
Rule Formats for Determinism and
Idempotency?

Luca Aceto1, Arnar Birgisson1, Anna Ingolfsdottir1,
MohammadReza Mousavi2, and Michel A. Reniers2

1 School of Computer Science, Reykjavik University,
Kringlan 1, IS-103 Reykjavik, Iceland

2 Department of Computer Science, Eindhoven University of Technology,
P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands

Abstract. Determinism is a semantic property of (a fragment of) a
language that specifies that a program cannot evolve operationally in
several different ways. Idempotency is a property of binary composition
operators requiring that the composition of two identical specifications
or programs will result in a piece of specification or program that is
equivalent to the original components. In this paper, we propose two
(related) meta-theorems for guaranteeing determinism and idempotency
of binary operators. These meta-theorems are formulated in terms of syn-
tactic templates for operational semantics, called rule formats. We show
the applicability of our formats by applying them to various operational
semantics from the literature.

1 Introduction

Structural Operational Semantics (SOS) [18] is a popular method for assigning a
rigorous meaning to specification and programming languages. The meta-theory
of SOS provides powerful tools for proving semantic properties for such lan-
guages without investing too much time on the actual proofs; it offers syntactic
templates for SOS rules, called rule formats, which guarantee semantic proper-
ties once the SOS rules conform to the templates (see, e.g., the references [1, 16]
for surveys on the meta-theory of SOS). There are various rule formats in the
literature for many different semantic properties, ranging from basic properties
such as commutativity [14] and associativity [6] of operators, and congruence of
behavioral equivalences (see, e.g., [22]) to more technical and involved ones such
as non-interference [19] and (semi-)stochasticity [12]. In this paper, we propose
rule formats for two (related) properties, namely, determinism and idempotency.

Determinism is a semantic property of (a fragment of) a language that speci-
fies that a program cannot evolve operationally in several different ways. It holds
? The work of Aceto, Birgisson and Ingolfsdottir has been partially supported by

the projects “The Equational Logic of Parallel Processes” (nr. 060013021), and
“New Developments in Operational Semantics” (nr. 080039021) of the Icelandic
Research Fund. Birgisson has been further supported by a research-student grant
nr. 080890008 of the Icelandic Research Fund.

for sub-languages of many process calculi and programming languages, and it is
also a crucial property for many formalisms for the description of timed systems,
where time transitions are required to be deterministic, because the passage of
time should not resolve any choice.

Idempotency is a property of binary composition operators requiring that
the composition of two identical specifications or programs will result in a piece
of specification or program that is equivalent to the original components. Idem-
potency of a binary operator f is concisely expressed by the following algebraic
equation.

f(x, x) = x

Determinism and idempotency may seem unrelated at first sight. However, it
turns out that in order to obtain a powerful rule format for idempotency, we need
to have the determinism of certain transition relations in place. Therefore, having
a syntactic condition for determinism, apart from its intrinsic value, results in a
powerful, yet syntactic framework for idempotency.

To our knowledge, our rule format for idempotency has no precursor in the
literature. As for determinism, in [8], a rule format for bounded nondeterminism
is presented but the case for determinism is not studied. Also, in [20] a rule
format is proposed to guarantee several time-related properties, including time
determinism, in the settings of Ordered SOS. In case of time determinism, their
format corresponds to a subset of our rule format when translated to the setting
of ordinary SOS, by means of the recipe given in [13].

We made a survey of existing deterministic process calculi and of idempotent
binary operators in the literature and we have applied our formats to them. Our
formats could cover all practical cases that we have discovered so far, which is
an indication of its expressiveness and relevance.

The rest of this paper is organized as follows. In Section 2 we recall some
basic definitions from the meta-theory of SOS. In Section 3, we present our
rule format for determinism and prove that it does guarantee determinism for
certain transition relations. Section 4 introduces a rule format for idempotency
and proves it correct. In Sections 3 and 4, we also provide several examples to
motivate the constraints of our rule formats and to demonstrate their practical
applications. Finally, Section 5 concludes the paper and presents some directions
for future research.

2 Preliminaries

In this section we present, for sake of completeness, some standard definitions
from the meta-theory of SOS that will be used in the remainder of the paper.

Definition 1 (Signature and terms). We let V represent an infinite set of
variables and use x, x′, xi, y, y′, yi, . . . to range over elements of V . A signature
Σ is a set of function symbols, each with a fixed arity. We call these symbols
operators and usually represent them by f, g, An operator with arity zero is
called a constant. We define the set T(Σ) of terms over Σ as the smallest set
satisfying the following constraints.

• A variable x ∈ V is a term.
• If f ∈ Σ has arity n and t1, . . . , tn are terms, then f(t1, . . . , tn) is a term.

We use t, t′, ti, . . . to range over terms. We write t1 ≡ t2 if t1 and t2 are syntac-
tically equal. The function vars : T(Σ) → 2V gives the set of variables appearing
in a term. The set C(Σ) ⊆ T(Σ) is the set of closed terms, i.e., terms that con-
tain no variables. We use p, p′, pi, . . . to range over closed terms. A substitution
σ is a function of type V → T(Σ). We extend the domain of substitutions to
terms homomorphically. If the range of a substitution lies in C(Σ), we say that
it is a closing substitution.

Definition 2 (Transition System Specifications (TSS), formulae and
transition relations). A transition system specification is a triplet (Σ,L,D)
where
• Σ is a signature.
• L is a set of labels. If l ∈ L, and t, t′ ∈ T(Σ) we say that t l→ t′ is a positive

formula and t
l9 is a negative formula. A formula, typically denoted by φ,

ψ, φ′, φi, . . . is either a negative formula or a positive one.
• D is a set of deduction rules, i.e., tuples of the form (Φ, φ) where Φ is a set

of formulae and φ is a positive formula. We call the formulae contained in
Φ the premises of the rule and φ the conclusion.

We write vars(r) to denote the set of variables appearing in a deduction rule (r).
We say a formula is closed if all of its terms are closed. Substitutions are also
extended to formulae and sets of formulae in the natural way. A set of positive
closed formulae is called a transition relation.

We often refer to a formula t
l→ t′ as a transition with t being its source,

l its label, and t′ its target. A deduction rule (Φ, φ) is typically written as Φ
φ .

For a deduction rule r, we write conc(r) to denote its conclusion and prem(r)
to denote its premises. We call a deduction rule f -defining when the outermost
function symbol appearing in its source of the conclusion is f .

The meaning of a TSS is defined by the following notion of least three-valued
stable model. To define this notion, we need two auxiliary definitions, namely
provable transition rules and contradiction, which are given below.

Definition 3 (Provable Transition Rules). A deduction rule is called a tran-
sition rule when it is of the form N

φ with N a set of negative formulae. A TSS T
proves N

φ , denoted by T ` N
φ , when there is a well-founded upwardly branching

tree with formulae as nodes and of which

– the root is labelled by φ;
– if a node is labelled by ψ and the nodes above it form the set K then:

• ψ is a negative formula and ψ ∈ N , or
• ψ is a positive formula and K

ψ is an instance of a deduction rule in T .

Definition 4 (Contradiction and Contingency). Formula t l→ t′ is said to
contradict t l9 , and vice versa. For two sets Φ and Ψ of formulae, Φ contradicts

Ψ , denoted by Φ 2 Ψ , when there is a φ ∈ Φ that contradicts a ψ ∈ Ψ . Φ is
contingent w.r.t. Ψ , denoted by Φ � Ψ , when Φ does not contradict Ψ .

It immediately follows from the above definition that contradiction and con-
tingency are symmetric relations on (sets of) formulae. We now have all the
necessary ingredients to define the semantics of TSSs in terms of three-valued
stable models.

Definition 5 (The Least Three-Valued Stable Model). A pair (C,U) of
sets of positive closed transition formulae is called a three-valued stable model
for a TSS T when

– for all φ ∈ C, T ` N
φ for a set N such that C ∪ U � N , and

– for all φ ∈ U , T ` N
φ for a set N such that C � N .

C stands for Certainly and U for Unknown; the third value is determined by
the formulae not in C ∪U . The least three-valued stable model is a three valued
stable model which is the least with respect to the ordering on pairs of sets of
formulae defined as (C,U) ≤ (C ′, U ′) iff C ⊆ C ′ and U ′ ⊆ U . When for the
least three-valued stable model it holds that U = ∅, we say that T is complete.

Complete TSSs univocally define a transition relation, i.e., the C component
of their least three-valued stable model. Completeness is central to almost all
meta-results in the SOS meta-theory and, as it turns out, it also plays an es-
sential role in our meta-results concerning determinism and idempotency. All
practical instances of TSSs are complete and there are syntactic sufficient con-
ditions guaranteeing completeness, see for example [9].

3 Determinism

Definition 6 (Determinism). A transition relation T is called deterministic
for label l, when if p l→ p′ ∈ T and p l→ p′′ ∈ T , then p′ ≡ p′′.

Before we define a format for determinism, we need two auxiliary definitions.
The first one is the definition of source dependent variables, which we borrow
from [15] with minor additions.

Definition 7 (Source dependency). For a deduction rule, we define the set
of source dependent variables as the smallest set that contains

1. all variables appearing in the source of the conclusion, and
2. all variables that appear in the target of a premise where all variables in the

source of that premise are source dependent.

For a source dependent variable v, let R be the collection of transition relations
appearing in a set of premises needed to show source dependency through condi-
tion 2. We say that v is source dependent via the relations in R.

Note that for a source dependent variable, the set R is not necessarily unique.
For example, in the rule

y
l1→ y′ x

l2→ z z
l3→ y′

f(x, y) l→ y′

the variable y′ is source dependent both via the set { l1→} as well as { l2→ ,
l3→}.

The second auxiliary definition needed for our determinism format is the
definition of determinism-respecting substitutions.

Definition 8 (Determinism-Respecting Pairs of Substitutions). Given
a set L of labels, a pair of substitutions (σ, σ′) is determinism-respecting w.r.t. a
pair of sets of formulae (Φ,Φ′) and L when for all two positive formulae s l→ s′ ∈
Φ and t l→ t′ ∈ Φ′ such that l ∈ L, σ(s) ≡ σ′(t) only if σ(s′) ≡ σ′(t′).

Definition 9 (Determinism Format). A TSS T is in the determinism format
w.r.t. a set of labels L, when for each l ∈ L the following conditions hold.

1. In each deduction rule Φ

t
l→ t′

, each variable v ∈ vars(t′) is source dependent

via a subset of { l→ | l ∈ L}, and
2. for each pair of distinct deduction rules Φ0

t0
l→ t′0

and Φ1

t1
l→ t′1

and for each

determinism-respecting pair of substitutions (σ, σ′) w.r.t. (Φ0, Φ1) and L such
that σ(t0) ≡ σ′(t1), it holds that either σ(t′0) ≡ σ′(t′1) or σ(Φ0) contradicts
σ′(Φ1).

The first constraint in the definition above ensures that each rule in a TSS
in the determinism format, with some l ∈ L as its label of conclusion, can be
used to prove at most one outgoing transition for each closed term. The second
requirement guarantees that no two different rules can be used to prove two
distinct l-labelled transitions for any closed term.

Theorem 1. Consider a TSS with (C,U) as its least three-valued stable model
and a subset L of its labels. If the TSS is in the determinism format w.r.t. L,
then C is deterministic for each l ∈ L.

For a TSS in the determinism format with (C,U) as its least three-valued
stable model, U and thus C∪U need not be deterministic. The following counter-
example illustrates this phenomenon.

Example 1. Consider the TSS given by the following deduction rules.

a
l→ a

a
l→ b

a
l9

a
l→ a

The above-given TSS is in the determinism format since a l→ a and a l9 contra-
dict each other (under any substitution). Its least three-valued stable model is,
however, (∅, {a l→ a, a

l→ b}) and {a l→ a, a
l→ b} is not deterministic.

Corollary 1. Consider a complete TSS with L as a subset of its labels. If the
TSS is in the determinism format w.r.t. L, then its defined transition relation is
deterministic for each l ∈ L.

Constraint 2 in Definition 9 may seem difficult to verify, since it requires
checks for all possible (determinism-respecting) substitutions. However, in prac-
tical cases, to be quoted in the remainder of this paper, variable names are cho-
sen in such a way that constraint 2 can be checked syntactically. For example,
consider the following two deduction rules.

x
a→x′

f(x, y) a→x′
y
a9 x

b→x′

f(y, x) a→x′

If in both deduction rules f(x, y) (or symmetrically f(y, x)) was used, it could
have been easily seen from the syntax of the rules that the premises of one
deduction rule always (under all pairs of substitutions agreeing on the value of
x) contradict the premises of the other deduction rule and, hence, constraint 2
is trivially satisfied. Based on this observation, we next present a rule format,
whose constraints have a purely syntactic form, and that is sufficiently powerful
to handle all the examples we discuss in Section 3.1. (Note that, for the examples
in Section 3.1, checking the constraints of Definition 9 is not too hard either.)

Definition 10 (Normalized TSSs). A TSS is normalized w.r.t. L if each
deduction rule is f-defining for some function symbol f , and for each label l ∈ L,
each function symbol f and each pair of deduction rules of the form

(r)
Φr

f(−→s) l→ s′
(r′)

Φr′

f(
−→
t) l→ t′

the following constraints are satisfied:

1. the sources of the conclusions coincide, i.e., f(−→s) ≡ f(
−→
t),

2. each variable v ∈ vars(s′) (symmetrically v ∈ vars(t′)) is source dependent
in (r) (respectively in (r′)) via some subset of { l→ | l ∈ L},

3. for each variable v ∈ vars(r)∩ vars(r′) there is a set of formulae in Φr ∩Φr′
proving its source dependency (both in (r) and (r′))) via some subset of { l→ |
l ∈ L}.

The second and third constraint in Definition 11 guarantee that the syntac-
tic equivalence of relevant terms (the target of the conclusion or the premises
negating each other) will lead to syntactically equivalent closed terms under all
determinism-respecting pairs of substitutions.

The reader can check that all the examples quoted from the literature in
Section 3.1 are indeed normalized TSSs.

Definition 11 (Syntactic Determinism Format). A normalized TSS is in
the (syntactic) determinism format w.r.t. L, when for each two deduction rules

Φ0

f(−→s)
l→ s′

and Φ1

f(−→s)
l→ s′′

, it holds that s′ ≡ s′′ or Φ0 contradicts Φ1.

The following theorem states that for normalized TSSs, Definition 11 implies
Definition 9.

Theorem 2. Each normalized TSS in the syntactic determinism format w.r.t.
L is also in the determinism format w.r.t. L.

For brevity, we omit the proof of Theorem 2. The following statement is thus
a corollary to Theorems 2 and 1.

Corollary 2. Consider a normalized TSS with (C,U) as its least three-valued
stable model and a subset L of its labels. If the TSS is in the (syntactic) de-
terminism format w.r.t. L (according to Definition 11), then C is deterministic
w.r.t. any l ∈ L.

3.1 Examples

In this section, we present some examples of various TSSs from the literature
and apply our (syntactic) determinism format to them. Some of the examples we
discuss below are based on TSSs with predicates. The extension of our formats
with predicates is straightforward and we discuss it in Section 4.3 to follow.

Example 2 (Conjunctive Nondeterministic Processes). Hennessy and Plotkin, in
[10], define a language, called conjunctive nondeterministic processes, for study-
ing logical characterizations of processes. The signature of the language consists
of a constant 0, a unary action prefixing operator a. for each a ∈ A, and a bi-
nary conjunctive nondeterminism operator ∨. The operational semantics of this
language is defined by the following deduction rules.

0 cana a.x cana

x cana
x ∨ y cana

y cana
x ∨ y cana

0 aftera 0 a.x aftera x a.x afterb 0
a 6= b

x aftera x′ y aftera y′

x ∨ y aftera x′ ∨ y′

The above TSS is in the (syntactic) determinism format with respect to the
transition relation aftera (for each a ∈ A). Hence, we can conclude that the
transition relations aftera are deterministic.

Example 3 (Delayed choice). The second example we discuss is a subset of the
process algebra BPAδε + DC [4], i.e., Basic Process Algebra with deadlock and
empty process extended with delayed choice. First we restrict attention to the
fragment of this process algebra without non-deterministic choice + and with
action prefix a. instead of general sequential composition ·. This altered process
algebra has the following deduction rules, where a ranges over the set of actions
A:

ε ↓ a.x
a→x

x ↓
x∓ y ↓

y ↓
x∓ y ↓

x
a→x′ y

a→ y′

x∓ y
a→x′ ∓ y′

x
a→x′ y

a9
x∓ y

a→x′
x
a9 y

a→ y′

x∓ y
a→ y′

In the above specification, predicate p ↓ denotes the possibility of termination
for process p. The intuition behind the delayed choice operator, denoted by
∓ , is that the choice between two components is only resolved when one

performs an action that the other cannot perform. When both components can
perform an action, the delayed choice between them remains unresolved and
the two components synchronize on the common action. This transition system
specification is in the (syntactic) determinism format w.r.t. {a | a ∈ A}.

Addition of non-deterministic choice + or sequential composition · results
in deduction rules that do not satisfy the determinism format. For example,
addition of sequential composition comes with the following deduction rules:

x
a→x′

x · y a→x′ · y
x ↓ y

a→ y′

x · y a→ y′

The sets of premises of these rules do not contradict each other. The extended
TSS is indeed non-deterministic since, for example, (ε ∓ (a.ε)) · (a.ε) a→ ε and
(ε∓ (a.ε)) · (a.ε) a→ ε · (a.ε).

Example 4 (Time transitions I). This example deals with the Algebra of Timed
Processes, ATP, of Nicollin and Sifakis [17]. In the TSS given below, we spec-
ify the time transitions (denoted by label χ) of delayable deadlock δ, non-
deterministic choice ⊕ , unit-delay operator b c and parallel composition
‖ .

δ
χ→ δ

x
χ→x′ y

χ→ y′

x⊕ y
χ→x′ ⊕ y′ bxc(y) χ→ y

x
χ→x′ y

χ→ y′

x ‖ y χ→x′ ‖ y′

These deduction rules all trivially satisfy the determinism format for time tran-
sitions since the sources of conclusions of different deduction rules cannot be
unified. Also the additional operators involving time, namely, the delay oper-
ator b cd , execution delay operator d ed and unbounded start delay operator
b cω, satisfy the determinism format for time transitions. The deduction rules
are given below, for d ≥ 1:

bxc1(y) χ→ y

x
χ→x′

bxcd+1(y)
χ→bx′cd(y)

x
χ9

bxcd+1(y)
χ→bxcd(y)

x
χ→x′

bxcω χ→bx′cω
x
χ9

bxcω χ→bxcω

x
χ→x′

dxe1(y) χ→ y

x
χ→x′

dxed+1(y)
χ→dx′ed(y)

Example 5 (Time transitions II). Most of the timed process algebras that orig-
inate from the Algebra of Communicating Processes (ACP) from [5, 3] such as
those reported in [2] have a deterministic time transition relation as well.

In the TSS given below, the time unit delay operator is denoted by σrel ,
nondeterministic choice is denoted by + , and sequential composition is
denoted by · . The deduction rules for the time transition relation for this
process algebra are the following:

σrel(x)
1→x

x
1→x′ y

1→ y′

x+ y
1→x′ + y′

x
1→x′ y

19
x+ y

1→x′

x
19 y

1→ y′

x+ y
1→ y′

x
1→x′ x 6↓

x · y 1→x′ · y
x

1→x′ y
19

x · y 1→x′ · y
x

1→x′ x ↓ y
1→ y′

x · y 1→x′ · y + y′

x
19 x ↓ y

1→ y′

x · y 1→ y′

Note that here we have an example of deduction rules, the first two deduction
rules for time transitions of a sequential composition, for which the premises do
not contradict each other. Still these deduction rules satisfy the determinism for-
mat since the targets of the conclusions are identical. In the syntactically richer
framework of [21], where arbitrary first-order logic formulae over transitions are
allowed, those two deduction rules are presented by a single rule with premise
x

1→x′ ∧ (x 6↓ ∨y 19).
Sometimes such timed process algebras have an operator for specifying an

arbitrary delay, denoted by σ∗rel , with the following deduction rules.

x
19

σ∗rel(x)
1→σ∗rel(x)

x
1→x′

σ∗rel(x)
1→x′ + σ∗rel(x)

The premises of these rules contradict each other and so, the semantics of this
operator also satisfies the constraints of our (syntactic) determinism format.

4 Idempotency

Our order of business in this section is to present a rule format that guarantees
the idempotency of certain binary operators. In the definition of our rule format,
we rely implicitly on the work presented in the previous section.

4.1 Format

Definition 12 (Idempotency). A binary operator f ∈ Σ is idempotent w.r.t.
an equivalence ∼ on closed terms if and only if for each p ∈ C(Σ), it holds that
f(p, p) ∼ p.

Idempotency is defined with respect to a notion of behavioral equivalence.
There are various notions of behavioral equivalence defined in the literature,
which are by and large, weaker than bisimilarity defined below. Thus, to be as
general as possible, we prove our idempotency result for all notions that contain,
i.e., are weaker than, bisimilarity.

Definition 13 (Bisimulation). Let T be a TSS with signature Σ. A relation
R ⊆ C(Σ)× C(Σ) is a bisimulation relation if and only if R is symmetric and
for all p0, p1, p

′
0 ∈ C(Σ) and l ∈ L

(p0R p1 ∧ T ` p0
l→ p′0) ⇒ ∃p′

1∈C(Σ)(T ` p1
l→ p′1 ∧ p′0R p′1).

Two terms p0, p1 ∈ C(Σ) are called bisimilar, denoted by p0 ↔ p1, when there
exists a bisimulation relation R such that p0Rp1.

Definition 14 (The Idempotency Rule Format). Let γ : L × L → L be
a partial function such that γ(l1, l2) ∈ {l1, l2} if it is defined. We define the
following two rule forms.

1l. Choice rules
{xi

l→ t} ∪ Φ

f(x0, x1)
l→ t
, i ∈ {0, 1}

2l0,l1 . Communication rules

{x0
l0→ t0, x1

l1→ t1} ∪ Φ

f(x0, x1)
γ(l0,l1)→ f(t0, t1)

, t0 ≡ t1 or (l0 = l1 and l0→ is deterministic)

In each case, Φ can be an arbitrary, possibly empty set of (positive or negative)
formulae.

In addition, we define the starred version of each form, 1∗l and 2∗l0,l1 . The
starred version of each rule is the same as the unstarred one except that t, t0 and
t1 are restricted to be concrete variables and the set Φ must be empty in each
case.

A TSS is in idempotency format w.r.t. a binary operator f if each f-defining
rule, i.e., a deduction rule with f appearing in the source of the conclusion, is of
the forms 1l or 2l0,l1 , for some l, l0, l1 ∈ L, and for each label l ∈ L there exists
at least one rule of the forms 1∗l or 2∗l,l.

We should note that the starred versions of the forms are special cases of
their unstarred counterparts; for example a rule which has form 1∗l also has form
1l.

Theorem 3. Assume that a TSS is complete and is in the idempotency for-
mat with respect to a binary operator f . Then, f is idempotent w.r.t. to any
equivalence ∼ such that ↔ ⊆ ∼.

4.2 Relaxing the restrictions

In this section we consider the constraints of the idempotency rule format and
show that they cannot be dropped without jeopardizing the meta-theorem.

First of all we note that, in rule form 1l, it is necessary that the label of the
premise matches the label of the conclusion. If it does not, in general, we cannot
prove that f(p, p) simulates p or vice versa. This requirement can be stated more
generally for both rule forms in Definition 14; the label of the conclusion must
be among the labels of the premises. The requirement that γ(l, l′) ∈ {l, l′} exists
to ensure this constraint for form 2l,l′ . A simple synchronization rule provides a
counter-example that shows why this restriction is needed. Consider the following
TSS with constants 0, τ , a and ā and two binary operators + and ‖.

α
α→ 0

x
α→x′

x+ y
α→x′

y
α→ y′

x+ y
α→ y′

x
a→x′ y

ā→ y′

x ‖ y τ→x′ ‖ y′

where α is τ , a or ā. Here it is easy to see that although (a+ ā) ‖ (a+ ā) has an
outgoing τ -transition, a+ ā does not afford such a transition.

The condition that for each l at least one rule of the forms 1∗l or 2∗l,l must
exist comprises a few constraints on the rule format. First of all, it says there
must be at least one f -defining rule. If not, it is easy to see that there could
exist a process p where f(p, p) deadlocks (since there are no f -defining rules)
but p does not. It also states that there must be at least one rule in the starred
form, where the targets are restricted to variables. To motivate these constraints,
consider the following TSS.

a
a→ 0

x
a→ a

f(x, y) a→ a

The processes a and f(a, a) are not bisimilar as the former can do an a-transition
but the latter is stuck. The starred forms also require that Φ is empty, i.e.
there is no testing. This is necessary in the proof because in the presence of
extra premises, we cannot in general instantiate such a rule to show that f(p, p)
simulates p. Finally, the condition requires that if we rely on a rule of the form
2∗l,l′ and t0 ≡/ t1, then the labels l and l′ in the premises of the rule must coincide.
To see why, consider a TSS containing a left synchronize operator U, one that
synchronizes a step from each operand but uses the label of the left one. Here
we let α ∈ {a, ā}.

α
α→ 0

x
α→x′

x+ y
α→x′

y
α→ y′

x+ y
α→ y′

x
a→x′ y

ā→ y′

xU y a→x′U y′

In this TSS the processes (a+ ā) and (a+ ā)U (a+ ā) are not bisimilar since the
latter does not afford an ā-transition whereas the former does.

For rules of form 2l,l′ we require that either t0 ≡ t1, or that the mentioned
labels are the same and the associated transition relation is deterministic. This
requirement is necessary in the proof to ensure that the target of the conclusion
fits our definition of 'f , i.e. the operator is applied to two identical terms.
Consider the following TSS where α ∈ {a, b}.

a
a→ a a

a→ b b
b→ b

x
α→x′ y

α→ y′

x|y α→x′|y′

For the operator |, this violates the condition t0 ≡ t1 (note that a→ is not
deterministic). We observe that a|a a→ a|b. The only possibilities for a to simulate
this a-transition is either with a a→ a or with a a→ b. However, neither a nor b can
be bisimilar to a|b because both a and b have outgoing transitions while a|b
is stuck. Therefore a and a|a cannot be bisimilar. If t0 6≡ t1 we must require
that the labels match, l0 = l1, and that l0→ is deterministic. We require the
labels to match because if they do not, then given only p

l→ p′ it is impossible
to prove that f(p, p) can simulate it using only a 2∗l,l′ rule. The determinacy of
the transition with that label is necessary when proving that transitions from
f(p, p) can, in general, be simulated by p; if we assume that f(p, p) l→ p′ then we
must be able to conclude that p′ has the shape f(p′′, p′′) for some p′′, in order to
meet the bisimulation condition for 'f . Consider the standard choice operator
+ and prefixing operator . of CCS with the | operator from the last example,
with α ∈ {a, b, c}.

α
α→ 0 α.x

α→x

x
α→x′

x+ y
α→x′

y
α→ y′

x+ y
α→ y′

x
α→x′ y

α→ y′

x|y α→x′|y′

If we let p = a.b+a.c, then p|p a→ b|c and b|c is stuck. However, p cannot simulate
this transition w.r.t. 'f . Indeed, p and p|p are not bisimilar.

4.3 Predicates

There are many examples of TSSs where predicates are used. The definitions
presented in Section 2 and 4 can be easily adapted to deal with predicates as
well. In particular, two closed terms are called bisimilar in this setting when, in
addition to the transfer conditions of bisimilarity, they satisfy the same predi-
cates. To extend the idempotency rule format to a setting with predicates, the
following types of rules for predicates are introduced:

3P . Choice rules for predicates

{Pxi} ∪ Φ
Pf(x0, x1)

, i ∈ {0, 1}

4P . Synchronization rules for predicates

{Px0, Px1} ∪ Φ
Pf(x0, x1)

As before, we define the starred version of these forms, 3∗P and 4∗P . The
starred version of each rule is the same as the unstarred one except that the set
Φ must be empty in each case. With these additional definition the idempotency
format is defined as follows.

A TSS is in idempotency format w.r.t. a binary operator f if each f -defining
rule, i.e., a deduction rule with f appearing in the source of the conclusion, is of

one the forms 1l, 2l0,l1 , 3P or 4P for some l, l0, l1 ∈ L, for each label l ∈ L and
predicate symbol P . Moreover, for each l ∈ L, there exists at least one rule of
the forms 1∗l or 2∗l,l, and for each predicate symbol P there is a rule of the form
1∗P or 2∗P .

4.4 Examples

Example 6. The most prominent example of an idempotent operator is non-
deterministic choice, denoted +. It typically has the following deduction rules:

x0
a→x′0

x0 + x1
a→x′0

x1
a→x′1

x0 + x1
a→x′1

Clearly, these are in the idempotency format w.r.t. +.

Example 7 (External choice). The well-known external choice operator � from
CSP [11] has the following deduction rules

x0
a→x′0

x0�x1
a→x′0

x1
a→x′1

x0�x1
a→x′1

x0
τ→x′0

x0�x1
τ→x′0�x1

x1
τ→x′1

x0�x1
τ→x0�x′1

Note that the third and fourth deduction rule are not instances of any of the
allowed types of deduction rules. Therefore, no conclusion about the validity of
idempotency can be drawn from our format. In this case this does not point to
a limitation of our format, because this operator is not idempotent in strong
bisimulation semantics [7].

Example 8 (Strong time-deterministic choice). The choice operator that is used
in the timed process algebra ATP [17] has the following deduction rules.

x0
a→x′0

x0 ⊕ x1
a→x′0

x1
a→x′1

x0 ⊕ x1
a→x′1

x0
χ→x′0 x1

χ→x′1

x0 ⊕ x1
χ→x′0 ⊕ x′1

The idempotency of this operator follows from our format since the last rule
for ⊕ fits the form 2∗χ,χ because, as we remarked in Example 4, the transition
relation

χ→ is deterministic.

Example 9 (Weak time-deterministic choice). The choice operator + that is used
in most ACP-style timed process algebras has the following deduction rules:

x0
a→x′0

x0 + x1
a→x′0

x1
a→x′1

x0 + x1
a→x′1

x0
1→x′0 x1

1→x′1

x0 + x1
1→x′0 + x′1

x0
1→x′0 x1

19
x0 + x1

1→x′0

x0
19 x1

1→x′1

x0 + x1
1→x′1

The third deduction rule is of the form 2∗1,1, the others are of forms 1∗a and 1∗1.

This operator is idempotent (since the transition relation 1→ is deterministic,
as remarked in Example 5).

Example 10 (Conjunctive nondeterminism). The operator ∨ as defined in Ex-
ample 2 by means of the deduction rules

x cana
x ∨ y cana

y cana
x ∨ y cana

x aftera x′ y aftera y′

x ∨ y aftera x′ ∨ y′

satisfies the idempotency format (extended to a setting with predicates). The
first two deduction rules are of the form 3∗cana

and the last one is of the form
2∗a,a. Here we have used the fact that the transition relations aftera are deter-
ministic as concluded in Example 2.

Example 11 (Delayed choice). Delayed choice can be concluded to be idempotent
in the restricted setting without + and · by using the idempotency format and the
fact that in this restricted setting the transition relations a→ are deterministic.
(See Example 3.)

x ↓
x∓ y ↓

y ↓
x∓ y ↓

x
a→x′ y

a→ y′

x∓ y
a→x′ ∓ y′

x
a→x′ y

a9
x∓ y

a→x′
x
a9 y

a→ y′

x∓ y
a→ y′

The first two deduction rules are of form 3∗↓, the third one is a 2∗a,a rule, and the
others are 1a rules. Note that for any label a starred rule is present.

For the extensions discussed in Example 3 idempotency cannot be established
using our rule format since the transition relations are no longer deterministic.
In fact, delayed choice is not idempotent in these cases.

5 Conclusions

In this paper, we presented two rule formats guaranteeing determinism of certain
transitions and idempotency of binary operators. Our rule formats cover all prac-
tical cases of determinism and idempotency that we have thus far encountered
in the literature.

We plan to extend our rule formats with the addition of data/store. Also,
it is interesting to study the addition of structural congruences pertaining to
idempotency to the TSSs in our idempotency format.

References

1. L. Aceto, W.J. Fokkink, and C. Verhoef. Structural operational semantics. In
Handbook of Process Algebra, Chapter 3, pages 197–292. Elsevier, 2001.

2. J.C.M. Baeten and C.A. Middelburg. Process Algebra with Timing. EATCS Mono-
graphs. Springer-Verlag, Berlin, Germany, 2002.

3. J.C.M. Baeten and W.P. Weijland. Process Algebra, volume 18 of Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, 1990.

4. J.C.M. Baeten and S. Mauw. Delayed choice: An operator for joining Message
Sequence Charts. In Proceedings of Formal Description Techniques, volume 6 of
IFIP Conference Proceedings, pages 340–354. Chapman & Hall, 1995.

5. J.A. Bergstra and J.W. Klop. Process algebra for synchronous communication.
Information and Control, 60(1-3):109–137, 1984.

6. S. Cranen, M.R. Mousavi, and M.A. Reniers. A rule format for associativity. In
Proceedings of CONCUR’08, volume 5201 of Lecture Notes in Computer Science,
pages 447–461, Springer-Verlag, 2008.

7. P.R. D’Argenio. τ -angelic choice for process algebras (revised version). Technical
report, LIFIA, Depto. de Informática, Fac. de Cs. Exactas, Universidad Nacional
de La Plata. March 1995.

8. W.J. Fokkink and T. Duong Vu. Structural operational semantics and bounded
nondeterminism. Acta Informatica, 39(6–7):501–516, 2003.

9. J.F. Groote. Transition system specifications with negative premises. Theoretical
Computer Science (TCS), 118(2):263–299, 1993.

10. M. Hennessy and G.D. Plotkin. Finite conjuncitve nondeterminism. In Concur-
rency and Nets, Advances in Petri Nets, pages 233–244. Springer, 1987.

11. C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
12. R. Lanotte and S. Tini. Probabilistic congruence for semistochastic generative pro-

cesses. In Proceedings of FOSSACS’05, volume 3441 of Lecture Notes in Computer
Science, pages 63–78. Springer, 2005.

13. M.R. Mousavi, I.C.C. Phillips, M.A. Reniers, and I. Ulidowski. The meaning
of ordered SOS. In Proceedings of FSTTCS’06, volume 4337 of Lecture Notes in
Computer Science, pages 334–345, Springer, 2006.

14. M.R. Mousavi, M.A. Reniers, and J.F. Groote. A syntactic commutativity format
for SOS. Information Processing Letters, 93:217–223, 2005.

15. M.R. Mousavi and M.A. Reniers. Orthogonal extensions in structural opera-
tional semantics. In Proceedings of the ICALP’05, volume 3580 of Lecture Notes
in Computer Science, pages 1214–1225. Springer, 2005.

16. M.R. Mousavi, M.A. Reniers, and J.F. Groote. SOS formats and meta-theory:
20 years after. Theoretical Computer Science, (373):238–272, 2007.

17. X. Nicollin and J. Sifakis. The algebra of timed processes ATP: Theory and
application. Information and Computation, 114(1):131–178, 1994.

18. G.D. Plotkin. A structural approach to operational semantics. Journal of Logic
and Algebraic Progamming, 60:17–139, 2004. This article first appeared as Tech-
nical Report DAIMI FN-19, Computer Science Department, Aarhus University.

19. S. Tini. Rule formats for compositional non-interference properties. Journal of
Logic and Algebraic Progamming, 60:353–400, 2004.

20. I. Ulidowski and S. Yuen. Extending process languages with time. In Proceedings
of AMAST’97, volume 1349 of Lecture Notes in Computer Science, pages 524–538.
Springer, 1997.

21. M. van Weerdenburg and M.A. Reniers. Structural operational semantics with
first-order logic. In Pre-proceedings of SOS’08, pages 48–62, 2008.

22. C. Verhoef. A congruence theorem for structured operational semantics with pred-
icates and negative premises. Nordic Journal of Computing, 2(2):274–302, 1995.

