes parameterized on data-state) seems to be what we call
stateless bisimilarity in this article. However, congruence proofs for these formats are not provided.
As we do not consider parameterized processes in our setting, their formats may not be directly
comparable to ours. For example, some of the dataflow conditions proposed in [9] are not necessary
in our setting for stateless bisimilarity. Furthermore, the formats in [9] do not induce congruence
with respect to the other notions of bisimilarity that we discuss in this article.
We recognize the problem of multi-sorted process terms and admit that it is an interesting prob-

lem in itself. However, we address a different issue in this article, that is, the issue of states having a
particular structure (possibly from different sorts). In the above works, the data state is coded into
process terms (either naturally due to the definition of operators like time-choice operators, e.g., in
[25,33] or artificially by transforming a multi-sorted state to a single-sorted one, e.g., in [9]). Thus,
the transition system specification as well as the notion of equivalence are confined to look at the
behavior of process terms (since standard formats allow one to define only one function symbol at
a time in the conclusion of a deduction rule). However, if the data state is made explicit as a part
of the state in the transition system specification, then the transition system specification may not
only address process terms, but also data terms. This allows both for more expressiveness in the
specification of SOS and for the possibility of introducing new notions of equivalence (w.r.t. the
relationship between data and process terms).
In [7], an extension of the tyft/tyxt format is proposed to cover the semantics of higher order lan-

guages. The extended format, called promoted tyft/tyxt, allows for putting (open) terms on the labels
as well as on the two sides of the transition relation specification. Since labels are assumed to be of
the same sort as process terms, their results do not apply to our problem domain directly (in which
we have at least two different signatures for processes and data). However, by assuming two disjoint
parts of the same signature as data and process signatures wemay get a weaker result for the case of
stateless bisimilarity in Section 4 (i.e., the resulting format would be more restrictive than ours). For
themore involvednotionsof bisimilarity, however,wehave tomove to amulti-sorted state paradigm
in order to define our criteria for the standard format and thus the format of [7] is not applicable.
In [15], a preliminary version of [14], to prove congruence for a specification language with a data

state, the transition system specification is partially transformed to another transition system spec-
ification that is isomorphic to the original one and does not contain a data state. Furthermore, it is
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shown that the original notion of bisimilarity corresponds to strong bisimilarity [26,29] in the new
specification. Since the resulting transition system specification is in PATH format, it is deduced
that the original notion of bisimilarity is a congruence. Although the formal proof for these steps
is not given there in detail, the proof sketch seems to be convincing for this particular notion of
bisimilarity (i.e., stateless bisimilarity). We combine all these steps here in one theorem and prove it
so that such transformations and proofs are not necessary anymore. Furthermore, we give standard
formats for other notions of bisimilarity for which such a straightforward transformation does not
exist in the literature.

3. Preliminaries

3.1. Basic definitions

We assume infinite and disjoint sets of process variables Vp (typical members: x, y , xi, yi, . . .) and
data variables Vd (typical member: v). A process signature �p is a set of function symbols (typical
members: f ) with their fixed arity. Functions with zero arity are called constants (typical members:
a, b, c). A process term t ∈ T(�p) is defined inductively as follows: a variable x ∈ Vp is a process
term, if t0, . . . , tn−1 are process terms then for all f ∈ �p with arity n, f(t0, . . . , tn−1) is a process term,
as well (i.e., constants are indeed process terms). Process terms are typically denoted by t, t′, ti, . . .
Similarly, data terms u ∈ T(�d) are defined based on a data signature �d and the set of variables
Vd and typically denoted by u, u′, ui, u′i, . . . Closed terms C(�p) and C(�d) in each of these contexts
are defined as expected (closed process terms are typically denoted by p , q, p ′, q′, pi, qi, p ′i , q′i . . .).
A process substitution (� or �′) replaces a process variable in an open process term with another

(possibly open) process term. A data substitution (�) replaces a data variable in an open data term
with another (possibly open) data term. The set of variables appearing in term t is denoted by
vars(t).

Definition 1 (transition system specification). A transition system specification with data is a tuple
(�p,�d,L,D(Rel)) where �p is a process signature, �d is a data signature, L is a set of labels (with
typical members l, l′, l0, . . .), and D(Rel) is a set of deduction rules, where Rel is a set of (ternary)
relation symbols. For all r ∈ Rel, l ∈ L and (s, s′) ∈ T(�p)× T(�d) we define that (s, l, s′) ∈ r is a
formula. A deduction rule dr ∈ D is defined as a tuple (H , c) where H is a set of formulae and c is a
formula. The formula c is called the conclusion and the formulae from H are called premises.
Notions of open and closed and the concept of substitution are lifted to formulae in the natural

way. A formula (s, l, s′) ∈ r is denoted by the more intuitive notation s l→r s
′, as well. A deduction

rule is mostly denoted by
H

c
.

A proof of a formula ' is a well-founded upwardly branching tree whose nodes are labelled by
formulae such that

• the root node is labelled by ', and
• if  is the label of a node and { i | i ∈ I} is the set of labels of the nodes directly above this node,
then there are a deduction rule

{)i | i ∈ I}
)

, a process substitution � and a data substitution �
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such that application of these substitutions to ) gives the formula , and for all i ∈ I , application
of the substitutions to )i gives the formula  i .

The transition relation associated with a transition system specification is the smallest relation
containing all provable closed formulae.

Note that in this paper, we only consider transition relations and notions of bisimulation on
closed terms. Techniques developed in [34] can be used to define these concepts on open terms.

3.2. Notions of bisimilarity

The introduction of data to the state adds a new dimension to the notion of bisimilarity. One
might think that we can easily deal with data states by imposing the original notion of strong bi-
similarity [26,29] to the extended state. In such a case processes are compared regardless of the data
they have. Our survey of the literature has revealed that such a notion of strong bisimilarity is not
used at all. In this article, we restrict ourselves to comparing processes with respect to the same data
state. In this way, we get to what we call a state-based bisimilarity, depicted in Fig. 1.

Definition 2 (state-based bisimilarity). A relation Rsb ⊆ (C(�p)× C(�d)) ×(C(�p)× C(�d)) is a
state-based bisimulation relation if and only if ∀p ,q,d0,d1,r,l ((p , d0), (q, d1)) ∈ Rsb ⇒ d0 = d1 ∧

(1) ∀p ′,d ′(p , d0) l→r (p
′, d ′)⇒ ∃q′(q, d0) l→r (q

′, d ′) ∧((p ′, d ′), (q′, d ′)) ∈ Rsb;
(2) ∀q′,d ′(q, d1) l→r (q

′, d ′)⇒ ∃p ′(p , d1) l→r (p
′, d ′) ∧((p ′, d ′), (q′, d ′)) ∈ Rsb.

Two closed state terms (p , d) and (q, d) are state-based bisimilar, denoted by (p , d)↔sb (q, d), if and
only if there exists a state-based bisimulation relation Rsb such that ((p , d), (q, d)) ∈ Rsb.
Definition 3 (process-congruence). For ∼⊆ (C(�p)× C(�d))× (C(�p)× C(�d)), ∼ is called a pro-
cess-congruencew.r.t. ann-aryprocess functionf ∈ �p if andonly if for allpi, qi ∈ C(�p) (0 � i < n),
for alld ∈ C(�d), if (pi, d) ∼ (qi, d) (for all 0 � i < n), then (f(p 0, . . . , pn−1), d) ∼ (f(q0, . . . , qn−1), d).
Furthermore, ∼ is called a process-congruence for a transition system specification if and only if it
is a process-congruence w.r.t. all process functions of the process signature.

Fig. 1. State-based bisimilarity.
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Example 4. Consider a transition system specification, where the signature consists of three (dis-
tinct) process constants a, b and c, one binary process function f , and three (distinct) data constants
d , d ′ and d ′′, and the deduction rules are the following:

(1)
(a, d)

l→ (a, d ′′)
, (2)

(a, d ′) l→ (a, d ′)
, (3)

(b, d)
l→ (b, d ′′)

,

(4)
(c, d)

l→ (a, d ′′)
, (5)

(x0, v)
l→ (y , v′)

(f(x0, x1), v)
l→ (x1, d ′)

.

Then, the following state-based bisimilarities hold:

(a, d)↔sb (b, d), (b, d)↔sb (c, d).

However, the following state-basedbisimilarities donot hold: (a, d ′)↔sb (b, d
′) and (f(c, a), d)↔sb

(f(c, b), d). From the latter case, we can observe that state-based bisimilarity is not a process-con-
gruence for the above transition system specification.

State-based bisimilarity is a rather weak notion of bisimilarity for most practical examples. The
problem lies in the fact that in this notion of bisimilarity the process parts are only related with
respect to a particular data state. Thus, if the common initial data state is not known (e.g., if the
components have to start their execution on the result of an unknown or non-deterministic process),
then state-based bisimilarity is not useful.
This problem leads to the introduction of a new notion of bisimilarity which takes all possible

initial states into account [22,21]. We call this notion initially stateless bisimilarity (see Fig. 2). This
notion of bisimilarity is very useful for the case where components are composed sequentially. In
such cases, when we prove that two components are bisimilar, we do not rely on the initial starting
state and thus, we allow for sequential composition with any other component.

Fig. 2. Initially stateless bisimilarity.
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Definition 5 (initially stateless bisimilarity). Two closed process terms p and q are initially stateless
bisimilar, denoted by p ↔isl q, if and only if there exists a state-based bisimulation relation Rsb such
that ((p , d), (q, d)) ∈ Rsb for all d ∈ C(�d).

For initially stateless bisimilarity (and also for stateless bisimilarity, to be defined shortly), con-
gruence is defined as expected in the following definition.

Definition 6 (congruence). For arbitrary∼⊆ C(�p)× C(�p),∼ is called a congruence w.r.t. an n-ary
process function f ∈ �p if and only if for all pi, qi ∈ C(�p) (0 � i < n), if pi ∼ qi (for all 0 � i < n),
then f(p 0, . . . , pn−1) ∼ f(q0, . . . , qn−1). Furthermore,∼ is called a congruence for a transition system
specification if and only if it is a congruence w.r.t. all process functions of the process signature.

Example 7. Consider the transition system specification of Example 4. The following initially state-
less bisimilarities hold b↔isl c and f(b, c)↔isl f(c, c) but the following initially stateless bisimilari-
ties donot hold a↔isl b andf(c, a)↔isl f(c, b).Weobserve that the previous problemof congruence
does not exist anymore for initially stateless bisimilarity. Later on, in Example 37, we show that for
this transition system specification, initially stateless bisimilarity is indeed a congruence.

However, initially stateless bisimilarity does not solve all problems, either. If there is a possibility
of change in the intermediate data states (by an outside process), then initially stateless bisimilarity
is not preserved in such an environment. This, for instance, happens in open concurrent systems.
Stateless bisimilarity [10,14,22,27], shown in Fig. 3, is the solution to this problem and the finest

notion of bisimilarity for state-bearing processes that one can find in the literature. Two process
terms are stateless bisimilar if, for all identical data states, they satisfy the same predicates and they
can mimic transitions of each other and the resulting process terms are again stateless bisimilar. In

Fig. 3. Stateless bisimilarity.



M.R. Mousavi et al. / Information and Computation 200 (2005) 107–147 115

other words, we compare process terms for all identical data states and allow all sorts of change
(interference) in the data part after each transition.

Definition 8 (stateless bisimilarity). A relation Rsl ⊆ C(�p)× C(�p) is a stateless bisimulation rela-
tion if and only if ∀p ,q,d ,r,l(p , q) ∈ Rsl ⇒

(1) ∀p ′,d ′(p , d) l→r (p
′, d ′)⇒ ∃q′(q, d) l→r (q

′, d ′) ∧ (p ′, q′) ∈ Rsl;
(2) ∀q′,d ′(q, d) l→r (q

′, d ′)⇒ ∃p ′(p , d) l→r (p
′, d ′) ∧ (p ′, q′) ∈ Rsl.

Two closed process terms p and q are stateless bisimilar, denoted by p ↔sl q, if and only if there
exists a stateless bisimulation relation Rsl such that (p , q) ∈ Rsl.
Example 9. Consider the transition system specification of Example 4. None of the non-trivial ex-
amples of bisimilarity hold anymore for stateless bisimilarity. Namely, it does not hold that a↔sl b,
a↔sl c or b↔sl c. From these one may conclude that stateless bisimilarity is a congruence for the
above transition system specification. We prove this formally in Example 17.

None of the three notions of bisimilarity is the perfect notion. State-based bisimilarity is the eas-
iest one to check and establish but is not very robust in applications. It is most suitable for systems
that are not subject to any further composition and interference. Initially stateless bisimilarity is a
bit more difficult to check and establish but is more robust and suitable for systems that are amena-
ble to further sequential compositions. Finally, stateless bisimilarity is the hardest one to establish
but it is considered the most robust one for open concurrent systems. In general, a compromise
has to be made in order to find the right level of robustness and strength and as a result the most
suitable notion of bisimilarity has to be determined for each language/application separately.
A common practice in establishing bisimulation relations for concurrent systems is to trans-

form them to non-deterministic sequential systems preserving stateless bisimilarity and then using
initially stateless bisimilarity in that setting [22]. Another option for open systems with a limited
possibility of intervention from the environment is to parameterize the notion of bisimilaritywith an
interference relation [22,12,14]. Our congruence format for state-based bisimilarity can be adapted
to the parameterized notion of bisimilarity.
Next, we compare the above three notions of bisimilarity.

3.3. Comparing the notions of bisimilarity

In Examples 4 and 9, we have shown that two processes b and c are state-based bisimilar (w.r.t.
data state d) but stateless bisimilarity fails to hold between them. Thus, we may infer that stateless
bisimilarity is finer than state-based bisimilarity (w.r.t. a particular data state). The following cor-
ollary states that if a state-based bisimulation relation is closed under the change of data state then
it induces a stateless bisimilarity.

Corollary 10. Let R be a state-based bisimulation relation. If ∀p ,q(∃d ((p , d), (q, d)) ∈ R⇒
∀d ′((p , d ′), (q, d ′)) ∈ R) then ∀p ,q(∃d ((p , d), (q, d)) ∈ R⇒ p ↔sl q).

Finally, the following lemma positions initially stateless bisimilarity in between the two other
notions of bisimilarity we have discussed so far.
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Corollary 11. For two arbitrary closed process terms p and q, we have

(1) if p ↔sl q, then p ↔isl q;
(2) p ↔isl q if and only if, (p , d)↔sb (q, d) for all closed data terms d.

Again, in Examples 4 and 7, we have shown that a and b are state-based bisimilar with respect
to d but they are not initially stateless bisimilar. Thus, state-based bisimilarity (with respect to a
particular data state) is strictly weaker than initially stateless bisimilarity.
The following corollary states that stateless bisimilarity implies state-based bisimilarity with

respect to all data states.

Corollary 12. For two arbitrary closed process terms p and q; if p ↔sl q, then (p , d)↔sb (q, d) for all
d ∈ C(�d).

4. Standard formats for congruence

In this section, we present standard formats and prove congruence results with respect to afore-
mentioned notions of bisimilarity. To do this, we extend the tyft format of [21] with data in three
steps for stateless, state-based, and initially stateless bisimilarity. Finally, we present how our for-
mats can be extended to cover tyxt rules and rules containing predicates and negative premises
(thus, extending the PANTH format [39] with data).

4.1. Congruence format for stateless bisimilarity

In this article, we allow for deduction rules that adhere to the tyft-format with respect to the
process terms and are not restricted in the data terms. This format is called process-tyft.

Definition 13 (process-tyft).Let (�p,�d,L,D(Rel)) be a transition system specification. A deduction
rule dr ∈ D(Rel) is in process-tyft format if it is of the form

(dr)
{(ti, ui) li→ri (yi, u

′
i) | i ∈ I}

(f(x0, . . . , xn−1), u)
l→r (t

′, u′)
,

where I is a set of indices, →r ∈ Rel, l ∈ L, f ∈ �p is a process function of arity n, t′ ∈ T(�p),
u, u′ ∈ T(�d), the variables x0, . . . , xn−1 and yi (i ∈ I ) are all distinct variables from Vp, and, for all
i ∈ I : →ri ∈ Rel, li ∈ L, ti ∈ T(�p), and ui, u′i ∈ T(�d).
We name the set of process variables appearing in the source of the conclusion Xp and in the

target of the premises Yp. The two sets Xp and Yp are obviously disjoint following the requirements
of the format. The above deduction rule is called an f -defining deduction rule.
A transition system specification is in process-tyft format if all its deduction rules are in process-

tyft format.

It turns out that for any transition system specification in process-tyft format, stateless
bisimilarity is a congruence. For simplicity in proofs, we require the acyclicity of the variable
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dependency graph (see Section 2), as well. However, this requirement can be removed using the
result of [19].

Theorem 14. If a transition system specification is in process-tyft format, then stateless bisimilarity is
a congruence for that transition system specification.

Before we prove this theorem, we first define the closure of a relation under stateless congruence
and give and prove a lemma that is very useful in the proof of Theorem 14.

Definition 15 (closure under stateless congruence). Let R ⊆ C(�p)× C(�p). We define the relation
R̃ ⊆ C(�p)× C(�p) to be the smallest reflexive congruence on C(�p) such that the relation R is
contained in R̃. Formally, R̃ is defined to be the smallest relation that satisfies:

(1) R̃ is reflexive;
(2) R ⊆ R̃;
(3) (f(p0, . . . , pn−1), f(q0, . . . , qn−1)) ∈ R̃ for all n-ary f ∈ �p, and all p 0 , . . . , pn−1, q0 , . . . , qn−1 ∈

C(�p) such that (pi, qi) ∈ R̃ for all 0 � i < n.

Lemma 16. Let R ⊆ C(�p)× C(�p) and t ∈ T(�p). For any two process substitutions � and �′ such
that (�(x), �′(x)) ∈ R̃ for all x ∈ vars(t), we have (�(t), �′(t)) ∈ R̃.
Proof. By induction on the structure of process term t. See [23] for a complete proof. �

Proof of Theorem 14. It suffices to prove that stateless bisimilarity is a congruence for each of the
process functions of �p. Let f ∈ �p be an n-ary process function. Let pi and qi be closed process
terms for 0 � i < n. Suppose that pi ↔sl qi for 0 � i < n. This means that there are stateless bisim-
ulation relations Ri (for 0 � i < n) that witness these stateless bisimilarities. Let R be the union of
these relations Ri: R = ⋃n

i=0 Ri . Obviously R is also a stateless bisimulation relation. We prove that
the relation R̃ contains the pair (f(p 0, . . . , pn−1), f(q0, . . . , qn−1)) and that it is a stateless bisimulation
relation. The first claim is obvious from the definition of R̃.
So, we only have to prove the following for any (p , q) ∈ R̃: if for arbitrary →r , l, p ′, d and d ′,

(p , d)
l→r (p

′, d ′), then there exists a q′ such that (q, d) l→r (q
′, d ′) and (p ′, q′) ∈ R̃ and vice versa for

transitions of q. Due to symmetry, it suffices to provide the proofs for the transitions of p only.
We prove this by induction on the depth of the proof of a transition.We do not show the proof for

the induction base as it is an instance of the proof of the induction step where there are no premises.
For the induction step, we distinguish three cases based on the structure of the definition of R̃.

In case the pair (p , q) is contained in R̃ due to reflexivity of R̃ or due to the requirement that R̃
contains R, the proof is obvious (and requires no induction at all). For the remaining case, we find
p = f(p 0, . . . , pn−1) and q = f(q0, . . . , qn−1) for some p 0, . . . , pn−1, q0, . . . , qn−1 such that (pi, qi) ∈ R̃
for all 0 � i < n.
The last step of the proof of the transition of p is due to the application of a deduction rule of

the following form:

{(ti, ui) li→ri (yi, u
′
i) | i ∈ I}

(f(x0, . . . , xn−1), u)
l→r (t

′, u′)
.
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This means that there are a process substitution � and a data substitution � such that �(xi) = pi for
all 0 � i < n, �(u) = d , �(t′) = p ′, and �(u′) = d ′. Furthermore, for each i ∈ I , there exists a proof
of (�(ti), �(ui))

li→ri (�(yi), �(u
′
i)) with smaller depth.

We assume acyclicity of the variable dependency graph. A variable dependency graph has vari-
ables as its nodes and for each i ∈ I there exists an edge from any variable x ∈ vars(ti) to variable
yi . Hence, we can define a rank, rank(x), for each variable x, as the maximum length of a backward
chain starting from x in the variable dependency graph. The rank of a premise is the rank of its

target variable. Then, for each x ∈ vars(ti) of each premise (ti, ui) li→ri (yi, u
′
i) of the deduction rule,

it holds that rank(x) < rank(yi).
We define the process substitution �′ as follows:

�′(x) =
{
qi if x = xi,
�(x) if x /∈ Xp ∪ Yp.

Note that thus far this process substitution is not defined for variables from Yp. We extend the
definition while proving, by induction on the rank of a premise r, three essential properties: for all
r, for all i ∈ I such that rank(yi) = r,

(1) (�(ti), �′(ti)) ∈ R̃;
(2) (�′(ti), �(ui))

li→ri (�
′(yi), �(u′i));

(3) (�(yi), �′(yi)) ∈ R̃.

Again, we do not show the proof of the induction base (r = 0) as it is an instance of the proof of
the induction step.

For the induction step, suppose r � 1. Let (ti, ui)
li→ri (yi, u

′
i) for some i ∈ I be a premise of rank

r. First, we prove property (1). Let x ∈ vars(ti). We distinguish three cases:

(1) x ∈ Xp. Then x = xi for some 0 � i < n. From the definition of �′wehave that �(x) = �(xi) = pi
and �′(xi) = qi and we already know that (pi, qi) ∈ R̃. Thus, we have (�(x), �′(x)) ∈ R̃.

(2) x /∈ Xp and x /∈ Yp. As �(x) = �′(x) and the identity relation is contained in R̃ obviously
(�(x), �′(x)) ∈ R̃.

(3) x ∈ Yp. Then x = yj for some j ∈ I . Obviously, also rank(yj) < rank(yi). Thus by the in-
duction hypothesis (property (3)) we have, (�(yj), �′(yj)) ∈ R̃. But, as x = yj , we also have
(�(x), �′(x)) ∈ R̃.

From the fact that (�(x), �′(x)) ∈ R̃ for all x ∈ vars(ti), we have, by Lemma 16, that (�(ti), �′(ti)) ∈ R̃;
which proves property (1).

As we have a proof of smaller depth for (�(ti), �(ui))
li→ri (�(yi), �(u

′
i)), by the induction hypothe-

sis, we have the existence of a process term q′i such that (�′(ti), �(ui))
li→ri (q

′
i, �(u

′
i)) and (�(yi), q

′
i) ∈ R̃.

We choose �′(yi) to be q′i . Observe that this proves existence of an appropriate process term �′(yi).
Then, we also have (�′(ti), �(ui))

li→ri (�
′(yi), �(u′i)) and (�(yi), �′(yi)) ∈ R̃, which prove properties

(2) and (3).
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Now, we finish our reasoning using process substitution �′ and the same data substitution and
deduction rule. Observe that indeed �′(f(x0, . . . , xn−1)) = f(q0, . . . , qn−1) = q. By property (2) we
have proven that there are proofs for all premises using the process substitution �′ and data
substitution �. Then, according to the same deduction rule and using �′ instead of �, we have

(�′(f(x0, . . . , xn−1)), �(u))
l→r (�

′(t′), �(u′)). Since �′(f(x0, . . . , xn−1)) = f(q0, . . . , qn−1) = q, �(u) = d

and �(u′) = d ′ we obtain (q, d) l→r (�
′(t′), d ′).

Weonly have to show that (�(t′), �′(t′)) ∈ R̃. ByLemma 16, it suffices to show that (�(x), �′(x)) ∈ R̃
for all x ∈ vars(t′). Three cases can be distinguished:

(1) x ∈ Xp. Then x = xi for some 0 � i < n. We have that �(xi) = pi and �′(xi) = qi and we already
know that (pi, qi) ∈ R̃ and xi = x. Thus, we have (�(x), �′(x)) ∈ R̃.

(2) x /∈ Xp and x /∈ Yp. As �(x) = �′(x) and the identity relation is contained in R̃ obviously
(�(x), �′(x)) ∈ R̃.

(3) x ∈ Yp. Then x = yj for some j ∈ I . We have (�(yj), �′(yj)) ∈ R̃ by property (3). But, as x = yj ,
we also have (�(x), �′(x)) ∈ R̃.

So this concludes the proof of Theorem 14. �
Example 17. Consider the transition system specification of Example 4. Obviously, all deduction
rules are in process-tyft format, hence, by Theorem 14, stateless bisimilarity is a congruence for all
process functions from the signature of this transition system specification.

4.2. Congruence format for state-based bisimilarity

In this section, we introduce a format for establishing process-congruence of state-based bisimi-
larity. First, we show that we cannot simply use the previously introduced process-tyft format.

Example 18. Consider a transition system specification in process-tyft format, where the signature
consists of three process constants a, b, and c, one unary process function f , and two data constants
d and d ′ and the deduction rules are the following:

(1)
(a, v)

l→ (b, d ′)
, (2)

(b, d)
l→ (b, d ′)

, (3)
(f(x), v)

l→ (x, d ′)
.

Then, we have: (a, d)↔sb (b, d). On the other hand, however, it does not hold that (f(a), d)↔sb
(f(b), d), since (f(a), d) has an l transition to (a, d ′), while (f(b), d) only has an l transition to (b, d ′)
and these two states are not state-based bisimilar as the first one has an l transition due to deduction
rule (1), while the second one does not. Hence, state-based bisimilarity is not a process-congruence
(for f ).

In the conclusions of the deduction rules of the above example, we have transitions that (poten-
tially) change the data state while keeping the process variable. That is the reason why we fail to
have that state-based bisimilarity is a process-congruence.
We remedy this shortcoming by adding more constraints to the format. Namely, we force the

links between process variables and data terms to remain consistent in each of the deduction rules
as follows.
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Definition 19 (Sfsb). A deduction rule dr of the following form

(dr)
{(ti, ui) li→ri (yi, u

′
i) | i ∈ I}

(f(x0, . . . , xn−1), u)
l→r (t

′, u′)
,

is in sfsb format (for Standard Format for state-based bisimulation) if it is in process-tyft format
and satisfies the following constraints:

(1) If a variable x ∈ Xp appears in t′, then u′ = u;
(2) If a variable yi ∈ Yp appears in t′, then u′ = ui;
(3) If a variable x ∈ Xp appears in some ti, then ui = u;
(4) If a variable yi ∈ Yp appears in some tj , then uj = u′i .

A transition system specification is in sfsb format if and only if all its deduction rules are.

Informally speaking, we foresee a flow of binding, as depicted below, between process variables
and data terms from the source of the conclusion to the source of the premises and the target of the
conclusion and from the target of the premises to the sources of other premises and finally, to the
target of the conclusion.

Theorem 20. If a transition system specification is in sfsb format, then state-based bisimilarity is a
process-congruence for that transition system specification.

Before proving this theorem, we first define the closure of a relation under state-based congruence
and give and prove a lemma that is very useful in the proof of Theorem 20.
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Definition 21. Let R ⊆ (C(�p)× C(�d))× (C(�p)× C(�d)). We define the relation R̂ ⊆ (C(�p)×
C(�d))× (C(�p)× C(�d)) to be the smallest reflexive process-congruence that contains R.
Formally, R̂ is defined to be the smallest relation that satisfies:

(1) R̂ is reflexive;
(2) R ⊆ R̂;
(3) ((f(p 0, . . . , pn−1), d), (f(q0, . . . , qn−1), d)) ∈ R̂ for all n-ary f ∈ �p, d ∈ C(�d), and all p 0, . . . ,

pn−1, q0, . . . , qn−1 ∈ C(�p) such that ((pi, d), (qi, d)) ∈ R̂ for all 0 � i < n.

Lemma 22. Let R ⊆ (C(�p)× C(�d))× (C(�p)× C(�d)), t ∈ T(�p), and d ∈ C(�d). For any pro-
cess substitutions � and �′ such that ((�(x), d), (�′(x), d)) ∈ R̂ for all x ∈ vars(t), we have ((�(t), d),
(�′(t), d)) ∈ R̂.
Proof. By induction on the structure of process term t. The proof is similar to the proof of Lemma
16 which can be consulted in [23]. �
Proof of Theorem 20. It suffices to prove that state-based bisimilarity is a process-congruence for
each of the process functions of �p. Let f ∈ �p be an n-ary process function. Let pi and qi be
closed process terms for 0 � i < n and let d ∈ C(�d). Suppose that (pi, d)↔sb (qi, d) for 0 � i <
n. This means that there are state-based bisimulation relations Ri (for 0 � i < n) that witness
these state-based bisimilarities. Let R be the union of these relations Ri: R = ⋃n

i=0 Ri . Obvious-
ly R is also a state-based bisimulation relation. We prove that the relation R̂ contains the pair
((f(p 0, . . . , pn−1), d), (f(q0, . . . , qn−1), d)) and that it is a state-based bisimulation relation. The first
part is obvious from the definition of R̂.
So, we only have to prove the following for any ((p , d), (q, d)) ∈ R̂: if for an arbitrary →r , l,

p ′ and d ′, (p , d) l→r (p
′, d ′), then there exists a q′ such that (q, d)

l→r (q
′, d ′) and ((p ′, d ′), (q′, d ′))

∈ R̂ and vice versa for transitions of q. Due to symmetry, it suffices to provide the proofs for the
transitions of p only.
We prove this by induction on the depth of the proof of a transition. We do not show the proof

for the induction base as it is an instance of the proof of the induction step where there are no
premises.
For the induction step, we distinguish three cases based on the structure of the definition of R̂.

In case the pair ((p , d), (q, d)) is contained in the identity relation or the relation R, the proof is
obvious (and requires no induction at all). For the remaining case, we find p = f(p 0, . . . , pn−1) and
q = f(q0, . . . , qn−1) for some p 0, . . . , pn−1, q0, . . . , qn−1 such that ((pi, d), (qi, d)) ∈ R̂ for all 0 � i < n.
The last step of the proof of the transition of p is due to the application of a deduction rule of the
following form:

{(ti, ui) li→ri (yi, u
′
i) | i ∈ I}

(f(x0, . . . , xn−1), u)
l→r (t

′, u′)
.

This means that there are a process substitution � and a data substitution � such that �(xi) = pi for
all 0 � i < n, �(u) = d , �(t′) = p ′ and �(u′) = d ′. Furthermore, for each i ∈ I , there exists a proof of
(�(ti), �(ui))

li→ri (�(yi), �(u
′
i)) with smaller depth.
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Since we have assumed acyclicity of the variable dependency graph, we can define a rank, rank(x),
for each variable x, as the maximum length of a backward chain starting from x in the variable de-
pendency graph. The rank of a premise is the rank of its target variable. Then, for each x ∈ vars(ti)
of each premise (ti, ui)

li→ri (yi, u
′
i) of the deduction rule, it holds that rank(x) < rank(yi).

We define the process substitution �′ as follows:

�′(x) =
{
qi if x = xi,
�(x) if x /∈ Xp ∪ Yp.

Note that thus far this process substitution is not defined for variables from Yp. We extend the
definition while proving, by induction on the rank of a premise r, three essential properties: for all
r, for all i ∈ I such that rank(yi) = r,

(1) ((�(ti), �(ui)), (�′(ti), �(ui))) ∈ R̂;
(2) (�′(ti), �(ui))

li→ri (�
′(yi), �(u′i));

(3) ((�(yi), �(u′i)), (�′(yi), �(u′i))) ∈ R̂.

Again, we do not show the proof of the induction base (r = 0) as it is an instance of the proof of
the induction step.
For the induction step, suppose r � 1. Let (ti, ui)

li→ri (yi, u
′
i) for some i ∈ I be a premise of rank

r. First, we prove property (1). Let x ∈ vars(ti). We show that ((�(xi), �(ui)), (�′(xi), �(ui))) ∈ R̂. To
do this, the following three cases are distinguished:

(1) x ∈ Xp. Then x = xi for some 0 � i < n. The source of the premise has process variable xi ∈ Xp;
hence, by data-dependency constraint 3, ui = u. We also have that �(xi) = pi and �′(xi) =
qi and we already know that ((pi, d), (qi, d)) ∈ R̂ and �(u) = d . Thus, we have ((�(xi), �(ui)),
(�′(xi), �(ui))) ∈ R̂, i.e., ((�(x), �(ui)), (�′(x), �(ui))) ∈ R̂.

(2) x /∈ Xp and x /∈ Yp. As �(x) = �′(x) and the identity relation is contained in R̂ obviously
((�(x), �(u′)), (�′(x), �(u′))) ∈ R̂.

(3) x ∈ Yp. Then x = yj for some j ∈ I . Hence, by data-dependency constraint 4, ui = u′j . Ob-
viously, also rank(yj) < rank(yi). Thus by the induction hypothesis (property (2)) we have,
((�(yj), �(u′j)), (�′(yj), �(u′j))) ∈ R̂. But, as x = yj , and u′j = ui, we also have ((�(x), �(ui)),
(�′(x), �(ui))) ∈ R̂.

From the fact that ((�(x), �(ui)), (�′(x), �(ui))) ∈ R̂ for all x ∈ vars(ti), by Lemma 22, we have
((�(ti), �(ui)), (�′(ti), �(ui))) ∈ R̂; which proves property (1).
As we have a proof of smaller depth for (�(ti), �(ui))

li→ri (�(yi), �(u
′
i)), by the induction hy-

pothesis, we have the existence of a process term q′i such that (�′(ti), �(ui))
li→ri (q

′
i, �(u

′
i)) and

((�(yi), �(u′i)), (q′i, �(u′i))) ∈ R̂. We choose �′(yi) to be q′i . Observe that this proves existence of an
appropriate process term �′(yi). Then, obviously, we also have (�′(ti), �(ui))

li→ri (�
′(yi), �(u′i)) and

((�(yi), �(u′i)), (�′(yi), �(u′i))) ∈ R̂, which prove properties (2) and (3).
Now, we finish our reasoning using process substitution �′ and the same data substitution and

deduction rule. Observe that indeed �′(f(x0, . . . , xn−1)) = f(q0, . . . , qn−1) = q. By property (2) we
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have proven that there are proofs for all premises using the process substitution �′ and data
substitution �. Then, according to the same deduction rule and using �′ instead of �, we have

(�′(f(x0, . . . , xn−1)), �(u))
l→r (�

′(t′), �(u′)). Since �′(f(x0, . . . , xn−1)) = f(q0, . . . , qn−1) = q, �(u) = d

and �(u′) = d ′ we obtain (q, d) l→r (�
′(t′), d ′).

We only have to show that ((�(t′), d ′), (�′(t′), d ′)) ∈ R̂. By Lemma 22, it suffices to show that
((�(x), d ′), (�′(x), d ′)) ∈ R̂ for all x ∈ vars(t′). Three cases can be distinguished:

(1) x ∈ Xp. Then x = xi for some 0 � i < n. Hence, x ∈ Xp and by data-dependency constraint 1,
u = u′. Hence, d = �(u) = �(u′) = d ′. We also have that �(xi) = pi and �′(xi) = qi and we al-
ready know that ((pi, d), (qi, d)) ∈ R̂, xi = x, and d = d ′. Thus, we have ((�(x), d ′), (�′(x), d ′))
∈ R̂.

(2) x /∈ Xp and x /∈ Yp. As �(x) = �′(x) and the identity relation is contained in R̂ obviously
((�(x), d ′), (�′(x), d ′)) ∈ R̂.

(3) x ∈ Yp. Then x = yj for some j ∈ I . Hence, by data-dependency constraint 2, u′j = u′.We obtain
d ′ = �(u′) = �(u′j). By property (3) we have, ((�(yj), �(u′j)), (�′(yj), �(u′j))) ∈ R̂. But, as x = yj ,
and �(u′j) = d ′, we also have ((�(x), d ′), (�′(x), d ′)) ∈ R̂.

So this concludes the proof of Theorem 20. �
Next, we show that if the proposed format is relaxed in any conceivable way, the congruence

result is lost. The first example shows that we cannot remove data-dependency constraint 1.

Example 23.Consider a transition system specification, where the process signature consists of pro-
cess constants a and b, and a unary function symbol f ; the data signature consists of data constants
d and d ′; and the following deduction rules:

(1)
(a, d ′) l→ (a, d ′)

, (2)
(f(x), d)

l→ (x, d ′)
.

These deduction rules are in process-tyft format. Data-dependency constraint 1 is not satisfied by
deduction rule (2) as in the target of the conclusion the variable x ∈ Xp appears but d /= d ′. The
other data-dependency constraints are indeed satisfied.
The process-congruence result fails on the above specification. As both (a, d) and (b, d)

cannotperformanytransitions,wehave(a, d)↔sb (b, d).However, itdoesnotholdthat (f(a), d)↔sb
(f(b), d) since the former state can perform a transition due to deduction rule (2) to (a, d ′), while the
latter is forced tomake the same transition to (b, d ′)and it clearlydoesnothold that (a, d ′)↔sb (b, d

′)
(see deduction rule (1)).

The next example shows that we cannot remove data-dependency constraint 2.

Example 24. Consider a process signature consisting of process constants a and b and a unary pro-
cess function f ; a data signature consisting of data constants d and d ′; and a transition system
specification with the following deduction rules:

(1)
(a, v)

l→ (a, v)
, (2)

(b, d)
l→ (b, d)

, (3)
(x, d)

l→ (y , d)

(f(x), d)
l→ (y , d ′)

.



124 M.R. Mousavi et al. / Information and Computation 200 (2005) 107–147

These deduction rules are in process-tyft format and all data-dependency constraints, except for
constraint 2, which is violated by deduction rule (3). This violation results in breaking the process-
congruence result. Two states (a, d) and (b, d) are state-based bisimilar. However, (f(a), d) is not
state-based bisimilar to (f(b), d) since the former can perform a transition using deduction rule (3)
to (a, d ′), while the latter performs a similar transition to (b, d ′). These two states are not state-based
bisimilar as the former performs an l-transition and the latter deadlocks.

The next example shows that we cannot remove data-dependency constraint 3.

Example 25.Consider a transition system specification, where the process signature consists of pro-
cess constants a and b, and a unary function symbol f ; the data signature consists of data constants
d and d ′; and the following deduction rules:

(1)
(a, d ′) l→ (a, d ′)

, (2)
(x, d ′) l→ (y , v′)

(f(x), v)
l→ (x, v)

.

The deduction rules are in process-tyft format and satisfy data-dependency constraints 1, 2, and 4.
Data-dependency constraint 3 is violated in deduction rule (2) since variable x ∈ Xp appears in the
source of the premise but d ′ /= v.
For this transition system specification, state-based bisimilarity is not a process-congruence. Al-

though we have (a, d)↔sb (b, d) (because both states deadlock), it is not the case that (f(a), d) and
(f(b), d) are state-based bisimilar, since the former state can make a transition due to deduction
rule (2) while the latter cannot make any transition.

The next example shows that we cannot remove data-dependency constraint 4.

Example 26. Consider a process signature consisting of process constants a and b and a unary pro-
cess function f ; a data signature consisting of data constants d and d ′; and a transition system
specification with the following deduction rules:

(1)
(a, v)

l→ (a, v)
, (2)

(b, d)
l→ (b, d)

, (3)
(x, d)

l→ (y , d) (y , d ′) l→ (y ′, d ′)

(f(x), d)
l→ (y ′, d ′)

.

The above deduction rules are in process-tyft format and satisfy all data-dependency constraints
apart from constraint 4. Deduction rule (3) breaks this constraint in the source of its second premise.
This also turns out to be harmful for the congruence property, since we have (a, d)↔sb (b, d) but
not (f(a), d)↔sb (f(b), d) because deduction rule (3) allows for a transition of the former but not
the latter.

4.3. Congruence format for initially stateless bisimilarity

Later, when comparing congruence conditions for the different notions of bisimilarity, we show
that the sfsb format works perfectly well for initially stateless bisimilarity. However, it may turn
out to be too restrictive in application. The following example shows a common problem in this
regard.
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Example 27. Consider the following transition system specification (with process constants a and
b, unary process function f , and data constants d and d ′) and the following deduction rules:

(1)
(a, v)

l→ (a, v)
, (2)

(b, d)
l→ (b, d)

, (3)
(x0, v)

l→ (y , v)

(f(x0, x1), v)
l→ (x1, d ′)

.

This transition system specification does not satisfy the sfsb format and state-based bisimilarity
is not a congruence (since (a, d)↔sb (b, d), but it does not hold that (f(b, a), d)↔sb (f(b, b), d)).
However, it can be checked that initially stateless bisimilarity is indeed a congruence. The reason
is that although deduction rule (3) violates data-dependency constraint 1, the violating change in
the data is harmless since x1’s are now related using all data states including d ′ (e.g., the above
counterexample does not work anymore since it does not hold that a↔isl b).

This gives us some clue that for initially stateless bisimilarity, we may weaken the data-depen-
dency constraints.

Definition 28 (Sfisl). A deduction rule dr of the following form

(dr)
{(ti, ui) li→ri (yi, u

′
i) | i ∈ I}

(f(x0, . . . , xn−1), u)
l→r (t

′, u′)
,

is in sfisl format (for Standard Format for Initially StateLess bisimulation) if it is in process-tyft
format and satisfies the following local (relaxed) data-dependency constraints:

(1) If a variable yi ∈ Yp appears in t′, then u′ = ui;
(2) If a variable yi ∈ Yp appears in some tj , then uj = u′i .

Note that the above two constraints are the same as constraints 2 and 4 inDefinition 19. However,
the two other data-dependency constraints of Definition 19 that were required for variables from
the set Xp, need not be satisfied for this format anymore. The reason of violating these constraints is
that we rely on the fact that certain positions are instantiated by process terms that are related for
all possible data. To formalize this concept, first we define positions for which the two constraints
are violated and then we check the global consequences of this violation.

Definition 29. A variable x ∈ Xp is called unresolved if

∃i∈I (x ∈ vars(ti)⇒ u /= ui) ∨ (x ∈ vars(t′)⇒ u /= u′).

We define X u
p to be the set of unresolved variables from the set Xp.

For each process function f , we define a set IV f that contains indices of f for which we need
initially stateless bisimilarity because a data-dependency is violated with respect to the variable that
occurs in that position in the source of the conclusion. The set IV f contains at least the indices of
the unresolved variables of the f -defining deduction rules, but it may contain more indices due to
the use of f in other deduction rules in the target of the conclusion or the source of a premise.
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Definition 30. For a given transition system specification in process-tyft format, we define, for all
f ∈ �p, IV f as a minimal set that satisfies, for all f -defining deduction rules dr:

(1) the indices of unresolved variables (i.e., variables from X u
p ) of dr are in IV f ;

(2) for all n-ary process functions g ∈ �p: for each occurrence of a process term g(t0, . . . , tn−1) in
the source of a premise or the target of the conclusion of dr:

∀i∈IV g∀x∈vars(ti)∃j∈IV f x = xj.

Note that with the above definition, it is possible that such a set does not exist. In such cases, the
global data-dependency constraint given below cannot be established. The following two examples
illustrate existence and absence of IV f .

Example 31. Consider the transition system specification of Example 27, in deduction rule (3), var-
iable x1 is unresolved, and thus 1 ∈ IV f . For the deduction rules defining the two constants a and
b, there are no unresolved variables and IV a = IV b = ∅. The second global condition is trivially
satisfied for all IV sets.

Example 32.Consider the following transition system specification with process constants a, b, and
c, unary process functions f and g, and data constants d , d ′, and d ′′.

(1)
(a, d)

l→ (b, d ′)
, (2)

(b, d)
l→ (c, d ′)

, (3)
(c, d ′′) l→ (c, d ′′)

,

(4)
(x0, d)

l→ (y0, d ′)

(f(x0), d)
l→ (g(y0), d ′)

, (5)
(g(x0), d ′)

l→ (x0, d ′′)
.

In deduction rule (5), variable x0 is unresolved and hence 0 ∈ IV g. However, global constraint 2
requires that in deduction rule (4), y0 = x0 which is a contradiction (since 0 ∈ IV g, y0 ∈ vars(y0)
and f is a unary process function). Hence, we may conclude that no consistent IV g exists. In fact,
one can check that initially stateless is not a congruence for the above transition system specifica-
tion, as it holds that a↔isl b but not f(a)↔isl f(b) ((f(a), d) after two steps arrives in (b, d

′′) which
deadlocks but (f(b), d) arrives in (c, d ′′) which can perform self-transitions).

Definition 33 (Sfisl). A transition system specification is in sfisl format if all its deduction rules are
in sfisl format and furthermore for each process function f the set IV f exists.

Informally, this means that a deduction rule may change the data state associated with a process
term (arbitrarily) if according to the other rules, the process term is guaranteed to be among the
initial arguments of the topmost process function (thus, benefitting from the initially stateless bi-
similarity assumption). The positions of a process function f benefitting from the initially stateless
bisimilarity assumption are thus denoted by IV f .

Theorem 34. If a transition system specification is in sfisl format, then initially stateless bisimilarity is
a congruence for that transition system specification.
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Before we prove this theorem, we first define the closure of a relation under initially stateless
congruence and give and prove a lemma that is very useful in the proof of Theorem 34.

Definition 35 (closure with initially stateless congruence). Let R ⊆ (C(�p)× C(�d))× (C(�p)×
C(�d)). We define the relation R ⊆ (C(�p)× C(�d))× (C(�p)× C(�d)) to be the smallest rela-
tion that satisfies:

(1) R is reflexive;
(2) R ⊆ R;
(3) ((f(p 0, . . . , pn−1), d), (f(q0, . . . , qn−1), d)) ∈ R for all n-ary f ∈ �p, d ∈ C(�d), and all p 0, . . . ,
pn−1, q0, . . . , qn−1 ∈ C(�p) such that
(a) ∀i /∈IV f ((pi, d), (qi, d)) ∈ R;
(b) ∀i∈IV f ,d ′∈C(�d)((pi, d

′), (qi, d ′)) ∈ R.

For a process term t, we define the set V(t) to be the set of variables that appear in the places
indicated by the sets IV f (for all f ).

V(x) = ∅,
V(f(t0, . . . , tn−1)) = ⋃

0�i<n,i∈IV f
vars(ti) ∪ ⋃

0�i<n,i /∈IV f
V(ti).

Lemma 36. Let R ⊆ (C(�p)× C(�d))× (C(�p)× C(�d)), t ∈ T(�p), d ∈ C(�d). For any two pro-
cess substitutions � and �′ such that

(1) ((�(x), d ′), (�′(x), d ′)) ∈ R for all x ∈ V(t), d ′ ∈ C(�d), and
(2) ((�(x), d), (�′(x), d)) ∈ R for all x ∈ vars(t) \ V(t);

we have ((�(t), d), (�′(t), d)) ∈ R.
Proof. By induction on the structure of process term t. In case t is a variable, say x, we obtain
�(t) = �(x) and �′(t) = �′(x) and V(t) = V(x) = ∅. As x ∈ vars(t) \ V(t), we have ((�(x), d),
(�′(x), d)) ∈ R and therefore ((�(t), d), (�′(t), d)) ∈ R as well.
In case t is a constant, say c, we obtain �(t) = �(c) = c = �′(c) = �′(t). Then, from reflexivity of

R, it follows immediately that ((�(t), d), (�′(t), d)) ∈ R.
Finally, consider the case where t = f(t0, . . . , tn−1) for some n-ary (n � 1) function symbol f ∈ �p

and ti ∈ T(�p) (0 � i < n). If we prove

((�(ti), d), (�′(ti), d)) ∈ R (1)

for all i /∈ IV f , and
((�(ti), d ′), (�′(ti), d ′)) ∈ R (2)

for all i ∈ IV f and d ′ ∈ C(�d), then ((�(t), d), (�′(t), d)) ∈ R according to Definition 35.
For the first part, assume that i /∈ IV f . Then, by definition of V , we have V(ti) ⊆ V(t). Therefore,

by the first assumption on � and �′ of Lemma 36, we have ((�(x), d ′), (�′(x), d ′)) ∈ R for all x ∈ V(ti)
and d ′ ∈ C(�d). By the first and second assumption and the fact that vars(ti) \ V(ti) ⊆ vars(t), we
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have ((�(x), d), (�′(x), d)) ∈ R for all x ∈ vars(ti) \ V(ti). Thus, by the induction hypothesis, we have
((�(ti), d), (�′(ti), d)) ∈ R.
For the second part, assume that i ∈ IV f and that d ′ ∈ C(�d). From the definition of V we ob-

tain vars(ti) ⊆ V(t). Hence, by the first assumption on � and �′ of Lemma 36, we have ((�(x), d ′),
(�′(x), d ′)) ∈ R for all x ∈ vars(ti). Thus, by the inductionhypothesis,wehave ((�(ti), d ′), (�′(ti), d ′))∈
R. �
Proof of Theorem 34. It suffices toprove that initially statelessbisimilarity is a congruence for eachof
the process functions of�p. Let f ∈ �p be an n-ary process function. Let pi and qi be closed process
terms for 0 � i < nand let d ∈ C(�d). Suppose thatpi ↔isl qi for 0 � i < n. Thismeans that there are
state-based bisimulation relations Ri (for 0 � i < n) such that ((pi, d), (qi, d)) ∈ Ri for all d ∈ C(�d).
Let R be the union of these relations Ri: R = ⋃n

i=0 Ri . Obviously R is also a state-based bisimulation
relation. We prove that the relation R contains the pair ((f(p 0, . . . , pn−1), d), (f(q0, . . . , qn−1), d)),
for all d ∈ C(�d), and that it is a state-based bisimulation relation.
As ((pi, d), (qi, d)) ∈ Ri andRi ⊆ R ⊆ R, for all 0 � i < n and all d ∈ C(�d), it follows that ((pi, d),

(qi, d)) ∈ R, for all 0 � i < n and all d ∈ C(�d). Hence, by the definition of R obviously also
((f(p 0, . . . , pn−1), d), (f(q0, . . . , qn−1), d)) ∈ R, for d ∈ C(�d).
So, we only have to prove the following for any ((p , d), (q, d)) ∈ R: if for arbitrary →r , l, p ′ and

d ′, (p , d) l→r (p
′, d ′), then there exists a q′ such that (q, d) l→r (q

′, d ′) and ((p ′, d ′), (q′, d ′)) ∈ R and
vice versa for transitions of q. Due to symmetry, it suffices to provide the proofs for the transitions
of p only.
We prove this by induction on the depth of the proof of a transition. We do not show the proof

for the induction base as it is an instance of the proof of the induction step where there are no
premises.
For the induction step, we distinguish three cases based on the structure of the definition of R. In

case the pair ((p , d), (q, d)) is contained in R due to reflexivity of R or due to the requirement that R
contains R, the proof is obvious (and requires no induction at all). For the remaining case, we find
p = f(p 0, . . . , pn−1) and q = f(q0, . . . , qn−1) for some p 0, . . . , pn−1, q0, . . . , qn−1 such that

∀i /∈IV f ((pi, d), (qi, d)) ∈ R (3)

and

∀i∈IV f ,d ′∈C(�d)((pi, d
′), (qi, d ′)) ∈ R. (4)

The last step of the proof of the transition of p is due to the application of a deduction rule of the
following form:

{(ti, ui) li→ri (yi, u
′
i) | i ∈ I}

(f(x0, . . . , xn−1), u)
l→r (t

′, u′)
.

This means that there are a process substitution � and a data substitution � such that �(xi) = pi for
all 0 � i < n, �(u) = d , �(t′) = p ′ and �(u′) = d ′. Furthermore, for each i ∈ I , there exists a proof of
(�(ti), �(ui))

li→ri (�(yi), �(u
′
i)) with smaller depth.

Since we have assumed acyclicity of the variable dependency graph, we can define a rank, rank(x),
for each variable x, as the maximum length of a backward chain starting from x in the variable
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dependency graph. The rank of a premise is the rank of its target variable. Then, for each x ∈ vars(ti)
of each premise (ti, ui)

li→ri (yi, u
′
i) of the deduction rule, it holds that rank(x) < rank(yi).

We define the process substitution �′ as follows:

�′(x) =
{
qi if x = xi,

�(x) if x /∈ Xp ∪ Yp.
Note that thus far this process substitution is not defined for variables from Yp. We extend this
definition while proving, by induction on the rank of a premise r, three essential properties: for all
r, for all i ∈ I such that rank(yi) = r,

(1) ((�(ti), �(ui)), (�′(ti), �(ui))) ∈ R;
(2) (�′(ti), �(ui))

li→ri (�
′(yi), �(u′i));

(3) ((�(yi), �(u′i)), (�′(yi), �(u′i))) ∈ R.

Again, we do not show the proof of the induction base (r = 0) as it is an instance of the proof of
the induction step.

For the induction step, suppose r � 1. Let (ti, ui)
li→ri (yi, u

′
i) for some i ∈ I be a premise of rank

r. First, we prove property (1). We aim at using Lemma 36. Hence we prove

∀x∈vars(ti)\V(ti)((�(x), �(ui)), (�′(x), �(ui))) ∈ R (5)

and

∀x∈V(ti),d ′′∈C(�d)((�(x), d
′′), (�′(x), d ′′)) ∈ R (6)

by induction on the structure of term ti .

(1) Suppose that ti is a variable, say x. Then vars(ti) \ V(ti) = {x} \ ∅ = {x}. For the first property,
we distinguish three cases:
• x /∈ Xp and x /∈ Yp. Then, we have �(ti) = �′(ti). Since R is reflexive we obtain ((�(x), �(ui)),
(�′(x), �(ui))) ∈ R.

• x ∈ Yp. Then x = yj for some j ∈ I . Hence, by local data-dependency constraint 2,
ui = u′j . Observe that rank(yj) < r. By the induction hypothesis (property (3)), we have
((�(yj), �(u′j)), (�′(yj), �(u′j))) ∈ R. Hence, as yj = x and �(uj) = �(ui), we have ((�(x), �(ui)),
(�′(x), �(ui))) ∈ R.

• x ∈ Xp. Then, x = xj for some 0 � j < n. We distinguish two cases:
◦ j ∈ IV f . Then, we use assumption (4) to obtain the desired ((�(x), �(uj)), (�′(x), �(uj))) ∈ R;
◦ j /∈ IV f . Then by assumption (3) we have ((pj , d), (qj , d)) ∈ R. By definition of IV we obtain
that xj is not an unresolved variable. Hence, by definition of unresolved variables, we have
ui = u. Hence d = �(u) = �(ui). Thus, we have ((�(x), �(ui)), (�′(x), �(ui))) ∈ R.

The second property holds trivially, as V(ti) = ∅.
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(2) Suppose that ti is a process constant, say c. Then both properties hold trivially, as vars(ti) = ∅
and V(ti) = ∅.

(3) Suppose that ti = g(t′0, . . . , t
′
n′−1) for some n

′-ary process function g ∈ �p and t′j ∈ T(�p) for
0 � j < n′. For the first property observe that x ∈ vars(ti) \ V(ti) implies that x ∈ vars(t′j) \ V(t′j)
for some j /∈ IV g. By the induction hypothesis (first property), we then have ((�(x), �(ui)),
(�′(x), �(ui))) ∈ R.
For the second property observe that x ∈ V(ti) implies (1) x ∈ vars(t′j) for some 0 � j < n′
such that j ∈ IV g; or (2) x ∈ V(t′j) for some j /∈ IV g. In the first case, the global data-de-
pendency constraint requires that x = xk for some 0 � k < n such that k ∈ IV f . We have
�(x) = pk and �′(x) = qk . Using assumption (4) we then obtain ((�(x), d ′′), (�′(x), d ′′)) ∈ R for
all d ′′ ∈ C(�d). In the second case, by the induction hypothesis (second property), we have
((�(x), d ′′), (�′(x), d ′′)) ∈ R for all d ′′ ∈ C(�d).

From property (1), we have that ((�(ti), �(ui)), (�′(ti), �(ui))) ∈ R. We also have a proof of smaller

depth for (�(ti), �(ui))
li→ri (�(yi), �(u

′
i)). Then, by the induction hypothesis, we have the existence of

a process term q′i such that (�′(ti), �(ui))
li→ri (q

′
i, �(u

′
i)) and ((�(yi), �(u

′
i)), (q

′
i, �(u

′
i))) ∈ R. We choose

�′(yi) to be q′i . Observe that this proves existence of an appropriate process term �′(yi). This con-
cludes the proof of properties (2) and (3).
Now, we finish our reasoning using process substitution �′ and the same data substitution and

deduction rule. Observe that indeed �′(f(x0, . . . , xn−1)) = f(q0, . . . , qn−1) = q. By property (2) we
have proven that there exist proofs for all premises using the process substitution �′ and data
substitution �. Then, according to the same deduction rule and using �′ instead of �, we have

(�′(f(x0, . . . , xn−1)), �(u))
l→r (�

′(t′), �(u′)). Since �′(f(x0, . . . , xn−1)) = f(q0, . . . , qn−1) = q, �(u) = d

and �(u′) = d ′ we obtain (q, d) l→r (�
′(t′), d ′).

We only have to show that ((�(t′), d ′), (�′(t′), d ′)) ∈ R. We aim at using Lemma 36. Hence we
prove

∀x∈vars(t′)\V(t′)((�(x), d ′), (�′(x), d ′)) ∈ R (7)

and

∀x∈V(t′),d ′′∈C(�d)((�(x), d
′′), (�′(x), d ′′)) ∈ R (8)

by induction on the structure of term t′.

(1) Suppose that t′ is a variable, say x. Then vars(t′) \ V(t′) = {x} \ ∅ = {x}. For the first property,
we distinguish three cases:
• x /∈ Xp and x /∈ Yp. Then, we have �(ti) = �′(ti). Since R is reflexive we obtain ((�(x), d ′),
(�′(x), d ′)) ∈ R.

• x ∈ Yp. Then x = yj for some j ∈ I . Hence, by local data-dependency constraint 1, u′ = u′j . By
property (3), we have ((�(yj), �(u′j)), (�′(yj), �(u′j))) ∈ R. Hence, as yj = x and �(uj) = �(u′) =
d ′, we have ((�(x), d ′), (�′(x), d ′)) ∈ R.
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• x ∈ Xp. Then, x = xj for some 0 � j < n. We distinguish two cases:
◦ j ∈ IV f . Then, we use assumption (4) to obtain the desired ((�(x), d ′)), (�′(x), d ′)) ∈ R;
◦ j /∈ IV f , then by assumption (3) we have ((pj , d), (qj , d)) ∈ R. By definition of IV we obtain
that xj is not an unresolved variable. Hence, by definition of unresolved variables, we have
u′ = u. Hence d = �(u) = �(u′) = d ′. Thus, we have ((�(x), d ′), (�′(x), d ′)) ∈ R.

The second property holds trivially, as V(t′) = ∅.
(2) Suppose that t′ is a process constant, say c. Then both properties hold trivially, as vars(t′) = ∅

and V(t′) = ∅.
(3) t′ = g(t′0, . . . , t

′
n′−1) for some n

′-ary process function g ∈ �p and t′j ∈ T(�p) for 0 � j < n′. For
the first property observe that x ∈ vars(t′) \ V(t′) implies that x ∈ vars(t′j) \ V(t′j) for some j /∈
IV g. By the induction hypothesis (first property), we then have ((�(x), d ′), (�′(x), d ′)) ∈ R.
For the second property observe that x ∈ V(t′) implies (1) x ∈ vars(t′j) for some 0 � j < n′
such that j ∈ IV g; or (2) x ∈ V(t′j) for some j /∈ IV g. In the first case, the global data-de-
pendency constraint requires that x = xk for some 0 � k < n such that k ∈ IV f . We have
�(x) = pk and �′(x) = qk . Using assumption (4) we then obtain ((�(x), d ′′), (�′(x), d ′′)) ∈ R for
all d ′′ ∈ C(�d). In the second case, by the induction hypothesis (second property), we have
((�(x), d ′′), (�′(x), d ′′)) ∈ R for all d ′′ ∈ C(�d).

So this concludes the proof of Theorem 34. �
Example 37. Consider the transition system specification of Example 4. Obviously the deduction
rules are in process-tyft format. They also satisfy the sfisl format as no variables introduced in the
target of any premise are used in the source of a premise or in the target of the conclusion. Variable
x1 in deduction rule (5) is unresolved. Hence, we obtain IV f ⊇ {1}. As the process function f is not
used in any other deduction rule we find IV f = {1}. Obviously, for all process constants we find that
the set IV is empty: IV a = IV b = IV c = ∅. Hence, the transition system specification is also in sfisl
format. From this we conclude that initially stateless bisimilarity is a congruence.

In the next two examples, we show that none of the two constraints of sfisl can be relaxed in any
conceivable way.

Example 38. Consider the following transition system specification (with process constants a, b,
c, and c′, unary process function f , and data constants d and d ′) and the following deduction
rules:

(1)
(a, d)

l→ (c, d)
, (2)

(b, d)
l→ (c′, d)

,

(3)
(c, d ′) l→ (c, d ′)

, (4)
(x, v)

l→ (y , d)

(f(x), v)
l→ (y , d ′)

.

The deduction rules (1)–(3) are in sfisl format, trivially. Deduction rule (4) does not satisfy local
data-dependency constraint 1, since y ∈ Yp but d /= d ′. Local data-dependency constraint 2 and the
global data-dependency constraint are satisfied (with IV f = ∅).
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That initially stateless bisimilarity is not a congruence w.r.t. f can be seen as follows: we have that
a↔isl b, but not that f(a)↔isl f(b) since (f(a), d) can perform a transition to (c, d ′) while (f(b), d)
is forced to perform the same transition to (c′, d ′) and it does not hold that (c, d ′)↔sb (c

′, d ′).

Example 39. Consider the transition system specification from Example 38 with deduction rule (4)
replaced by

(4)
(x, v)

l→ (y , v′) (y , d ′) l→ (y ′, v′′)

(f(x), v)
l→ (y ′, v′′)

.

The deduction rules (1)–(3) are in sfisl format, trivially. Deduction rule (4) satisfies local data-de-
pendency constraint 1 of sfisl, but local data-dependency constraint 2 is not satisfied as y ∈ Yp but
d ′ /= v′. The global data-dependency constraint is satisfied by this transition system specification.
That initially stateless bisimilarity is not a congruence w.r.t. f can be seen as follows: a↔isl b

holds, but it does not hold that f(a)↔isl f(b) since (f(a), d) is able to perform an l transition (due
to rules (4), (3), and (1)) while (f(b), d) deadlocks.

4.4. Comparing congruence results

When motivating different notions of bisimilarity, we stated that state-based bisimilarity is con-
sidered the weakest (least distinguishing) and least robust notion of bisimilarity with respect to data
change. This statement, especially the least robust part, may suggest that if for a transition system
specification state-based bisimilairty is a congruence, stateless and initially stateless bisimilarity are
trivially congruences, aswell. This conjecture can be supported by the standard formats thatwe gave
in this section where the state-based format is the most restrictive and stateless is the most relaxed
one. Surprisingly, this conclusion is not entirely true. It turns out that congruence for state-based
bisimilarity is indeed stronger than congruence for initially stateless bisimilarity but incomparable
to congruence for stateless bisimilarity. A similar incomparability result holds for congruence for
initially stateless bisimilarity versus stateless bisimilarity, as well.
The following two examples show that congruence results for state-based bisimilarity and state-

less bisimilarity are incomparable. In other words, there are both cases in which one of the two
notions is a congruence and the other is not.

Example 40. Consider the following transition system specification (with process constants a and
b, unary process function f , and data constants d and d ′) and the following deduction rules:

(1)
(a, d ′) l→ (a, d ′)

, (2)
(f(a), d)

l→ (a, d ′)
.

In the above transition system specification, the process constants a and b are not stateless bisimilar
and hence, congruence of stateless bisimilarity follows trivially. However, we have (a, d)↔sb (b, d),
but not (f(a), d)↔sb (f(b), d). Hence, congruence of state-based bisimilarity does not hold.

Example 41.Consider the following transition system specification (with process constants a, b, and
c, unary process function f , and data constants d and d ′) and the following deduction rules:
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(1)
(c, d ′) l

′→ (c, d ′)
, (2)

(f(a), d)
l→ (b, d)

,

(3)
(f(b), d)

l→ (c, d)
, (4)

(f(c), d)
l→ (a, d)

.

State-based bisimilarity is obviously a congruence though the transition system specification does
not satisfy the proposed format. Now, consider the processes a and b. These two processes are
stateless bisimilar, however, f(a) and f(b) are not stateless bisimilar, since (f(a), d) can make a
transition to (b, d), whereas (f(b), d) is forced to make a transition to (c, d). Clearly, b and c are not
stateless bisimilar (due to their difference w.r.t. data state d ′).

The following lemma states that if state-based bisimilarity is a congruence, then initially stateless
bisimilarity is a congruence as well.

Lemma 42. For a transition system specification, if state-based bisimilarity is a congruence, then ini-
tially stateless bisimilarity is a congruence, as well.

Proof. Suppose that pi ↔isl qi for 0 � i < n. By definition this means that there exist state-based
bisimulation relations Ri such that ((pi, d), (qi, d)) ∈ Ri for all d . Since state-based bisimilarity is a
congruence (by assumption), we have, for each d , the existence of a state-based bisimulation relation
Sd such that ((f(p 0, . . . , pn−1), d), (f(q0, . . . , qn−1), d)) ∈ Sd . Let S = ⋃

d Sd , and observe that S is a
state-based bisimulation relation such that, for all d , ((f(p 0, . . . , pn−1), d), (f(q0, . . . , qn−1), d)) ∈ S .
This means that f(p 0, . . . , pn−1) ↔isl f(q0, . . . , qn−1). �

Corollary 43. If a transition system specification is in sfsb format, then initially stateless bisimilarity
is a congruence for it.

Lemma 42 shows that congruence for initially stateless bisimilarity is either stronger than or
incomparable to congruence for stateless bisimilarity (since in Example 41, we have already shown
that there exists a case were state-based bisimilarity, thus initially stateless bisimilarity, is a congru-
ence but stateless bisimilarity is not). To prove the incomparability result, we need a counterexample
where stateless bisimilarity is a congruence but initially stateless bisimilarity is not (the counterex-
ample of Example 40 does not work in this case). The following example establishes this fact.

Example 44.Consider the following transition system specification (with process constants a, b, and
c, unary process function f , and data constants d and d ′) and the following deduction rules:

(1)
(a, d ′) l→ (a, d)

, (2)
(b, d ′) l→ (c, d ′)

, (3)
(c, d)

l→ (c, d)
,

(4)
(f(a), d)

l→ (c, d)
, (5)

(f(b), d ′) l→ (c, d ′)
.

According to the above transition system specification, none of the three constants a, b and c are
stateless bisimilar, thus congruence of stateless bisimilarity is obvious. However, we have a↔isl b

but not f(a)↔isl f(b).
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So, to conclude, we have proved in this section, that congruence for state-based bisimilarity
implies congruence for initially stateless bisimilarity (and not vice versa). However, proving con-
gruence for stateless bisimilarity does not necessarily mean anything for congruence for the two
other notions.

4.5. Seasoning the process-tyft format

The deduction rules in all three proposed formats are of the following form:

{(ti, ui) li→ri (yi, u
′
i) | i ∈ I}

(f(x0, . . . , xn−1), u)
l→r (t, u′)

.

Using this formwe cannot go far with proving congruence properties of existing theories since there
are many other constructs and patterns that are not present in the above format. In this section, we
show how to exploit the formats in presence of such constructs.

4.5.1. Deduction rules in tyxt format
A common type of deduction rules used in transition system specifications is the tyxt form which

has the following structure:

(dr)
{(ti, ui) li→ri (yi, u

′
i) | i ∈ I}

(x, u)
l→r (t

′, u′)
.

Rules of the above form fit within the tyft form if we replace it with a copy the above rule for each
function symbol f ∈ �p with (arbitrary) arity n where all occurrences of x are substituted with
f(x0, . . . , xn−1) with xi /∈ vars(dr) for 0 � i < n:

(drf )
{(ti[f(x0, . . . , xn−1)/x], ui) li→ri (yi, u

′
i)|i ∈ I}

(f(x0, . . . , xn−1), u)
l→r (t

′[f(x0, . . . , xn−1)/x], u′)
.

Observe that the resulting deduction rule is in process-tyft format indeed. In [23], it is shown that
the original transition system specification and the unfolded one are transition equivalent (meaning
that the same transitions can be derived).
For our congruence results there is no problem in also allowing deduction rules in tyxt format.

It is not necessary to explicitly transform the transition system specification as described above
to apply our congruence results for stateless and state-based bisimilarity since deduction rules in
tyxt format transform into deduction rules in process-tyft format and since any data-dependency
constraint involving x in the original deduction rule is replaced by data-dependency constraints
involving the xi variables in the unfolded deduction rule and vice versa.
Checking whether initially stateless bisimilarity is a congruence is not as straightforward due

to the global data-dependency constraint. There are two simple solutions. First, check whether
state-based bisimilarity is a congruence; if so, so is initially stateless bisimilarity. Or second, check
congruence of initially stateless bisimilarity on the unfolded transition system specification.
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4.5.2. Deduction rules with predicates
Another common phenomenon is the presence of predicates. Predicates of the form P(t, u) may

be present in the premises or the conclusion of a deduction rule. Thus, we allow deduction rules of
the following forms:

(dr1)
{(ti, ui) li→ri (yi, u

′
i)|i ∈ I} ∪ {Pj(t′j , vj) | j ∈ J }

(f(x0, . . . , xn−1), u)
l→r (t

′, u′)

and

(dr2)
{(ti, ui) li→ri (yi, u

′
i)|i ∈ I} ∪ {Pj(t′j , vj) | j ∈ J }

P(f(x0, . . . , xn−1), u)
.

Predicates can be dealt with in the above formats, as if they are source of a transition relation.
This can be formally proved by introducing a fresh dummy transition relation for each predicate
and replacing occurrences of that predicate in premises by this transition relation with a target
consisting of a fresh dummy process variable and a fresh dummy data variable and occurrences
in conclusions by this transition relation with a state consisting of a fresh process constant and a
fresh data constant in the target. This transformation is similar to the transformation from [5] for
the path format.
Hence, a deduction rule of the form (dr1) is replaced by a deduction rule of the form

(dr′1)
{(ti, ui) li→ri (yi, u

′
i)|i ∈ I} ∪ {(t′j , vj)RPj (zj ,wj) | j ∈ J }

(f(x0, . . . , xn−1), u)
l→r (t

′, u′)
,

where the zj are all different process variables that did not occur in (dr1) and the wj are all different
data variables that did not occur in (dr1).
A deduction rule of the form (dr2) is replaced by a deduction rule of the form

(dr′2)
{(ti, ui) li→ri (yi, u

′
i)|i ∈ I} ∪ {(t′j , vj)RPj (zj ,wj) | j ∈ J }

(f(x0, . . . , xn−1), u)RP (a, d)
.

where additionally a is a process constant such that a /∈ �p and d is a data constant such that
d /∈ �d.
As before, this transformation does not have to be carried out explicitly. Observe that the original

transition system specification is in process-tyft format (by considering the arguments of the pred-
icates as sources of premises and conclusions) iff the transformed transition system specification is
in process-tyft format. Thus, stateless bisimilarity is a congruence for the original transition system
specification iff it is a congruence for the transformed transition system specification.
With respect to the sfsb format, observe that the sources of data-dependencies are the same for

the original rules and the transformed rules. This is due to the decision to treat the argument of
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the predicates as sources of conclusions and premises. Also observe that there are new targets of
premises introduced by the transformation, but those only contain fresh variables and can therefore
never be used to satisfy a data-dependency constraint. Hence, the transformed transition system
specification satisfies the sfsb format iff the original transition system specification does.
For the local data-dependencies of the sfisl format a similar observation holds. For, the new

process constant a, we find IV a = ∅ and for all other process constants and functions we find that
the sets IV are the same for the original transition system specification and the transformed one.
Therefore, the transformed transition system specification satisfies the sfisl format iff the original
transition system specification does.

4.5.3. Deduction rules with negative premises
As argued byGroote [20], it is often convenient to describe that certain activity can be performed

based on the absence of certain actions. Thus, we allow for deduction rules of the following form:

(dr)
{(ti, ui) li→ri (yi, u

′
i) | i ∈ I} ∪ {(tj , uj) lj�rj | j ∈ J }

(f(x0, . . . , xn−1), u)
l→r (t

′, u′)
.

For such transition system specifications another definition is required of what a proof of a
transition is (see [20,39]). Not every transition system specification with negative premises defines a
transition relation. Different interpretations of negative premises can be considered (see [40]), but
here we adopt the interpretation put forward by [20]. A sufficient condition for the existence of a
transition relation is that the transition system specification is stratifiable.
A stratification is a metric on formulae that, for each deduction rule of the transition system

specification, does not increase from conclusion to all positive premises and strictly decreases from
conclusion to negative premises (i.e., if a stratification for all rules exists). For stratifiable transition
system specifications, our congruence results can be used safely.

5. Applications of the formats

In this section, some process languages from the literature for which an operational semantics is
provided by means of a transition system specification with a data state are considered.
For each of these languages, we establish which of the notions of bisimilarity introduced in this

article are used (possibly with a different formulation) and whether the deduction rules are in the
corresponding format. We focus on stateless bisimilarity and initially stateless bisimilarity as these
seem to be of most interest in these applications.

5.1. The coordination language Linda

In [11], the operational semantics of Linda is given using a combination of SOS rules and a
structural congruence. As this kind of transition system specification is not purely in the format
used in this article, we have transformed it in such a way that it fits the format (by extending the
language with a process constant 1). A formulation of this semantics without the constant 1 is also
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possible, but the resulting transition system specification is much larger. In this section, we apply
the proposed formats on the extended language. Process constants (atomic process terms) in this
language are 1 (for terminating process), ask(t) and nask(t) (for checking existence and absence of
tuple t in the shared data space, respectively), tell(t) (for adding tuple t to the space) and get(t) (for
taking tuple t from the space). Process composition operators in this language include non-deter-
ministic choice (+), sequential composition (;), and parallel composition (||). The data signature of
this language consists of a constant {} for the empty multiset and a class of unary function symbols
∪{t}, for all tuples t, denoting the union of a multiset with a singleton multiset containing tuple t.
The operational state of a Linda program is denoted by (p , ς)where p is a process term in the above
syntax and ς is a multiset modelling the shared data space.
The transition system specification defines one relation → and one predicate↓. Negative premis-

es and deduction rules in tyxt format are not used.
The deduction rules of our reformulation of the SOS for Linda from [11] are the following:

(1)
(1, ς) ↓ , (2)

(ask(t), ς ∪ {t})→ (1, ς ∪ {t}) ,

(3)
(tell(t), ς)→ (1, ς ∪ {t}) , (4)

(get(t), ς ∪ {t})→ (1, ς)
,

(5)
[t /∈ ς]

(nask(t), ς)→ (1, ς)
, (6)

(x0, ς) ↓
(x0 + x1, ς) ↓

, (7)
(x1, ς) ↓

(x0 + x1, ς) ↓
,

(8)
(x0, ς)→ (y , ς′)

(x0 + x1, ς)→ (y , ς′)
, (9)

(x1, ς)→ (y , ς′)
(x0 + x1, ς)→ (y , ς′)

,

(10)
(x0, ς)→ (y , ς′)

(x0 ; x1, ς)→ (y ; x1, ς′)
, (11)

(x0, ς) ↓ (x1, ς)→ (y , ς′)
(x0 ; x1, ς)→ (y , ς′)

,

(12)
(x0, ς)→ (y , ς′)

(x0||x1, ς)→ (y||x1, ς′)
, (13)

(x1, ς)→ (y , ς′)
(x0||x1, ς)→ (x0||y , ς′)

,

(14)
(x0, ς) ↓ (x1, ς) ↓
(x0 ; x1, ς) ↓

, (15)
(x0, ς) ↓ (x1, ς) ↓
(x0||x1, ς) ↓

.

Obviously these deduction rules are all in process-tyft format (with appropriate seasoning for
termination predicate ↓). As a consequence, stateless bisimilarity is a congruence. Initially stateless
bisimilarity is a congruence for all operators except parallel composition. Note that IV + = ∅ and
IV ; = {1}. Thus, initially stateless bisimilarity is a congruence for the sequential part of Linda.
Because congruence of initially stateless bisimilarity w.r.t. parallel composition cannot be con-

cluded using our format, we may wonder whether this result must have been expected. In the
following example, we show that this is indeed the case and the indications given by our format are
true (i.e., initially stateless bisimilarity is not a congruence for the languagewith parallel composition
operator).
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Example 45.Consider the processes p = ask(1) ; (nask(1) ; ask(2)) and q = ask(1) ; nask(1). Accord-
ing to the above transition system specification, it holds that p ↔isl q (in both processes, using an
arbitrary common initial state, either ask(1) executes followed by deadlock or both deadlock imme-
diately). However, if we compose each of the two processes in parallel with the process r = get(1),
then the two processes may behave differently for some data states. For example, consider the data
state {1, 2}. For this data state, one execution path of (p || r, {1, 2}) is: first executing ask(1) from p

successfully, then get(1) from r (thus, resulting in data state {2}), and executing nask(1) followed by
ask(2) successfully. However, all possible executions of (q || r, {1, 2}) can never make four consec-
utive transitions before termination. Thus, we conclude that initially stateless bisimilarity is not a
congruence with respect to the parallel composition.

5.2. The timed process algebra timed 3CRL

In [21], a timed extension of the language 3CRL, called timed 3CRL, is defined. In this section,
we consider a fragment of this language consisting of the following process constants and functions:

• process constants: 4, (a)a∈A;
• unary process functions:

(∑
x
_
)
x∈V

, (_↪t)t∈T ;
• binary process functions: _+ _, _ · _, (_  b ! _)b∈B, _ ‖ _.

The meaning of the sets A, V , T , and B, and the meaning of the process constants and functions
are irrelevant. The process functions that we do not consider here are either only introduced for
axiomatization purposes (‖ , | ,#) or renaming of actions (∂H , 8R, 9I ). The transition system spec-
ification defines the following predicates and relations:

• a ‘delay-predicate’ U ;
• a family of ‘action-termination’ predicates

(
_
a→�

)
a∈A;

• a family of ‘action-transition’ relations
(
_
a→ _

)
a∈A;

• a ‘time-transition’ relation _ ;→ _.

The data state consists of an element of the set T (reflecting time). In [21], U(p , t) is written as
U(t, p) and ( p , t )

a→� is written as ( p , t )
a→ (�, t ). In this section, we use the notations U(p , t)

and ( p , t )
a→�. The deduction rules are given below.

(1)
( a, t )

a→�
, (2)

U(a, t)
, (3)

U(4, t)
,

(4)
( x0, t )

l→�
( x0 + x1, t ) l→�
( x1 + x0, t ) l→�

, (5)
( x0, t )

l→ ( y , t )

( x0 + x1, t ) l→ ( y , t )

( x1 + x0, t ) l→ ( y , t )

,
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(6)
U(x0, t)

U(x0 + x1, t)
U(x1 + x0, t)

, (7)
( x0, t )

l→�
( x0 · x1, t ) l→ ( x1, t )

,

(8)
( x0, t )

l→ ( y , t )

( x0 · x1, t ) l→ ( y · x1, t )
, (9)

U(x0, t)

U(x0 · x1, t)
,

(10)
( x0, t )

l→� [|= b]
( x0  b ! x1, t ) l→�

, (11)
( x1, t )

l→� [$|= b]
( x0  b ! x1, t ) l→�

,

(12)
( x0, t )

l→ ( y , t ) [|= b]
( x0  b ! x1, t ) l→ ( y , t )

, (13)
( x1, t )

l→ ( y , t ) [$|= b]
( x0  b ! x1, t ) l→ ( y , t )

,

(14)
U(x0, t) [|= b]
U(x0  b ! x1, t)

, (15)
U(x1, t) [$|= b]
U(x0  b ! x1, t)

,

(16)
( x[e/v], t ) l→�( ∑

v
x, t

)
l→�

, (17)
( x[e/v], t ) l→ ( y , t )( ∑

v
x, t

)
l→ ( y , t )

, (18)
U(x[e/v], t)
U(

∑
v
x, t)

,

(19)
( x, t )

l→�
( x↪t, t )

l→�
, (20)

( x, t )
l→ ( y , t )

( x↪t, t )
l→ ( y , t )

, (21)
U(x, t) [t � t′]

U(x↪t′, t)
,

(22)
U(x, t′) [t < t′]
( x, t )

;→ (
x, t′

) ,

(23)
( x0, t )

l→� ( x1, t )
l′→� [<(l, l′) = l′′]

( x0 ‖ x1, t ) l′′→�
,

(24)
( x0, t )

l→�
( x0 ‖ x1, t ) l→ ( x1, t )

( x1 ‖ x0, t ) l→ ( x1, t )

, (25)
( x0, t )

l→ ( y , t )

( x0 ‖ x1, t ) l→ ( y ‖ x1, t )
( x1 ‖ x0, t ) l→ ( x1 ‖ y , t )

,

(26)
( x0, t )

l→� ( x1, t )
l′→ ( y , t ) [<(l, l′) = l′′]

( x0 ‖ x1, t ) l′′→ ( y , t ) ( x1 ‖ x0, t ) l′′→ ( y , t )
,
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(27)
( x0, t )

l→ ( y0, t ) ( x1, t )
l′→ ( y1, t ) [<(l, l′) = l′′]

( x0 ‖ x1, t ) l′′→ ( y0 ‖ y1, t )
,

(28)
U(x0, t) U(x1, t)

U(x0 ‖ x1, t)
.

Observe that in this transition system specification two relations and two predicates are used.
Negative premises do not occur, but there is a deduction rule in tyxt format.
The equivalence used in [21] for timed 3CRL process terms is timed bisimilarity, which coincides

with our notion of initially stateless bisimilarity. The definition of timed bisimilarity in [21] does
not require the delay predicate to be transferred between related processes. The notion of initially
stateless bisimilarity presented in this article is based on transferring all predicates and relations
used in the transition system specification. This difference is not problematic as it can easily be
proved that any two timed bisimilar process terms are also initially stateless bisimilar and vice
versa. Congruence of timed bisimilarity is claimed without proof in [21]. In [33], a reformulation of
the semantics of timed 3CRL is given in such a way that the data state is encoded into the process
terms at the expense of an auxiliary operator. Then, the notion of timed bisimilarity corresponds
with the traditional notion of bisimilarity, for which congruence is proven using traditional means.

Stateless bisimilarity. Note that although stateless bisimilarity is not considered in [21], from the
format of the deduction rules, congruence for this equivalence follows easily.

State-based bisimilarity. All deduction rules of timed 3CRL are in sfsb-format except for deduc-
tion rule (22). For this deduction rule, the data-dependency constraints 1 and 3 of sfsb are violated
in the target of the conclusion and the source of the (only) premise as x ∈ Xp but t′ /= t (note that da-
ta-dependency constraints 2 and 4 are respected by this rule). Hence, state-based bisimilarity cannot
be concluded to be a congruence for any of the non-nullary1 process functions of timed 3CRL.
Nevertheless, using traditional means one can quite easily establish that state-based bisimilarity

is a congruence for some of the operators, for example alternative composition.
Initially stateless bisimilarity. Before we discuss initially stateless bisimilarity in more detail we

emphasize that deduction rule (22) needs to be unseasoned before the format can be applied.
Deduction rule (22) maps to a collection of deduction rules of the form

(22f )
U(f(x0, . . . , xn−1), t′) [t < t′]

( f(x0, . . . , xn−1), t )
;→ (

f(x0, . . . , xn−1), t′
) ;

one for each n-ary process function f in the signature of timed 3CRL.
All deduction rules of timed 3CRL except for deduction rules derived from deduction rule (22)

for non-nullary process functions are in sfsb-format. Thus, with respect to the local constraints of
sfisl, only those derived deduction rules have to be considered.
Note that the set of variables Yp is empty for such a deduction rule. Hence, the local data-depen-

dency constraints of sfisl are satisfied trivially.

1 For nullary process functions there is no data-dependency at all.
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For an arbitrary function symbol f with arity n, the set of unresolved variables consists of the
indices of all arguments. As a consequence, IV f ⊇ {0, . . . , n− 1}. For all process functions, except
for sequential and parallel composition, the defining deduction rules do not contain any occurrenc-
es of process functions in the source of a premise or in the target of the conclusion. Hence, for all
those process functions, we obtain IV f is the set of all indices of f .
For sequential composition (deduction rule (8)) and parallel composition (deduction rules (25)

and (27)) the occurrences of y , y0, and y1 in the use of the process functions do not satisfy the
requirement that these should be initial variables (∈ Xp). Hence, for those process functions, the
set IV does not exist. Therefore, congruence of initially stateless bisimilarity w.r.t. those process
functions cannot be concluded. For the other process functions, as they are independently defined
operationally, congruence can be concluded.
We claim that a reformulation of the operational semantics of timed3CRLwithout the predicate

U along the following lines results in an ‘equivalent’ transition system specification for which the
sfisl format can be applied to obtain congruence:

( x0, t )
;→ (

y , t′
)

( x0 · x1, t ) ;→ ( y · x1, t )
,

( x0, t )
;→ (

y0, t′
)

( x1, t )
;→ (

y1, t′
)

( x0 ‖ x1, t ) ;→ (
y0 ‖ y1, t′

) .

The reason is that the first argument of sequential composition and both arguments of parallel
composition are no longer forced to be part of the set IV which avoids the problem with y , y0, and
y1 not being initial variables. Calculation of the sets IV · and IV ‖ gives: IV · = ∅ and IV ‖ = ∅.

5.3. The hybrid process algebra HyPA

In [14], a process algebra is presented for the description of hybrid systems, i.e., systems with both
discrete events and continuous change of variables. The process signature of HyPA consists of the
following process constants and functions:

• process constants: 4, 1, (a)a∈A, (c)c∈C ;
• unary process functions: (d % _)d∈D, (∂H (_))H⊆A;
• binary process functions: ⊕ , ' , � , � , ‖ , ‖ , and | .

Negative premises and rules in tyxt format are not used in this transition system specification.
We refrain from giving further information about the intended meaning of the sets A, C , and D,

and the meaning of the process constants and functions as these are irrelevant to the application
of our congruence theorems on this language. The data state consists of mappings from model
variables to values, denoted by Val. The data signature is not made explicit.
The transition system specification defines the following predicate and relations:

• a ‘termination’-predicate �;
• a family of ‘action-transition’ relations

(
_

l→ _
)
l∈A×Val;

• a family of ‘flow-transition’ relations
(
_
�� _

)
�∈T→Val

.
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Also, the meaning of the set T is irrelevant for our purposes. The deduction rules are given below.

(1)
( 1, = ) �

, (2)
( a, = )

a,=→ ( 1, = )
, (3)

[(=, �) |=f c] [dom(�) = [0, t]]
( c, = )

�� ( c, �(t) )
,

(4)
[(=, =′) |=r d]

(
x, =′

)
�

( d % x, = ) �
, (5)

[(=, =′) |=r d]
(
x, =′

) l→ (
y , =′′

)
( d % x, = )

l→ (
y , =′′

) ,

(6)
( x0, = ) �

( x0 ⊕ x1, = ) �
( x1 ⊕ x0, = ) �

, (7)
( x0, = )

l→ (
y , =′

)
( x0 ⊕ x1, = )

l→ (
y , =′

)
( x1 ⊕ x0, = )

l→ (
y , =′

)
,

(8)
( x0, = ) � ( y0, = ) �
( x0 ' y0, = ) �

, (9)
( x0, = )

l→ (
y , =′

)
( x0 ' x1, = )

l→ (
y ' x1, =′

) ,

(10)
( x0, = ) � ( x1, = )

l→ (
y , =′

)
( x0 ' x1, = )

l→ (
y , =′

) ,

(11)
( x0, = ) �

( x0� x1, = ) �
( x0� x1, = ) �

, (12)
( x0, = )

l→ (
y , =′

)
( x0� x1, = )

l→ (
y � x1, =′

)
( x0� x1, = )

l→ (
y � x1, =′

)
,

(13)
( x1, = ) �

( x0� x1, = ) �
, (14)

( x1, = )
l→ (

y , =′
)

( x0� x1, = )
l→ (

y , =′
) ,

(15)
( x0, = ) � ( x1, = ) �

( x0 ‖ x1, = ) � ( x0 | x1, = ) �
, (16)

( x0, = )
��

(
y0, =′

)
( x1, = )

��
(
y1, =′

)
( x0 ‖ x1, = ) ��

(
y0 ‖ y1, =′

)
( x0 | x1, = ) ��

(
y0 ‖ y1, =′

) ,

(17)
( x0, = )

��
(
y , =′

)
( x1, = ) �

( x0 ‖ x1, = ) ��
(
y , =′

)
( x1 ‖ x0, = ) ��

(
y , =′

)
( x0 | x1, = ) ��

(
y , =′

)
( x1 | x0, = ) ��

(
y , =′

)

, (18)
( x0, = )

a,=′→ (
y , =′′

)
( x0 ‖ x1, = ) a,=

′→ (
y ‖ x1, =′′

)
( x1 ‖ x0, = ) a,=

′→ (
x1 ‖ y , =′′

)
(
x0 ‖ x1, =

) a,=′→ (
y ‖ x1, =′′

)
,
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(19)
( x0, = )

a,=′→ (
y0, =′′

)
( x1, = )

a′,=′→ (
y1, =′′

) [a′′ = a < a′]
( x0 ‖ x1, = ) a

′′,=′→ (
y0 ‖ y1, =′′

)
( x0 | x1, = ) a

′′,=′→ (
y0 ‖ y1, =′′

)
,

(20)
( x, = )

a,=′→ (
y , =′′

) [a /∈ H ]
( ∂H (x) , = )

a,=′→ (
∂H (y) , =′′

) ,

(21)
( x, = )

��
(
y , =′

)
( ∂H (x) , = )

��
(
∂H (y) , =′

) , (22)
( x, = ) �

( ∂H (x) , = ) �
.

On HyPA process terms, in [14], a notion of robust bisimilarity is defined that, for HyPA,
coincides with our definition of stateless bisimilarity. Furthermore, in [13], for the purpose of
analyzing sequential HyPA processes (i.e., HyPA processes without operators for parallel com-
position), a notion of bisimilarity is defined that coincides with our notion of initially stateless
bisimilarity.

Stateless bisimilarity. One can easily observe that all deduction rules of HyPA are in the process-
tyft format. Hence, stateless bisimilarity is a congruence for all constant and function symbols from
the process signature of HyPA.

State-based bisimilarity. With respect to the notion of state-based bisimilarity, as defined in this
article, it can be established that state-based bisimilarity is a process-congruence for the constants of
HyPA, the alternative composition operator (⊕ ), and the encapsulation operator (∂H ()), based on
the format of the deduction rules. For the other operators however, this is not the case. Deduction
rules (4) (after unseasoning) and (5) violate data-dependency constraint 3.
Deduction rules (9), (12), and (18) for sequential composition (' ), disrupt (� ), and left-disrupt

(� ), and the parallel composition operators ( ‖ , ‖ , and | ) all violate data-dependency constraint
1 as the data-dependency for variable y in the target of the conclusion has no base in the source of
the conclusion.
One might wonder whether this means that our format for state-based bisimilarity is too restric-

tive in the sense that process-congruence cannot be concluded for many operators. This is not the
case, for none of these operators state-based bisimilarity is a process-congruence!

Initially stateless bisimilarity. In case we consider initially stateless bisimilarity, it turns out that
the deduction rules are all in sfisl. Hence, what remains is to check whether the global constraints
are satisfied. For this, we need to compute the sets IV f for each process function f of HyPA. For
alternative composition and encapsulation, we obtain IV ⊕ = IV ∂H () = ∅ as there are no unresolved
variables in the deduction rules defining these process functions and there are no process functions
used in sources of premises or targets of conclusions.
For re-initialization, due to the unresolvedness of variable x (at position 0) in deduction rules

(4) and (5), and the fact that no process functions are used in sources of premises or targets of
conclusions of re-initialization defining deduction rules, we have IV d% = {0}.
For sequential composition IV ' ⊇ {1} since x1 is unresolved in deduction rule (9). Also note that

in the same deduction rule sequential composition is used in the target of the conclusion. The term
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occurring as argument 1 of this use, x1, is the index 1 variable from the source of the conclusion
and hence this occurrence of sequential composition does not add to the set IV ' . As there are no
other process functions used in ' -defining deduction rules, we have IV ' = {1}. Using a similar
reasoning as for sequential composition, we obtain IV � = IV � = {1}.
For the parallel composition operators, based on the unresolvedness of variables in deduction

rule (18) we need IV ‖ ⊇ {0, 1} and IV ‖ ⊇ {1}. All parallel composition operators use parallel com-
position in the target of at least one of their defining deduction rules. This leads to the additional
requirement that all variables occurring in the use of parallel composition are from the set Xp. That
this is not the case can be seen easily by considering the deduction rules (18) and (19). Hence, it turns
out that the sets IV ‖ , IV ‖ , and IV | are not defined.
The transition system specification though does not respect the global constraints imposed by

sfisl. However, if we restrict to the part of HyPA without parallel composition operators, i.e., se-
quential HyPA, then we can conclude that initially stateless bisimilarity is a congruence. In fact,
in [13], our congruence theorem for initially stateless bisimilarity has been used to obtain this
result.
The fact that we cannot derive that initially stateless bisimilarity is a congruence w.r.t. the parallel

composition operators is not a weakness of our format. Also in this case, initially stateless bisimi-
larity is not a congruence w.r.t. parallel composition. An example of process terms illustrating this
for parallel composition is given in [13].

5.4. The discrete-event process language )�

In [10], the process language)� is presented. This language is used for the specification, simulation,
and validation of discrete-event systems.
The signature of )� consists of the following process constant and function symbols:

• process constants: 4, 1, skip, (?t)t∈T , (x := e)x∈V ,e∈E , (c!e)c∈C ,e∈E , (c?x)c∈C ,x∈V ;
• unary process functions: (b→ _)b∈B, _∗, (|[s | _]|)s∈S , (∂H )H⊆A, A, (9I )I⊆A;
• binary process functions: [], ;, ‖ .

In the transition system specification of this language both predicates and relations are used. For
both types of formulae negative occurrences as a premise appear in the semantics.
The notion of equivalence that is considered in [10] is (a different formulation of) stateless bi-

similarity. The authors attempt to prove that this equivalence is a congruence for the constant and
function symbols of )� by using the so-called relaxed PANTH format [25,4]. For that purpose
they consider the begin and end data state of a transition as part of the label of that transition.
This way their transition relations and predicates are defined on process terms (without data state).
A mistake they make is that in defining which formulae are negative formulae they do not con-
sider the start state as a part of the label. This means that their negative formulae and the ones
allowed by [25] are different. Therefore we have serious doubts as to the applicability of the relaxed
PANTH format to the given transition system specification of )� . Nevertheless, stateless bisimilar-
ity is a congruence since all deduction rules of the transition system specification are in process-tyft
format.
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6. Conclusion

In this article, we investigated the impact of the presence of a data state on notions of bisimi-
larity and standard congruence formats. To do this, we defined three notions of bisimilarity with
data and elaborated on their existing and possible uses. Then, we proposed three standard formats
that provide congruence results for these three notions. Furthermore, we briefly pointed out the
relationships between these notions and between the corresponding congruences. The proposed
formats are applied to several examples from the literature successfully. In this article, we illus-
trated the use of our format using a data coordination language, called Linda, and several process
algebras.
Extending the format for a parameterized notion of bisimilarity (with an explicit interference

relation or a symbolic/logical representation of interference possibilities) is another interesting ex-
tension which should follow the same line as our relaxation of state-based constraints to initially
stateless. Furthermore, wemay extend the theory to bisimulation relations which allow for different
data states but so far we have seen no practical application of such a bisimilarity notion. Inves-
tigating the possibility of applying the same techniques for congruence with respect to weaker
notions of bisimulation (e.g., branching bisimulation) is another interesting direction for our future
research.
We are currently investigating a bi-algebraic and categorical interpretation of notions of bisimu-

lation with data, following the approach of [37,38,35]. In this article, we have only proved sufficient
conditions for the notions of bisimulation with data to be a congruence. Although we have already
shown that no straightforward relaxation of our formats is possible, we could not prove that no
relaxation is possible at all. Using the abstract interpretation of semantic rules (as distributive laws),
bisimulation, and congruence in a co-algebraic settings, we might be able to investigate whether
our imposed formats are indeed necessary for congruence or they can be relaxed in any way.
Generating equational theories from transition systems specifications is another direction of our

ongoing research. Deriving algebraic axioms for SOS rules in [1,3] are among notable examples in
this direction which try to generate a set of sound and complete axioms for a given operational
semantics in a syntactic format. Both [1,3] assume the existence of a number of standard constants
and operators in the signature and we believe that these restrictions on the semantics can be relaxed
in several ways (even in a setting without data).
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