
Symbolic Power Analysis of Cell Libraries

Matthias Raffelsieper and MohammadReza Mousavi

Department of Computer Science, TU/Eindhoven
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

M.Raffelsieper@tue.nl, M.R.Mousavi@tue.nl

Abstract. Cell libraries are collections of logic cores (cells) used to
construct larger chip designs; hence, any reduction in their power con-
sumption may have a major impact in the power consumption of larger
designs. The power consumption of a cell is often determined by triggering
it with all possible input values in all possible orders at each state. In this
paper, we first present a technique to measure the power consumption
of a cell more efficiently by reducing the number of input orders that
have to be checked. This is based on symbolic techniques and analyzes
the number of (weighted) wire chargings taking place. Additionally, we
present a technique that computes for a cell all orders that lead to the
same state, but differ in their power consumption. Such an analysis is
used to select the orders that minimize the required power, without af-
fecting functionality, by inserting sufficient delays. Both techniques have
been evaluated on an industrial cell library and were able to efficiently
reduce the number of orders needed for power characterization and to
efficiently compute orders that consume less power for a given state and
input-vector transition.

1 Introduction

A cell library is a collection of logic cores used to construct larger chip designs,
consisting of combinational cells (e.g., and and xor) and sequential cells (e.g.,
latches and flip-flops). Cell libraries are usually described at multiple levels of
abstraction, such as a transistor netlist and a Verilog description. Cells are used
repeatedly in many larger designs and hence any minor improvement in their
power consumption may lead to considerable power saving in the subsequent
designs.

In this paper, we analyze the dynamic power consumption of netlists, as
these describe the design that will finally be manufactured. An analysis at the
level of Verilog descriptions is also possible but not very promising, because the
same functional behavior (as that of the netlist) is often described using very
different structures, a prominent example being User Defined Primitives (UDPs).
To measure the dynamic power consumed by a netlist we use an abstract measure,
namely the number of wires charged, possibly weighted by the node capacitance,
if this is additionally available.

From a given transistor netlist, we first build a transition system, which
describes the state of each wire in the netlist. In practice, this transition system

mailto:M.Raffelsieper@tue.nl
mailto:M.R.Mousavi@tue.nl

2 Matthias Raffelsieper and MohammadReza Mousavi

is described symbolically by equations in the inputs and values of wires [2]; hence,
we use Binary Decision Diagrams (BDDs) for a symbolic representation of the
netlist semantics. In order to efficiently analyze the different power consumption
of different permutations, we quotient these permutations into equivalence classes.
Every such equivalence class contains different orders of applying a transition from
one input vector to another, but all of these orders have the same functional effect
and consume the same amount of power. Thus, during power characterization,
only one of these orders has to be considered.

In practice, the order of evaluating input changes may be controlled effi-
ciently; in such cases, we seek a reduction in the dynamic power consumption by
choosing, among functionally equivalent orders, the one that has the minimal
power consumption. For this problem, we developed an analysis of functionally
equivalent orders. Then, given the current state of the wires and an input vector
transition, we can determine the order that consumes the minimal amount of
power. Thus, by choosing this order the functionality of the circuit is not altered,
but the power consumption is indeed reduced.

Related Work. The work reported in [3] also determines the power consumption
of cells. The authors present an empirical algorithm, which also groups together
different input vector transitions. However, they group together different values
of inputs, whereas our approach groups together different orders of applying the
same input vector. Furthermore, their grouping is made manually and afterwards
all remaining input vectors and orders are enumerated explicitly, as opposed to our
symbolic approach. Another approach that also uses a transition system model of
circuits is presented in [8]. This approach builds an explicit representation of the
transition system, and hence has to combat the size of these transition systems
by simplifying the netlist, something which is not required in our symbolic
representation. A symbolic representation of cells for the purpose of power
analysis is also used in [1]. There, the symbolic representation is used during
simulation of cells to determine the charge for each wire. Our work can be seen as
a preprocessing step to theirs, as we first reduce the number of orders that later
have to be simulated. Already in [7] it was observed that superfluous transitions
(called glitches) of signals cause an increased power consumption. In contrast to
our work, there glitches are detected by simulations, and only considered at cell
outputs. The authors propose a number of techniques to reduce glitches. One
of these is the addition of delays to enforce a certain order of events, which is
also what we propose to select a low power evaluation. The theoretical basis of
this paper builds upon [5] and [6]. Those analyses are extended by also taking
power consumption into account and using the results to build symbolic graph
structures that represent the equivalence classes of orders in a compact way.

Paper Structure. The rest of this paper is structured as follows. In Section 2, we
introduce the notion of vector-based transition system which we use to model
the semantics of transistor netlists. Furthermore, the section introduces orders
as permutations of inputs and lists as their building blocks. Section 3 then
presents our first technique to determine all equivalence classes of orders that are

Symbolic Power Analysis of Cell Libraries 3

functionally equivalent and consume the same amount of power. A technique that
determines equivalence of orders based on functional equivalence is then presented
in Section 4. For each of these equivalence classes, it is furthermore analyzed
which of these orders consumes the least amount of power for a given state
and input vector transition. We briefly sketch our implementation in Section 5
and report empirical results obtained from applying our implementation on an
industrial cell library in Section 6. We conclude the paper in Section 7.

2 Preliminaries

The analysis in this paper is concerned with transistor netlists. These consist of
a number of transistor instantiations, which for the purpose of this paper are
seen as a switch. From such a transistor netlist, a system of Boolean equations
is created, using the method of [2]. These equations form a transition system,
where states are represented by a vector of Boolean variables. Transitions occur
between stable states (i.e., states that are finished evaluating for the current input
values) and are labeled with another Boolean vector, representing the new values
of the inputs. The structure of the states is irrelevant for the transitions, thus the
set of states is kept abstract in our formal treatment. Only in the experiments,
state vectors are investigated to determine the number of charged wires. Since a
transistor netlist can start up in any arbitrary state, the transition systems we
consider do not have an initial state, instead an evaluation can start in any state.

Hence, we consider a vector-based transition system, which is a triple T =
(S, I,→) where S is an arbitrary set of states (usually, as explained above, S
is a set of vectors representing the current internal state), I = Um is the set
of input vectors for some basic set U (commonly the Boolean values B), and
→ ⊆ S× I ×S is the transition relation. For a vector ~v = (v1, . . . , vk), we denote
its j-th position by ~v|j = vj and the update of the vector ~v in coordinate j by
value v′ is denoted by ~v[j := v′] = (v1, . . . , vj−1, v

′, vj+1, . . . , vk).
We are only interested in one-input restricted traces, because they form the

common semantic model of hardware description languages (the so-called single
event assumption in [3]). In order to define one-input restricted traces, i.e., traces
where the used input vectors differ in at most one coordinate, we use the Hamming
distance dH(~i1,~i2) = |{1 ≤ j ≤ m :~i1|j 6=~i2|j}|. A one-input restricted trace is

then a trace consisting of consecutive steps s0
~i1−→ s1

~i2−→ s2 with dH(~i1,~i2) ≤ 1.
We define the transition system T I = (S × I,→T I) as the system where the
states are extended with the input vector used to arrive in that state, and the
transitions are only labeled by the input position that was changed. Formally, we

have →T I ⊆ (S × I) × {1, . . . ,m} × (S × I) where s0;~i0
j−→T I s1;~i1 iff s0

~i1−→ s1
and ~i1 =~i0[j :=~i1|j]. Here and in the following we denote a tuple (s,~i) ∈ S × I
by s;~i. It is easy to see that one-input restricted traces can be converted between
the two representations. Thus, we use the two representations interchangeably in
the rest of this paper and drop the subscript T I if no confusion can arise.

For an evaluation of a netlist, we want to consider each input exactly once,
to determine whether it has changed its value or not. Thus, we are interested in

4 Matthias Raffelsieper and MohammadReza Mousavi

one-input restricted traces of length m where none of the indices occurs twice.
This can be described by means of a permutation, that assigns to each step the
coordinate of the input to consider. We write Πm for the set of all permutations
over the numbers {1, . . . ,m}. In the remainder, we will make use of the fact that
every permutation can be obtained by a sequence of adjacent transpositions, which
are swappings of two neighboring elements. To be able to construct permutations
from smaller parts, we denote by Lm the set of all lists containing each of the
numbers {1, . . . ,m} at most once. Then, we interpret the permutations Πm as
those lists containing every number exactly once (i.e., the lists of length m).
Given a list ` = j1 : · · · : jk ∈ Lm, we define the length of this list as |`| = k and
the sublist `[a .. b] = ja : · · · : jb for 1 ≤ a ≤ b ≤ k. The empty list is denoted ∅
and a singleton list is denoted by its only element. The concatenation of two lists
`1 = j1 : · · · : ja and `2 = j′1 : · · · : j′b with jc 6= j′d for all 1 ≤ c ≤ a and 1 ≤ d ≤ b
is defined as `1++`2 = j1 : · · · : ja : j′1 : · · · : j′b.

3 Reducing Input Vector Orders for Power Analysis

3.1 Order-Independence of Power-Extended Transition Systems

Our first improvement in power analysis is achieved by grouping, in equivalence
classes, those orders that have the same power characteristics. For such orders, it
is sufficient to only consider one member of the equivalence class. Important for
such equivalence classes is to result in the same state in order not to affect the
functionality of the netlist. This latter problem of determining whether the state
reached after applying an input vector in different orders is the same has already
been considered in [5] and [6]. Here, we extend those works to also consider
the dynamic power consumption. For this purpose, we define a power-extended
vector-based transition system.

Definition 1. The power-extended vector-based transition system Tp = (Sp, I,
→p) of a vector-based transition system T = (S, I,→) is defined Sp = R × S

and w;s
~i−→p w+p(s, s′);s′ for s

~i−→ s′. The function p : S × S → R computes a
weighted number of wire chargings given the source and target states.

The added first component of the states, a number, is used to sum the weights
of the charged wires (which we interpret as the consumed power) during an
evaluation. (Our definition indeed allows for weighted wire charging in order to
cater for node capacitance in our calculations. However, for presentation purposes
throughout the rest of this paper, we assume the weights of all wire chargings to
be equal; hence, in the remainder of the paper, the sum of weights denotes the
number of wire chargings.) Note that a vector-based transition system does not
assume a particular type of the states, so this is still a vector-based transition
system.

We initially set the power component (the real number component in the
state) to 0, indicating that no chargings have taken place yet. Then, we select
two inputs (identified by their position in the input vector, as in the transition

Symbolic Power Analysis of Cell Libraries 5

0;s0;~i0

w1
1;s1;~i1

w2
1;s2;~i2

w1
1 + w1

2;s12;~i12

w2
1 + w2

2;s21;~i21

j

k

k

j

?
=

Fig. 1. Evaluation of two input coordinates

system T I) and change them in both possible orders. Finally we check whether
the resulting states for the two orders are equal or not. For example, assume that
we initially arrive in state s0 with an input vector ~i0, denoted by 0;s0;~i0. Then,
we apply the two consecutive input changes, denoted by [j := v′j] and [k := v′k]
where j 6= k, in the two possible orders leading to the two evaluations depicted
in Figure 1.

As indicated in Figure 1, it remains to be checked whether the two states
w1

1 + w1
2;s12;~i12 and w2

1 + w2
2;s21;~i21 are equal or not. First, we note that the

input vectors~i12 and~i21 are equal, as they are constructed by updating positions
j and k in ~i0 with the same values. Formally, this holds because for j 6= k,
~i12 = ~i0[j := v′j][k := v′k] = ~i0[k := v′k][j := v′j] = ~i21. Thus, we only have
to compare the remaining parts of the states. We have already addressed this
problem, called order-independence, for generic vector-based transition systems
in [6]. Checking that the states s12 and s21 are equal is the same as order-
independence, i.e., checking that the order of these two inputs does not affect the
functionality. By requiring that w1

1 +w1
2 = w2

1 +w2
2, we additionally require that

the order of the two inputs also does not cause different power consumptions.
In this paper, by exploiting the result of [6], we show that for transistor netlists

checking order-independence for two inputs is both necessary and sufficient to
establish order-independence for traces of full input length. In order to do this
we introduce the relation −→→, which denotes traces.

Definition 2. Let T = (S, I,→) be a vector-based transition system with m
inputs, let s;~i ∈ S × I, and let ` = j1 : · · · : jk ∈ Lm.

We define −→→T ⊆ (S × I) × Lm × (S × I) as s;~i `−→→T s′;~i′ iff there exists a

state s0;~i0 and 1 ≤ b ≤ m such that s0;~i0
b−→ s;~i

j1−→ . . .
jk−→ s′;~i′.

In the above definition, we additionally require that the initial state is reach-
able from some other state, which we call one-step reachability. This restriction
is added to rule out transient initial states that can only occur at boot-up and
will never be reached again.

We then call a vector-based transition system T with m inputs order-

independent, iff for all π, π′ ∈ Πm it holds that π−→→ = π′

−→→. To relate order-
independence, which considers traces of length m, and the check that only
considers two inputs, we make use of the following theorem of [6].

6 Matthias Raffelsieper and MohammadReza Mousavi

Theorem 3 (Theorem 9 in [6]). Let T = (S, I,→) be a deadlock-free vector-
based transition system with m inputs having the fixed-point property. Then T is
order-independent, iff j

�� k for all 1 ≤ j < k ≤ m.

In Theorem 3, deadlock-freedom has its intuitive meaning, namely that for
every current state and every possible input transition, a next state can be
computed. This is the case for the semantics of transistor netlists, our target
application, as they always compute a next state for any input vector. The second
requirement, the fixed-point property, demands that a reached state is stable,
i.e., applying the same input vector twice does not result in a different state from
when the input vector is only applied once. It is shown in [6] that vector-based
transition systems constructed from a transistor netlist using the algorithm of [2]
always have the fixed-point property. Intuitively, this holds because the states
are stable and hence cannot distinguish the stable situation from applying the
same inputs again. Since an unchanged state means that also the number of wire
chargings does not change, this also holds in our power-extended vector-based
transition system. Therefore, without mentioning this explicitly in the remainder
of this paper, we assume these two hypotheses of Theorem 3 to hold.

The relation ��, called the one-step reachable commuting diamond, relates two
input positions 1 ≤ j 6= k ≤ m, if for every one-step reachable state s0;~i0 ∈ S× I,
s0;~i0

j−→ ◦ k−→ s12;~i12 iff s0;~i0
k−→ ◦ j−→ s12;~i12. This is similar to the situation

depicted in Figure 1, assuming that the states s12 and s21 and their power
consumptions are equal.

To summarize, also for power-extended vector-based transition systems we
only have to analyze pairs of inputs, instead of complete sequences, to determine
order-independence and therefore equivalent power consumption. This drasti-
cally decreases the number of required checks from m!, i.e., the number of all
permutations, to m2−m

2 , the number of all pairs of inputs.

3.2 Equivalence Relation on Orders

Full order-independence of a power-extended vector-based transition system
would mean that all orders always have the same power consumption. Of course,
this is neither expected in any useful transistor netlist, nor is it of much practical
relevance. Therefore, we want to create an equivalence relation on orders that
groups together those subsets of orders having the same number of wire chargings.
This relation, formally defined below, is called power independence.

Definition 4. Let T = (S, I,→) be a vector-based transition system with m
inputs.

We define a relation ↔T on Lm, where `↔T `
′ iff the lists are equal except

for swapped positions `′[j + 1] = `[j] and `′[j] = `[j + 1], for which the one-step
reachable commuting diamond property holds (i.e., `[j] �� `[j + 1]).

Using relation ↔T , we define the equivalence relation ≡T on Lm as the
reflexive transitive closure of ↔T . If ` ≡T `′, then we also call ` and `′ (power-)
independent.

Symbolic Power Analysis of Cell Libraries 7

Note that the above definition is using a general vector-based transition system.
If this is a power-extended one, then we call the relation power-independence,
otherwise we only talk about independence of lists. For the power-independence
relation, we have the following result, showing that it indeed groups together
those orders that have equal (functional and power consumption) behavior.

Lemma 5. Let Tp = (Sp, I,→p) be a power-extended vector-based transition
system with m inputs and let π, π′ ∈ Πm be power-independent (i.e., π ≡Tp

π′).

Then for traces 0;s0;~i0
π−→→Tp

w1;s1;~i and 0;s0;~i0
π′

−→→Tp
w2;s2;~i it holds that

w1 = w2 and s1 = s2.

Proof. Follows by an induction on the number of swapped input coordinates to
reach π′ from π. ut

Thus, to characterize a cell, one only has to choose one representative from
each power-independent equivalence class and measure the power consumption
for this order. All other orders in this equivalence class will have the same power
consumption and hence do not have to be considered.

To obtain the different orders that have to be considered, we build the power-
independence DAG (directed acyclic graph) that enumerates all equivalence
classes of the power-independence relation ≡Tp .

Definition 6. Let Tp = (Sp, I,→p) be a power-extended vector-based transition
system with m inputs.

The power-independence DAG Gi = (Vi,�−→i) of Tp is defined as Vi ⊆ Lm
with root ∅ ∈ Vi and for 1 ≤ j ≤ m with j /∈ `, ` �−→i `

′ for some unique
`′ ≡Tp `++j.

We did not label the edges with inputs in the above-given DAG since the
input corresponding to each edge is always the single element by which the two
lists of the start and the end node of the edge differ.

To construct the power-independence DAG Gi, we start with the single root
of this DAG, ∅, which indicates that initially no inputs have been considered
yet. The construction of the DAG then proceeds in a breadth-first fashion: for
each leaf ` (which is a node without outgoing edges) and every input j that has
not yet been considered (i.e., is not in `), an edge is added to that leaf. The
target node of this edge is determined by looking at the parent nodes of the
currently considered leaf. If there exist a parent node `p reaching the current
node ` with input j′, a node `′ reachable from the parent node `p with list j : j′,
and inputs j and j′ are exchangeable, i.e., j �� j′, then the edge is drawn to the
existing node `′. This is depicted in Figure 2 (a), where the dashed edge is added.
Otherwise, if one of the above conditions is violated (i.e., either the inputs cannot
be exchanged or the node `′ has not been generated yet), a new node `++j is

created and an edge drawn there. As an example, the case where for all `p
j:j′

�−→∗i `′
we have j 6 �� j′ is depicted in Figure 2 (b). There, the dashed edge and the dashed
node are added to the DAG. This process finishes at leaves for which the list of

8 Matthias Raffelsieper and MohammadReza Mousavi

`p

``′′

`′ ≡Tp `++j

j′j

j′ j

(a) j
�� j′

`p

``′′

`′ 6≡Tp `++j `++j

j′j

j′ j

(b) j 6 �� j′

Fig. 2. Construction of the power-independence DAG

considered inputs contains every input exactly once. It can furthermore be shown
that the above construction always yields the power-independence DAG. Next,
we prove that this DAG exactly distinguishes between the equivalence classes of
the power-independence relation ≡Tp

.

Theorem 7. Let Tp be a power-extended vector-based transition system with m
inputs and let Gi = (Vi,�−→i) be its power-independence DAG.

Then, for all orders π1, π2 ∈ Πm, π1 and π2 are power-equivalent, iff there
exist paths ∅

π1�−→∗i π and ∅
π2�−→∗i π in Gi for some order π ∈ Πm.

Proof. To prove the “if” direction, we observe that due to the definition of the
power-independence DAG in Definition 6, all nodes on a path, when appending
the remaining considered inputs, are power-independent. This directly entails
π1 ≡Tp π ≡Tp π2.

The “only-if” direction is proved by an induction over the number of swappings
needed to reach π1 from π2, cf. Definition 4. If there are none, then π1 = π2 and
the theorem trivially holds. Otherwise, we can apply the induction hypothesis
to π2 and the order π′, resulting from π1 by undoing the last swapping of j and

j+1. This gives two paths ∅
π′

�−→∗i π and ∅
π2�−→∗i π in the graph. Since the two

swapped positions j and j + 1 are power-independent, and the rest of the orders
π1 and π′ are the same, the two paths induced by these two orders must have
the diamond shape due to the requirement in Definition 6, proving that also a
path ∅

π1�−→∗i π exists. ut

In summary, to determine the power-independent orders of a given power-
extended vector-based transition system, we construct its power-independence
DAG. Due to the above theorem, the lists contained in the leaves of the power-
independence DAG are representatives of the different equivalence classes of
orders that have to be considered for power characterization, i.e., only one of
these orders has to be measured to obtain the real power consumption of all
equivalent orders. Therefore, the number of leaves compared to the number of all
possible orders is a measure for the reduction obtained by our method.

Symbolic Power Analysis of Cell Libraries 9

4 Selecting Orders to Minimize Power Consumption

The technique introduced in the previous section is useful in characterizing the
power consumption of a cell. However, in order to minimize the power consump-
tion, we develop a slightly different technique. Namely, contrary to the previous
section, where we identify orders that always have the same dynamic power
consumption, we now want to identify orders that are functionally independent
(i.e., they do not influence the computation of a next state) but may have different
power consumption. Then, by taking the order (one representative order among
the equivalent orders) that consumes the least amount of power, the dynamic
power consumption of computing the next state can be reduced.

For this purpose, we again define a DAG structure describing the different
possible orders, but now we identify nodes that are computing the same next
state, i.e., the inputs leading to such a shared node only need to have the diamond
property regarding the functionality and not necessarily regarding the power
consumption. Furthermore, we add to each node a back-pointer that determines
which input leads to less power consumption. Then, by traversing the DAG from
some leaf to the root following these back-pointers, one can construct the order
that computes the same next state but uses minimal power. Next, we formalize
this intuition.

Definition 8. Given a vector-based transition system T = (S, I,→) with m
inputs and its power-extended vector-based transition system Tp = (R×S, I,→p),
we define the power-sum DAG Gs = (Vs,�−→s, s), where Vs ⊆ Lm, �−→s ⊆
Vs × Vs, and s ⊆ Vs × (S × I × I)× Vs. The root is defined to be ∅ ∈ Vs.

The transition relation �−→s is defined for every ` ∈ Vs and every 1 ≤ j ≤ m
as ` �−→s `

′ for some unique `′ such that `++j ≡T `′.
The back-pointer relation s is defined for every ` ∈ Vs, s;~i ∈ S × I, and

~i′ ∈ I as ∅ 6s;
~i;~i′
 s ` and, if ` 6= ∅, ` s;

~i;~i′
 s `

′ for some unique `′ ∈ Vs with `′
j′

�−→s `,

`′ = j1 : · · · : jh, and 0;s;~i
j1−→p . . .

jh−→p ◦
j′−→p w;s′;~i′ for which w ∈ R is minimal.

Note that in the definition of the transition relation of this DAG, we use
independence based on equal states, not the extended power-independence which
also checks for equal power consumption. Finally, we remark that again labels
of edges are left out, but the transition relation �−→s can be understood as
labeled by an input position 1 ≤ j ≤ m, indicating the added input coordinate
that has been considered. This was already made use of in the definition of the
back-pointer relation, but this position can again be recovered as the single input
coordinate by which the two lists differ.

The construction of the power-sum DAG works similarly to the construction
of the power-independence DAG. For it, we use the auxiliary function wmin,
which assigns to every node and state and input transition the minimal weight
that the resulting state can be reached with, i.e., for ` ∈ Vs and s;~i;~i′ ∈ S× I × I,

wmin(`, s;~i;~i′) = w if 0;s;~i `′−→→Tp w;s′;~i′ and w is minimal among all `′ ≡T `. This

10 Matthias Raffelsieper and MohammadReza Mousavi

∅

``min

`′

j′ j

w′
∗

w
∗

p′

(a) Before adding `
j
�−→s `′

∅

``min

`′

j′ j

w′
∗

w
∗

p

(b) w + p < w′ + p′

Fig. 3. Construction of the back-pointer relation in the power-sum DAG for some state
and input vector transition s;~i;~i′ ∈ S × I × I

can be efficiently read from the back-pointer relation. To complete the function,

we define wmin(`, s;~i;~i′) =∞ if no `′ ∈ Vs exists such that `
s;~i;~i′
 s `

′.
We start with the root node ∅ and add nodes in a breadth-first fashion. At

each step, for each leaf ` of the DAG, we add an edge for every input position
1 ≤ j ≤ m that is not yet contained in `. If there exists a node `′ such that

`p
j′

�−→s `, `p
j:j′

�−→∗s `′, and j ��T j′, then the edge `
j
�−→s `

′ is added. Otherwise, a

new node `++j is added to the DAG, and the edge `
j
�−→s `++j is added. This

is the same construction that was used for the power-independence DAG Gi,
illustrated in Figure 2, only here the commuting diamond property does not take
the power consumption into account.

For the back-pointer relation, we use that sub-paths of a path with minimal
weight also are of minimal weight, since otherwise a sub-path could be replaced

by a smaller one. So, when adding an edge `
j
�−→s `

′, we define `′
s;~i;~i′
 s ` if

s;~i `−→→ s0;~i0
j−→ s′;~i′ and wmin(`, s;~i;~i′) + p(s0, s′) < wmin(`′, s;~i;~i′), otherwise we

leave s unchanged. Note that if `′ is a new node, then always the first case is
applied, since the sum is always smaller than ∞.

An illustration of the back-pointer construction is shown in Figure 3, where

the dashed edge `
j
�−→s `

′ is to be added. Initially, we assume that there already

is a node `min such that `′
s;~i;~i′
 s `min, i.e., the power consumption is minimal

if taking the minimal path from the root ∅ to node `min, which is assumed to
have weight w′, and then extending it by considering coordinate j′, whose power
consumption we assume to be p′. This situation is depicted in Figure 3 (a). Next,
the node ` is considered. Note that `′ ≡T `++j ≡T `min++j′, as otherwise the

edge `
j
�−→s `

′ would not be drawn. We assume the weight of the minimal path
from the root ∅ to the node ` to be w and the power consumption of the step
from ` to `′ to be p. In case w + p < w′ + p′, then we have found a new minimal

Symbolic Power Analysis of Cell Libraries 11

path for `′, thus we update the back-pointer relation as shown in Figure 3 (b).
Otherwise, the previous path of the back-pointers is still giving the minimal path

even after adding `
j
�−→s `

′, so in that case the back-pointer relation remains as
depicted in Figure 3 (a).

It can be shown that the above construction yields exactly the power-sum
DAG Gs of a power-extended vector-based transition system. In the following
theorem, it is shown that Gs identifies all orders that lead to the same state and
a construction of the order consuming the minimal amount of power is given.

Theorem 9. Let Tp = (R×S, I,→p) be a power-extended vector-based transition
system with m inputs and power-sum DAG Gs = (Vs,�−→s, s). Furthermore,
let π, π′ ∈ Πm be some orders and s;~i;~i′ ∈ S × I × I be some state together with
previous and next input vectors.

If ∅
π
�−→∗s π′, then a path π′ = `m

s;~i;~i′
 s . . .

s;~i;~i′
 s `0 = ∅ exists and π ≡T π′ ≡T π′′

for π′′ = j1 : · · · : jm ∈ Πm defined by `r = `r−1++jr for all 1 ≤ r ≤ m such

that 0;s;~i π′′

−→→ w;s′;~i′ and w is minimal.

Proof. Existence of the back-pointer path and hence of π′′ is guaranteed by the
(unique) existence of a successor w.r.t. s for every node that is not the root
and since `r 6= ∅ for every 1 ≤ r ≤ m. The property π ≡T π′ ≡T π′′ directly
follows from the definition of the transition relation of Gs. Finally, minimality of
w follows from the definition of the back-pointer relation of Gs. ut

Given a cell and its power-sum DAG Gs, one can obtain the order consuming
the least amount of power for a given state, input vector transition, and order π
in which the inputs are to be changed. This works by first traversing the DAG Gs
according to the order π, which will result in a leaf π′ of the DAG. From the leaf,
the back pointer relation is followed upwards to the root, giving another order
π′′ with π′′ ≡T π′ ≡T π that consumes the least amount of power, as shown in
Theorem 9. Enforcing this order π′′ can for example be done by adding delays,
which is also proposed in [7].

5 Implementation

The techniques presented in Sections 3 and 4 were implemented in a prototype
tool. This tool first parses a SPICE netlist and builds a symbolic vector-based
transition system from it using the algorithm of [2], where states consist of a
vector of formulas, computing values from the set {0, 1,Z}. The values 0 and 1
correspond to the logic values false and true, respectively, and represent an active
path from a wire in the netlist to the low and high power rails, respectively. The
third value, Z, represents a floating wire that has neither a path to the low nor to
the high power rail. As the initial state of the netlist, we allow arbitrary values
for all of the wires. The inputs are restricted to the binary values 0 and 1.

The power consumption of a transition is computed by the function p
in Definition 1. In our implementation, this function is defined as p(~s, ~s′) =

12 Matthias Raffelsieper and MohammadReza Mousavi∣∣{1 ≤ j ≤ n : ~s|j = 0, ~s′|j = 1}
∣∣ for a netlist consisting of n wires, i.e., it counts

the number of wires that transition from 0 to 1.
Building the power-independence DAG is then performed by first computing

the diamond relation for all pairs of inputs (also taking power consumption into
account). This is done symbolically using BDDs, requiring a total of O(n ·m2)
BDD comparisons for m inputs and n state variables. Here, for every pair of input
variables (of which there are O(m2) many) and every of the n state variables, two
BDDs are constructed. The first computes the next state function after applying
the two inputs in one order, the second BDD computes the next state function
after applying the inputs in the other order. The currently considered pair of
inputs has the power-extended diamond relation, if and only if these pairs of
BDDs are equal for all state variables and the total number of wire chargings is
the same. Finally, we construct the power-independence DAG as described in
Section 3.2.

If the power-sum DAG is to be constructed, as described in Section 4, then
we first need to compute the functional independence relation for all pairs of
inputs. This also requires O(n ·m2) BDD comparisons. Furthermore, we need
to keep track of the state to which a list of input coordinates leads, to be able
to construct the back-pointer relation. For this purpose, we unroll the symbolic
transition relation, i.e., we create a new transition relation that computes, given
a starting state and input vector, the state and input vector after changing the
inputs in the order of the currently considered node. This is used to create a
symbolic formula computing the number of wires charged when adding another
input to the list. Among these formulas we finally compute a symbolic minimum
that indicates which parent node leads to minimal power consumption.

6 Experimental Results

We applied our technique to reduce the number of considered orders, which
was presented in Section 3, and the technique to select an equivalent order that
consumes less power, presented in Section 4, to the open-source Nangate Open
Cell Library [4]. For each of the contained netlists, the SPICE source was parsed, a
transition system created, and the power-independence DAG or power-sum DAG
built and traversed to enumerate all equivalence classes. All of our experiments
were conducted on a commodity PC equipped with an Intel Pentium 4 3.0 GHz
processor and 1 GB RAM running Linux.

6.1 Reducing Input Vector Orders

Our results for reducing the number of considered orders with different functional
or power consumption behavior are presented in Table 1, where the first column
gives the name of the cell, the second column gives both the number of inputs
and the number of wires, the third column the number of all possible orders, and
the fourth column shows the number of different equivalence classes returned
by our approach together with the time it took to compute these. Finally, the

Symbolic Power Analysis of Cell Libraries 13

last column demonstrates the achievable power reduction, to be explained in
Section 6.2.

For combinational cells, marked with “(c)” in Table 1, the results show that
our approach cannot reduce the number of orders that have to be considered.
This is usually due to situations in which wires are in one order first discharged
only to be finally charged, whereas evaluating them in another order keeps the
wire charged during the whole evaluation. Thus, all possible orders have to be
considered during power characterization of these cells.

For sequential cells however, we can observe some larger savings especially
for the larger cells. For example, in case of the largest cell in the library, the cell
SDFFRS, we could reduce the number of orders to consider from 720 to only 288,
which is a reduction by 60 %. Especially for sequential cells these savings have an
effect, since for these cells the characterization not only has to take the possible
input combinations into account, but also the current internal state. Overall,
when summing up the absolute number of orders that have to be considered for
the sequential cells, we get a reduction by more than 47 %. This is especially
advantageous for the large cells, as witnessed by the average of the reduction
rates of sequential cells, which is only slightly above 16 %. So especially for large
sequential cells with lots of possible orders, our approach can reduce the number
of orders that have to be considered significantly.

6.2 Selecting Input Vector Orders

We also evaluated the technique presented in Section 4, which computes the
functionally equivalent orders and a path back that uses the minimal amount
of power, using the open-source Nangate Open Cell Library [4]. The results are
shown in the last column of Table 1, where the number of equivalence classes
w.r.t. ≡T , the average number of maximal differences in wires chargings, and the
amount of time for constructing the DAG and computing the result are given.

The results show that for combinational cells all orders lead to the same final
state, which is expected as the state is completely determined by the new input
values. For the sequential cells we observe that not all orders lead to the same
final state, as there are multiple leaves in the power-sum DAG. This happens
because the computation can depend on internally stored values, which might
have different values when applying the input changes in different orders.

We illustrate the selection of orders by means of an example. Consider the
scan logic of the cell SDFFRS (which is also the same in the cells beginning with
SDFF), which is a multiplexer (mux) that selects, based on the value of the scan
enable signal, between the data input and the scan input. In case the scan enable
signal changes from 0 to 1 and the data input changes, then the power-sum DAG
tells us that it is more power-efficient to first change the scan enable signal and
then change the data input, than vice versa. This can be explained intuitively
by the fact that while the scan enable signal is 0, the mux is transparent to
changes in the data input, so also wires connected to transistors controlled by
the mux output are affected. This is not the case anymore if we first change the
scan enable to 1, so that the change in the data input cannot be observed at the

14 Matthias Raffelsieper and MohammadReza Mousavi

Table 1. Results for the Nangate Open Cell Library

Cell #I / W #Πm |Gi| / t [s] |Gs| : Avg / t [s]

AND2 (c) 2 / 3 2 2 / 0.37 1 : 2.5 / 0.37
AND3 (c) 3 / 4 6 6 / 0.46 1 : 3.5 / 0.47
AND4 (c) 4 / 5 24 24 / 0.60 1 : 4.5 / 0.66
AOI211 (c) 4 / 4 24 24 / 0.62 1 : 4.0 / 0.64
AOI21 (c) 3 / 3 6 6 / 0.44 1 : 2.5 / 0.45
AOI221 (c) 5 / 5 120 120 / 0.97 1 : 7.0 / 1.14
AOI222 (c) 6 / 6 720 720 / 1.79 1 : 9.5 / 5.57
AOI22 (c) 4 / 4 24 24 / 0.68 1 : 5.0 / 0.66
BUF (c) 1 / 2 1 1 / 0.33 1 : 0.0 / 0.27
CLKBUF (c) 1 / 2 1 1 / 0.25 1 : 0.0 / 0.29
CLKGATETST 3 / 13 6 6 / 0.68 4 : 3.7 / 0.71
CLKGATE 2 / 11 2 2 / 0.54 2 : 0.0 / 0.54
DFFRS 4 / 24 24 24 / 1.20 12 : 1.1 / 1.82
DFFR 3 / 19 6 4 / 0.78 4 : 0.0 / 0.90
DFFS 3 / 19 6 6 / 0.82 4 : 1.0 / 0.90
DFF 2 / 16 2 2 / 0.63 2 : 0.0 / 0.68
DLH 2 / 9 2 2 / 0.50 2 : 0.0 / 0.52
DLL 2 / 9 2 2 / 0.53 2 : 0.0 / 0.52
FA (c) 3 / 14 6 6 / 0.71 1 : 3.0 / 0.76
HA (c) 2 / 8 2 2 / 0.46 1 : 1.0 / 0.48
INV (c) 1 / 1 1 1 / 0.24 1 : 0.0 / 0.25
MUX2 (c) 3 / 6 6 6 / 0.52 1 : 4.0 / 0.53
NAND2 (c) 2 / 2 2 2 / 0.35 1 : 1.5 / 0.35
NAND3 (c) 3 / 3 6 6 / 0.44 1 : 2.5 / 0.44
NAND4 (c) 4 / 4 24 24 / 0.58 1 : 3.5 / 0.61
NOR2 (c) 2 / 2 2 2 / 0.35 1 : 1.5 / 0.36
NOR3 (c) 3 / 3 6 6 / 0.47 1 : 2.5 / 0.45
NOR4 (c) 4 / 4 24 24 / 0.58 1 : 3.5 / 0.63
OAI211 (c) 4 / 4 24 24 / 0.59 1 : 4.0 / 0.64
OAI21 (c) 3 / 3 6 6 / 0.47 1 : 2.5 / 0.45
OAI221 (c) 5 / 5 120 120 / 1.07 1 : 7.0 / 1.22
OAI222 (c) 6 / 6 720 720 / 1.80 1 : 9.5 / 5.61
OAI22 (c) 4 / 4 24 24 / 0.62 1 : 5.0 / 0.66
OAI33 (c) 6 / 6 720 720 / 1.77 1 : 8.0 / 4.79
OR2 (c) 2 / 3 2 2 / 0.37 1 : 2.5 / 0.38
OR3 (c) 3 / 4 6 6 / 0.46 1 : 3.5 / 0.47
OR4 (c) 4 / 5 24 24 / 0.59 1 : 4.5 / 0.66
SDFFRS 6 / 30 720 288 / 2.99 48 : 6.4 / 13.01
SDFFR 5 / 25 120 96 / 1.61 16 : 6.4 / 3.07
SDFFS 5 / 25 120 36 / 1.49 16 : 6.0 / 2.77
SDFF 4 / 22 24 18 / 1.04 8 : 6.0 / 1.33
TBUF (c) 2 / 5 2 2 / 0.38 1 : 3.0 / 0.39
TINV (c) 2 / 4 2 2 / 0.39 1 : 3.0 / 0.38
TLAT 3 / 12 6 6 / 0.63 2 : 3.0 / 0.67
XNOR2 (c) 2 / 5 2 2 / 0.41 1 : 2.0 / 0.41
XOR2 (c) 2 / 5 2 2 / 0.44 1 : 2.0 / 0.40

Symbolic Power Analysis of Cell Libraries 15

output of the mux. In case of the cell SDFFRS, choosing the first order can cause
7 more wires to be charged.

Note that some correlation exists between the size of an equivalence class
and the achievable power reduction: The more possible orders there are the more
likely it is that another equivalent order with less power consumption exists. This
can also be observed in results of Table 1, where the largest differences occur for
combinational cells, which always have exactly one equivalence class.

7 Conclusions

This paper presented a technique to group together orders of applying input
vectors which affect neither the functional behavior nor the power consumption.
Such a technique is useful for power characterization, where it is sufficient to
only choose one order of each of these equivalence classes, as all other elements
exhibit the same behavior. Additionally, we presented a technique to select an
order that uses the minimal power among functionally equivalent orders. Such
a technique is useful when the order can be controlled, e.g., by means of the
addition of delays as proposed in [7]. Then, one can force the evaluation to use
an order consuming the minimal amount of power, without affecting the result
of the computation. Both techniques were evaluated on the Nangate Open Cell
Library and provided reductions within reasonable amounts of time.

Acknowledgments

We would like to thank (in alphabetical order) Alan Hu, Hamid Pourshaghaghi,
and Shireesh Verma for their valuable input on this paper’s topic. Also, we would
like to thank the anonymous referees for their fruitful remarks.

References

1. A. Bogliolo, L. Benini, and B. Ricco. Power Estimation of Cell-Based CMOS Circuits.
In Proc. of DAC’96, pages 433–438. ACM, 1996.

2. R. Bryant. Boolean Analysis of MOS Circuits. IEEE Transactions on Computer-
Aided Design, 6(4):634–649, 1987.

3. M. Huang, R. Kwok, and S.-P. Chan. An Empirical Algorithm for Power Analysis
in Deep Submicron Electronic Designs. VLSI Design, 14(2):219–227, 2000.

4. Nangate Inc. Open Cell Library v2008 10 SP1, 2008. Downloadable from http:

//www.nangate.com/openlibrary/.
5. M. Raffelsieper, M.R. Mousavi, J.-W. Roorda, C. Strolenberg, and H. Zantema.

Formal Analysis of Non-Determinism in Verilog Cell Library Simulation Models. In
Proc. of FMICS’09, volume 5825 of LNCS, pages 133–148. Springer, 2009.

6. M. Raffelsieper, M.R. Mousavi, and H. Zantema. Order-Independence of Vector-
Based Transition Systems. In Proc. of ACSD’10, pages 115–123. IEEE, 2010.

7. A. Raghunathan, S. Dey, and N. K. Jha. Glitch Analysis and Reduction in Register
Transfer Level Power Optimization. In Proc. of DAC’96, pages 331–336. ACM, 1996.

8. W.-Z. Shen, J.-Y. Lin, and J.-M. Lu. CB-Power: A Hierarchical Cell-Based Power
Characterization and Estimation Environment for Static CMOS Circuits. In Proc.
of ASP-DAC’97, pages 189–194. IEEE, 1997.

http://www.nangate.com/openlibrary/
http://www.nangate.com/openlibrary/

	Symbolic Power Analysis of Cell Libraries

