
Formal Analysis of Non-Determinism in Verilog
Cell Library Simulation Models

Matthias Raffelsieper1, MohammadReza Mousavi1, Jan-Willem Roorda2,
Chris Strolenberg2, and Hans Zantema1,3

1 Department of Computer Science, TU Eindhoven,
P.O. Box 513, Eindhoven, The Netherlands

Email: {M.Raffelsieper,M.R.Mousavi,H.Zantema}@tue.nl
2 Fenix Design Automation,

P.O. Box 920, Eindhoven, The Netherlands
Email: {janwillem,chris}@fenix-da.com

3 Institute for Computing and Information Sciences, Radboud University
P.O. Box 9010, Nijmegen, The Netherlands

Abstract. Cell libraries often contain a simulation model in a system
design language, such as Verilog. These languages usually involve non-
determinism, which in turn, poses a challenge to their validation. Sim-
ulators often resolve such problems by using certain rules to make the
specification deterministic. This however is not justified by the behavior
of the hardware that is to be modeled. Hence, simulation might not be
able to detect certain errors. In this paper we develop a technique to prove
whether non-determinism does not affect the behavior of the simulation
model, or whether there exists a situation in which the simulation model
might produce different results. To make our technique efficient, we show
that the global property of equal behavior for all possible evaluations is
equivalent to checking only a certain local property.

1 Introduction

System description languages such as (System)Verilog and SystemC provide sev-
eral abstraction layers for specifying designs. At higher levels of abstraction, such
languages allow for designs with non-deterministic behavior. Although this fa-
cility is desirable for high-level designs, it poses a serious challenge for their
validation. The common practice in hardware design is to use dynamic vali-
dation using simulation kernels, which in turn usually fix a scheduler (i.e., fix
several, otherwise arbitrary, parameters) in order to obtain an execution trace
of the system. As a result, many plausible runs of the system may be hidden
during the validation phase but only show up in the subsequent lower layers and
thus, jeopardize the correctness of the final outcome.

An exhaustive search of all possible non-deterministic behavior, using sym-
bolic model-checking techniques, can theoretically solve this challenge. However,
in most practical cases, taking all combinations of non-deterministic behavior of
components leads to an intractable (symbolic) state space. To alleviate this prob-
lem, two main techniques are used: language-based techniques, which make use

of language (e.g., Verilog) constructs to rule out irrelevant/impossible combina-
tions at design time and reduction techniques, which propose efficient algorithms
to explore only a fraction of the state space while providing sound verification
results. The aim of the present paper is to tackle this challenge by combining
the above-mentioned techniques in the verification of Verilog cell libraries.

The main motivation for this paper comes from our ongoing cooperation
with Fenix Design Automation on the verification of cell libraries. In our earlier
publication [8], we report on a formal semantics for the subset of Verilog used in
cell libraries. There we observed that the IEEE Standard for Verilog [1], allows
for non-deterministic behavior, due to the unspecified order of processing input
changes (in case of simultaneous changes in the inputs). Tackling this hugely
non-deterministic structure naively (by using a brute-force search) is bound for
failure according to our past experience.

In this paper, we propose exhaustive analysis techniques for Verilog cell li-
braries while addressing their non-deterministic behavior. Our approach is in-
spired by confluence-checking and confluence reduction techniques from term
rewriting and makes use of Verilog timing checks (taking into account constructs
such as $hold and $recovery). Although we develop and apply our techniques
to the verification of cell libraries in Verilog, the general problem addressed in
this paper is ubiquitous in system design and thus, the techniques can be adapted
to and adopted for other domains and input languages. To aid this, we abstract
from the exact implementation of evaluating user defined primitives in Verilog
and fix only the structure of the computation and two intuitive properties.
Related work. In [5], an application of dynamic partial-order reduction tech-
niques is used to efficiently explore all possible execution runs of a test-suite for
parallel SystemC processes. To this end, the code of parallel SystemC processes is
analyzed and non-commutative transitions are detected. Subsequently, all possi-
ble permutations of non-commutative actions are considered in order to generate
all schedules that may possibly lead to different final states. The technique re-
ported in [5] is comparable to our confluence-detection and -reduction technique
(used in [5] for the purpose of testing instead of exhaustive model-checking). The
input language considered in [5] is very rich and hence to cater for the dynamic
communication structure of parallel processes some manual code instrumenta-
tion is required there, which may be a restrictive factor in industrial cases. In
[6], the approach of [5] is enhanced with slicing techniques and combined with
static partial order reduction techniques.

Neither of the approaches reported in [5, 6] claim the minimality of the gener-
ated schedules. Our approach, however, guarantees that for each two generated
schedules, they do produce different output from some initial state and thus,
there is a formal justification for including both.

In [4], the technique of [5] is extended to test the vulnerability of a system
against changes in the timing specification. To this end, they consider the de-
viation in timing specification as an ordinary set of inputs for the test process,
and thus, check whether a certain choice of deviation for timing specification
can result in a new schedule (order of execution), which was not possible be-

fore. Conceptually, this might be considered as dual to our approach, where we
make sure that extra, possibly erroneous, execution traces are ruled out by an
appropriate timing specification.
Structure of the paper. In Section 2, we recall some preliminary concepts.
In Section 3, we introduce our basic analysis techniques, namely, commuting
diamond analysis and timing checks. In Section 4, we show how to combine
these techniques and use model-checking in order to generate concrete counter-
examples witnessing all sources of non-determinism in a Verilog cell library. In
Section 5, we report on the result of experiments with open source and propri-
etary cell libraries. Section 6 concludes the paper.

2 Preliminaries

2.1 Basic Concepts

Permutations and Lists. We let Πn denote the set of all permutations on the set
{1, . . . , n}, that is, all bijective functions from {1, . . . , n} to {1, . . . , n}. Composi-
tion of permutations is denoted by juxtaposition, where (π1 π2) (x) = π1(π2(x)).
The identity permutation is denoted by id. It is well known that every permu-
tation can be expressed as the composition of adjacent transpositions. A trans-
position is a permutation denoted (a b) and defined as (a b)(a) = b, (a b)(b) = a,
and (a b)(i) = i for all 1 ≤ i ≤ n, i /∈ {a, b}. (a b) is called adjacent if b = a + 1.

The set Πn denotes the set of all lists of numbers from 1 to n which do
not contain duplicates. A list ` ∈ Πn is denoted ` = j1 : . . . : jk : nil, with
the constructor : associating to the right. This list ` is interpreted as the start
of a permutation π`, i.e., an injective function from {1, . . . , k} to {1, . . . n}, for
which we have π`(m) = jm for all 1 ≤ m ≤ k. The length of a list is denoted
|`| and is defined as |j : `′| = 1 + |`′| and |nil| = 0. Therefore, we have that ` is
a permutation if |`| = n. We identify every permutation π ∈ Πn with the list
π(1) : . . . : π(n) : nil. A list ` = j1 : . . . : jk : nil ∈ Πn can be constructed by
concatenating two lists `1, `2 ∈ Πn, denoted `1++`2 = `, if `1 = j1 : . . . : jm : nil
and `2 = jm+1 : . . . : jk : nil for some 1 ≤ m ≤ k.

User defined primitives (UDPs). UDPs are the main building blocks in the Ver-
ilog specification of cell libraries. They specify the behavior of basic IP blocks
in the form of tables defining an output value corresponding to a set of input
values (or changes therein). UDPs can be combinational or sequential, where in
the latter the current value of output is not only dependent on inputs but also
on the previous value of outputs. Verilog provides different notation for com-
binational and sequential circuits, with which we deal in our implementation;
however, for the sake of uniformity, we only consider sequential UDPs. (Combi-
national UDPs are of little relevance for our study of non-determinism anyway.)
In this setting, combinational UDPs can be considered as sequential UDPs, in
which the row corresponding to the previous value of output is arbitrary (de-
noted by ?). Henceforth, we drop the word sequential and simply write UDP for
sequential UDP.

UDPs work on the ternary values T, defined as {0, 1,X}. Here, the values 0
and 1 correspond to the Boolean values false and true, respectively. The third
value X can be thought of as representing an unknown value, however this is
not enforced for UDPs. A UDP with n inputs is a set of rows of the shape
i1 . . . in : op : o, where op, o ∈ T, there exists at most one j, with 1 ≤ j ≤ n, such
that ij ∈ T×T, and for all 1 ≤ k ≤ n with k 6= j, ik ∈ T. The input specification
for ij is called an edge, the other specifications are called levels. Note that at
most one edge specification is allowed in a row; hence, multiple changes in the
inputs should be handled one by one and by matching against different rows.
Furthermore, for each two rows r1 = i1 . . . in : op : o1 and r2 = i1 . . . in : op : o2

in a UDP it holds that o1 = o2, i.e., two rows specifying the same input and
previous output should also produce the same output.

The set of UDPs with n inputs is denoted by UDPsn. Note that in Verilog,
row definitions often contain syntactic sugar that allows to combine multiple row
specification in a single row. For example, the symbol ? represents all levels (i.e.,
all of the three values 0, 1,X), whereas the symbol ∗ represents all edges (i.e., all
specifications (v w) with v, w ∈ T and v 6= w). Furthermore, the symbol − can
be used in the last column of the row, which indicates the current output value
for this row. This symbol stands for no change in the output, i.e., if the value
in the previous column, indicating the previous output value, is a value from T,
then it can be placed here. A row is called level-sensitive if all of its specifications
are levels, otherwise, if it contains an edge, it is called edge-sensitive. A UDP
can be instantiated in a module specification.

An example of a sequential UDP, a D Flip-Flop with an enable input, together
with a module that instantiates it, is given in Figure 1. A sequential UDP can
be distinguished by the keyword reg, which declares that the output holds its
value between assignments. We use this UDP as our running example throughout
the paper. In particular, we check whether prim ff en uniquely determines an
output function regardless of the order of evaluating its inputs. In other words,
we would like to check whether this UDP is order-independent.

2.2 Semantics of UDPs

We defined the formal semantics of UDPs in [8]. In this section, we briefly recall
this semantics and define some notations (for the computation of intermediate
states). Furthermore, we state some semantic properties, which are of relevance
for the technical developments in the remainder of the paper.

For a UDP udp with n inputs, we define the set of all input vectors for
this UDP to be Iudp = (T × T)n. We drop the subscript udp whenever the
considered UDP is clear from the context. Given a UDP and an input vector
~i = ((ip1, i1), . . . , (i

p
n, in)) ∈ I for it, we define projections on it: For 1 ≤ k ≤ n,

the projections ρp
k, ρk : I → T are defined as ρp

k(~i) = ipk and ρk(~i) = ik. The set
of all projections for a given UDP udp is denoted Projudp . We drop the subscript
when the udp is understood from the context. Furthermore, a substitution for
such a vector is denoted by σ = [ap

1 := v1, . . . , a
p
r := vr, b1 := w1, . . . , bs := ws]

where a1, . . . , ar, b1, . . . , bs ∈ {1, . . . , n}, v1, . . . , vr, w1, . . . , ws ∈ T, and for every

primitive p r im f f e n (q , d , ck , en) ;
output q ; reg q ;
input d , ck , en ;

table
// d ck en : q : q+

0 (01) 1 : ? : 0 ;
1 (01) 1 : ? : 1 ;
? (10) ? : ? : −;
∗ ? ? : ? : −;
? ? 0 : ? : −;
? ? ∗ : ? : −;

endtable
endprimitive

module f f e n (q , d , ck , en) ;
output q ;
input d , ck , en ;

p r im f f e n (q , d , ck , en) ;
endmodule

Fig. 1. D Flip-Flop with Enable

1 ≤ i, j ≤ r with i 6= j we have ai 6= aj and also for every 1 ≤ i, j ≤ s with i 6= j

we have bi 6= bj . The application of a substitution σ to a vector ~i is denoted ~iσ

and is defined for all 1 ≤ k ≤ n as ρp
k(~iσ) = v if kp := v ∈ σ, ρk(~iσ) = w if

k := w ∈ σ, and ρp
k(~iσ) = ρp

k(~i), ρk(~iσ) = ρk(~i) in the respective other cases.
We formally defined the semantics of UDP evaluation previously in [8]. This

semantics works by considering one input at a time as changed and computing
the corresponding next output, which is then used as previous output during
the next computation. Intuitively, the next output is computed as follows: First,
it is checked whether the considered input has changed. If not, then also the
output remains unchanged. Otherwise, the output is determined by looking up
a matching row (taking into account that, according to the IEEE standard [1],
level-sensitive rows have precedence over edge-sensitive rows) and using its out-
put value. If no such row exists, but the considered input has changed, the next
output is set to the default value X.

In this paper, we do not need the full formal definition of the functions,
denoted Φj : I × T → T, that are used repeatedly to compute the output when
considering the j-th input as changed. Instead, we abstract from the concrete
implementation in Verilog and only require two properties of these functions.

The first requirement is that when the input considered by such a function
is unchanged, then also the output remains unchanged. This clearly holds for
Verilog, as can already be seen from the above informal description.

Property 1. Let 1 ≤ j ≤ n and let ~i ∈ I such that ρp
j (~i) = ρj(~i). Then for all

op ∈ T, Φj(~i, op) = op.

The second requirement states that the computation of a next output value
only depends on the previous values of the inputs, except for the currently con-
sidered one. Therefore, one may change a non-considered input of a UDP and
will still get the same next output value.

Property 2. Let 1 ≤ j ≤ n, let 1 ≤ k ≤ n with k 6= j, let ~i ∈ I, and let v, op ∈ T.
Then Φj(~i, op) = Φj(~i[k := v], op).

Also this property holds for the concrete functions Φj used in Verilog. Intu-
itively, this is the case since a change on a different position has either already
taken place, or it will only take place shortly after the current change.

The semantics of UDP evaluation repeatedly updates the output value, us-
ing the above output functions Φj in some specified order. It is defined by the
function J·K : UDPsn×I×T×Πn → T, which differs slightly from the definition
in [8] since in this paper we are also interested in output values after considering
only certain inputs, instead of full permutations. Hence, we use a list, instead of
a permutation and an index, to identify the input to be considered next. For a
udp ∈ UDPsn, a vector ~i ∈ I of previous and current input values, a previous
output value op ∈ T, and a list j : ` ∈ Πn the evaluation is defined recursively:

Judp,~i, op, nil K = op

Judp,~i, op, j : ` K = Judp,~i[jp := ρj(~i)], Φj(~i, op), ` K
We will drop the argument udp from the above function if the evaluated UDP

is clear from the context. Hence, instead of Judp,~i, op, `K we write J~i, op, `K.

Order Independence. A sequential UDP udp with n inputs is called order-
independent, if for all previous and current inputs ~i, all previous outputs op,
and all permutations π, π′ ∈ Πn considered as lists, as defined above, we have
J~i, op, πK = J~i, op, π′K. Otherwise, it is called order-dependent.

In the example of Figure 1, we have that the order of the inputs d and ck
matters for the output of the UDP: For example, if both inputs change from 0
to 1 and the flip-flop is enabled by setting input en to 1, then the value of the
output q depends on whether the previous or the current value of input d is used,
since in the former case the first row is applicable and sets the output of the UDP
to 0, whereas in the latter case the second row is applicable and sets the output
to 1. Formally, we have for the UDP prim ff en that J((0, 1), (0, 1), (1, 1)), op,
2 : 1 : 3 : nilK = 0 6= 1 = J((0, 1), (0, 1), (1, 1)), op, 1 : 2 : 3 : nilK for all previous
output values op ∈ T.

3 Order Dependency Analysis

3.1 Commuting Diamond Analysis

As stated in the preliminaries, a UDP is called order-dependent if two different
orders of evaluation lead to different output values. This description leads to

a very simple test for order independence, namely to enumerate all pairs of
permutations and testing whether the output is the same for all pairs. This
naive approach can be slightly improved, by observing that one of the orders
can be fixed, for example to the identity permutation.

Lemma 3. A UDP udp ∈ UDPsn is order-independent iff J~i, op, πK = J~i, op, idK
for all ~i ∈ I, op ∈ T, π ∈ Πn.

Proof. The “only if”-direction is trivial from the definition given in the prelim-
inaries. The “if”-part follows from the transitivity of equality. ut

This reduces the number of comparisons from O((n!)2) to O(n!). As we show
in the remainder of this section, a quadratic number of comparisons is sufficient
to prove order-independence. To this end, we consider pairs of inputs and check
whether they satisfy the commuting diamond property. Informally, this property
expresses that the order of two inputs does not influence the output.

Definition 4. Let udp ∈ UDPsn.
We say that inputs 1 ≤ i, j ≤ n, i 6= j have the commuting diamond property,

denoted i �udp j, iff for all ~i ∈ I, op ∈ T:

Judp,~i, op, i : j : nilK = Judp,~i, op, j : i : nilK

The commuting diamond property is a well-known property from term rewrit-
ing, e.g., given in [2, Section 2.7.1]. The idea is that each two one-step rewrites
(evaluations) can be joined again by executing the respective other step. Graph-
ically, this is depicted in Figure 2, where only the inputs and the output value
are denoted. The solid lines are universally quantified, whereas the dashed lines
are existentially quantified.

~i, op

~i[ip := ρi(~i)], oi
~i[jp := ρj(~i)], oj

~i[ip := ρi(~i), j
p := ρj(~i)], o

i j

j i

Fig. 2. Commuting Diamond Property

Considering one-step evaluation as a rewrite step, the commuting diamond
property implies confluence in the induced term-rewrite system, i.e., the final
state (and hence especially the output) is unique regardless of the order of con-
sidering inputs. In the sequel we prove a stronger result, namely, that the com-
muting diamond property and confluence coincide in the case of UDP evaluation.

This relies on the semantics of UDPs and does not hold in the general setting
of term rewriting. For sake of completeness, we will also include the proof of
sufficiency of the commuting diamond property (for the purpose of confluence).

The formal definition of the commuting diamond property amounts to check-
ing that in case of two simultaneous changes in the input, both orders of con-
sidering them leads to the same output. To put such evaluations into longer
evaluations, where more elements exist in the list of input numbers to be con-
sidered, the following lemma shows that this does not change the behavior.

Lemma 5. For a udp ∈ UDPsn, ~i ∈ I, op ∈ T, and a list `1++`2 ∈ Πn with
`1 = k1 : . . . : k|`1| : nil:

J~i, op, `1++`2K = J~i[kp
r := ρkr

(~i) | 1 ≤ r ≤ |`1|], J~i, op, `1K, `2K

Proof. Induction is performed on |`1|.
If |`1| = 0, then `1 = nil, J~i, op, `1K = op, and~i[kp

r := ρkr
(~i) | 1 ≤ r ≤ |`1|] =~i.

Hence, J~i, op, `1++`2K = J~i, op, `2K = J~i, J~i, op, `1K, `2K.
Otherwise, let |`1| > 0 and `1 = k1 : ` with ` = k2 : . . . : k|`1| : nil. Then

J~i, op, `1K = J~i, op, k1 : `K = J~i[kp
1 := ρk1(~i)], o

′, `K for o′ = Φk1(~i, o
p). Furthermore,

J~i, op, `1++`2K = J~i, op, k1 : `++`2K = J~i[kp
1 := ρk1(~i)], o

′, `++`2K. The induction
hypothesis is applicable to `, which proves the theorem:

J~i, op, `1++`2K
= J~i[kp

1 := ρk1(~i)], o
′, `++`2K

IH= J~i[kp
1 := ρk1(~i)][k

p
r := ρkr (~i) | 2 ≤ r ≤ |`1|], J~i[kp

1 := ρk1(~i)], o
′, `K, `2K

= J~i[kp
r := ρkr

(~i) | 1 ≤ r ≤ |`1|], J~i[kp
1 := ρk1(~i)], o

′, `K, `2K
= J~i[kp

r := ρkr (~i) | 1 ≤ r ≤ |`1|], J~i, op, `1K, `2K

ut

Using the commuting diamond property, we can now show our main lemma.
This lemma states that the commuting diamond property is a necessary and
sufficient condition to be able to swap the order of two inputs.

Lemma 6. Let udp ∈ UDPsn and let i : j : ` ∈ Πn.
We have i �udp j, iff for all ~i ∈ I and op ∈ T, J~i, op, i : j : `K = J~i, op, j : i : `K.

Proof. In the “only if”-direction, we have the following two computations:

J~i, op, i : j : `K = J~i[ip := ρi(~i), jp := ρj(~i)], o , `K
J~i, op, j : i : `K = J~i[ip := ρi(~i), jp := ρj(~i)], o′, `K

Lemma 5 tells us that we can split these computations, and because i � j
holds by assumption, we have o = J~i, op, i : j : nilK = J~i, op, j : i : nilK = o′. Since
the remaining computation is the same, we have shown this direction.

To show the “if”-direction, let i 6 � j. Then ~i ∈ I and op, o, o′ ∈ T exist such
that:

o = J~i, op, i : j : nilK 6= J~i, op, j : i : nilK = o′

Define ~i′ = ~i[k := ρp
k(~i) | 1 ≤ k ≤ n, k /∈ {i, j}], i.e., set all current values to

their previous values except for those on positions i and j. Due to Property 2
we still have o = J~i′, op, i : j : nilK and o′ = J~i′, op, j : i : nilK. Because of Lemma 5
we have the following two evaluations:

J~i′, op, i : j : `K = J~i′[ip := ρi(~i), jp := ρj(~i)], o , `K
J~i′, op, j : i : `K = J~i′[ip := ρi(~i), jp := ρj(~i)], o′, `K

By the requirements on lists in Πn, all remaining elements in ` are neither
i nor j. Formally, let ` = k1 : . . . : k|`| : nil, then kr /∈ {i, j} for all 1 ≤ r ≤ |`|.
Hence, we have ρp

kr
(~i′) = ρkr (~i′) by construction of ~i′ for all 1 ≤ r ≤ |`|. This

allows to repeatedly apply Property 1 to prove this lemma:

J~i′, op, i : j : `K = J~i′[ip := ρi(~i), jp := ρj(~i)], o , `K
= o
6= o′

= J~i′[ip := ρi(~i), jp := ρj(~i)], o′, `K
= J~i′, op, j : i : `K

ut

Using the above lemma, we can now prove our desired theorem stating that
order-independence is equivalent to all pairs of inputs having the commuting
diamond property.

Theorem 7. A UDP udp ∈ UDPsn with n inputs is order-independent, iff for
all pairs 1 ≤ i < j ≤ n we have i �udp j.

Proof. To show the “only if”-direction, let i 6 � j. Define list ` = 1 : . . . : i − 1 :
i+1 : . . . : j−1 : j +1 : . . . : n : nil. Then by construction both π = i : j : ` ∈ Πn

and π′ = j : i : ` ∈ Πn. Lemma 6 tells us that ~i ∈ I and op ∈ T exist such that
J~i, op, i : j : `K 6= J~i, op, j : i : `K, which proves that udp is order-dependent.

To show the “if”-direction, we assume that i � j for all 1 ≤ i < j ≤ n. Let
π ∈ Πn with π = (a1 a1+1) · · · (ak ak+1). Induction on k is performed to prove
the property of Lemma 3.

If k = 0, then π = id and hence trivially J~i, op, πK = J~i, op, idK.
Otherwise, let π′ = (a1 a1+1) · · · (ak−1 ak−1+1). Then for ~i′ = ~i[π(r)p :=

ρπ(r)(~i) | 1 ≤ r < ak], o = J~i, op, π(1) : . . . : π(ak−1) : nilK, and ` = π(ak+2) :
. . . : π(n) : nil we get the following due to Lemmas 5 and 6, since π′(ak)�π′(ak+1)
by assumption:

J~i, op, πK = J~i, op, π′ (ak ak+1)K
= J~i′, o, π′(ak+1) : π′(ak) : `K
= J~i′, o, π′(ak) : π′(ak+1) : `K

Furthermore, for all 1 ≤ m ≤ n with m /∈ {ak, ak + 1} we have that π(m) =
π′(m). Therefore, by Lemma 5, J~i′, o, π′(ak) : π′(ak+1) : `K = J~i, op, π′K, to
which we can apply the induction hypothesis J~i, op, π′K = J~i, op, idK which shows
the theorem. ut

Coming back to the problem stated at the beginning of this section, we have
now a method to check order-independence of UDPs in just O(n2) function
comparisons. To do this, we construct for every pair 1 ≤ i < j ≤ n of inputs
the BDDs of the two functions Judp,~i, op, i : j : nilK and Judp,~i, op, j : i : nilK,
which are then compared for equality. If we have equality of every such pair
of functions, then we can conclude order-independence of the UDP, due to the
above theorem. If however we find two functions that compute different outputs,
then their xor describes the counterexample states and we have found that the
UDP is order-dependent. Furthermore, the construction in the proof of Lemma 6
allows us to conclude that there is a previous output value and an input vector
in which only the currently considered inputs are changed that leads to two
different outputs depending on the order of the two considered inputs.

When applying this method to the UDP prim ff en of Figure 1, then we find,
among others, also the example for the input pair d and ck where both inputs
change from 0 to 1, which we already described previously.

For the pair d and en however, no order-dependence exists. This is intuitively
true because both changes in d and en will simply keep the current output value,
since the output of a Flip-Flop is only changed on a positive edge of the clock.

3.2 Verilog Timing Checks

Verilog provides a number of language constructs to specify that critical events
(do not) happen within a specified time interval. These constructs are widely
used, among others, by the designers of cell libraries for timing specifications
that may influence the functional correctness of the designed circuits. The most
popular constructs used for this purpose are: $setup, $hold, $recovery, and
$removal. The syntax of these constructs is given below:

$setup/$hold(reference event, data event, timing check limit
[, notifier]);

The reference event is usually an edge of the clock signal (positive, nega-
tive or arbitrary, prefixed by posedge, negedge, or no prefix, respectively). The
argument data event is a change in any data signal, and timing check limit
specifies the length of a timing interval in a specified unit of time, e.g., in nanosec-
onds. Optionally, a notifier can be supplied, which is a variable that changes
its value whenever the timing check was violated.

The syntax of the $recovery and $removal timing checks is identical to
above, but reference event for these statements denotes an edge of (an asyn-
chronous) control signal. To unclutter the presentation, we only mention $setup
and $hold in the remainder of this paper but the same techniques are applied
to $recovery and $removal constructs.

The semantics of the $setup statement enforces that no data event may
happen in the (left- and right-) open interval starting timing check limit
before the occurrence of reference event and ending by the occurrence of
reference event. The $hold statement is dual to $setup; it ensures that the
data event cannot occur in the left-closed right-open interval starting from
the occurrence of reference event and ending timing check limit time units

later. Thus, a pair of $setup and $hold constructs guarantee a safe margin
around any change in the reference event during which the data event can-
not occur. In particular, the $hold statement prevents the reference event and
the data event from happening simultaneously. (Note that the $setup state-
ment does not exclude this possibility.)

Constraints Imposed by Timing Checks. As stated above, timing checks
are added to assert a certain behavior of the system. Otherwise, if this behavior
is not encountered, an error is triggered. Hence, for our purposes we can regard
the timing checks as describing illegal behavior. Since we are only interested in
whether two inputs might change simultaneously, we do not regard the actual
time limits nor the notifier variable. We only make use of the restriction that the
events of a $hold timing check may not occur simultaneously in any execution
that is considered legal.

Such constraints can reduce the number of counterexample states for which
an order-dependence is found. However, for this to work we have to infer infor-
mation about the inputs of UDPs from these constraints. The constraints are
usually defined on the inputs of the cell which are not necessarily the inputs of
the UDP.

If the output of another UDP is used as input to the UDP that is currently
checked for order-independence, then we handle this case by making this in-
ternal signal a new input of the module. This input might therefore exhibit
behavior that is not possible in the implementation, i.e., we might find an order-
dependence that does not occur in the implementation.

For the combinational logic driving the inputs of the currently considered
UDP, we require that it does not contain loops and we assume that it computes
its value instantaneously. Under these assumptions, we can create functions in
the external inputs and the outputs of other UDPs (which are now also assumed
to be external inputs) and use these as inputs when checking the commuting
diamond property. Thereby, we exclude behavior that cannot occur due to func-
tional dependencies of the UDP inputs, and furthermore we get counterexample
states that are expressed using these external inputs and the output value of the
current UDP.

From these counterexample states we then remove all those states that violate
one of the constraints imposed by the $hold timing checks. This way, certain
input signals of the UDP might become order-independent in all of the allowed
executions of the module. Note however, that this order-independence does not
solely depend on the UDP anymore, but also especially on the combinational
logic and the timing checks present in the module that instantiates the UDP.

To illustrate this, we again consider the UDP prim ff en of Figure 1 which
admits an order-dependent counterexample for the pair d and ck of inputs, as
discussed above. However, this situation is usually considered to be illegal for a
D Flip-Flop, hence a designer is likely to add the following timing checks:

$hold (posedge ck , negedge d , t1) ;
$hold (posedge ck , posedge d , t2) ;

These timing checks rule out the behavior leading to the order-dependent coun-
terexample that was described earlier, since the second timing check expresses
that it is illegal for the inputs ck and d to change both from 0 to 1 simultane-
ously. Similarly, all other possible counterexample states involving inputs ck and
d are ruled out by these timing constraints, therefore the UDP prim ff en has
no order-dependency for these two inputs anymore under these constraints.

4 Verifying Counterexamples

In the previous sections, we presented how to check order-independence of a
UDP and how to restrict this check to only those cases which are not ruled
out by the timing specification in the form of $hold and $recovery timing
checks. However, when we report a counterexample this might still be a spurious
one. This is due to our overapproximation of UDP outputs and the fact that
Verilog has a predetermined initial state, in which all signals have the value
X. From this initial state not all counterexample states have to be reachable.
Therefore, the idea is to do a reachability analysis, to determine whether a
found counterexample is spurious or not.

4.1 Required Permutations for Reachability Analysis

Whether a counterexample is spurious or not depends on whether from the
initial state one of the counterexample states can be reached or not. However, in
contrast to our earlier approach [8], we want to consider all possible execution
traces, instead of just those that correspond to the order chosen by the simulator.
Our approach is to consider every evaluation of a UDP as independent, i.e., for
every evaluation of a UDP the order might be a different one than the order
used in another evaluation. This models the behavior of uncontrollable external
influences that might determine the order.

Since we want to keep the amount of non-determinism in the generated model
as small as possible, we do not generate all orders, but only as many orders as
needed for the UDP to exhibit all different behaviors. For this purpose, we use the
commuting diamond property presented in Section 3.1 to reduce the number of
permutations we have to consider. To this end, we create the set of equivalence
classes with respect to the transitive closure of swapping neighboring inputs
that have this property. For example, if we have 2 � 3, then the permutations
2 : 3 : 1 : nil and 3 : 2 : 1 : nil are in the same equivalence class and we only have
to consider one of them.

Definition 8. For a UDP udp ∈ UDPsn we define a relation ↔udp on Πn,
where π ↔udp π′ iff a 1 ≤ k < n exists such that π = π′ (k k+1) and π′(k) �udp
π′(k + 1). Using this relation we define the equivalence relation ≡udp on Πn as
the reflexive transitive closure of ↔udp.

This equivalence relation can then be used to partition the set of all permuta-
tions into equivalence classes. These equivalence classes still capture all required
permutations.

Lemma 9. Let udp ∈ UDPsn. For all ~i ∈ I, op ∈ T, and all permutations
π ≡udp π′ ∈ Πn we have that J~i, op, πK = J~i, op, π′K.

Proof. Let π ≡ π′. Then π = π′ (a1 a1+1) · · · (ak ak+1) for some a1, . . . , ak ∈
{1, . . . , n − 1} with πl−1(al) � πl−1(al + 1) for all 1 ≤ l ≤ k, where for every
0 ≤ l < k we define πl = π′ (a1 a1+1) · · · (al al+1). Induction on k is performed.

If k = 0, then π = π′, which directly shows the desired property.
Otherwise, π = πk−1 (ak ak+1). Because of πk−1(ak) � πk−1(ak+1) we can

apply Lemmas 5 and 6, which give us for ~i′ = ~i[π(r)p := ρπ(r)(~i) | 1 ≤ r < ak],
o = J~i, op, π(1) : . . . : π(ak−1) : nilK, and ` = πk−1(ak+2) : . . . : πk−1(n) : nil:

J~i, op, πK = J~i, op, πk−1 (ak ak+1)K
= J~i′, o, πk−1(ak+1) : πk−1(ak) : `K
= J~i′, o, πk−1(ak) : πk−1(ak+1) : `K

Furthermore, since π(m) = πk−1(m) for all 1 ≤ m < ak, we have that
J~i′, o, πk−1(ak) : πk−1(ak+1) : `K = J~i, op, πk−1K because of Lemma 5. Hence, we
can apply the induction hypothesis which gives us J~i, op, πk−1K = J~i, op, π′K. ut

Note that above we only use the commuting diamond property and not the
$hold timing checks. To integrate the latter, we extend the commuting diamond
property to a property �module

udp by removing counterexample states that were
ruled out, as described in the previous section. The resulting equivalence relation
is denoted≡module

udp . Also for this relation the above lemma holds, when restricting
to only those inputs that do not conflict with the combinational logic and that
are not ruled out by a timing check.

These equivalence classes are used in the next section to implement the non-
deterministic reachability check. This is done by using only one permutation
from each equivalence class, the above lemma tells us that we thereby have
considered all possible behaviors of that UDP.

4.2 Non-Deterministic Reachability Analysis

In order to check reachability, we follow the approach of [8] and encode the
problem as a Boolean Transition System (BTS), which is a transition system
with vectors of Booleans as states. However, in contrast to [8], we consider all
possible behaviors of the UDPs. For this purpose, we use the required per-
mutations as presented in the previous section and encode the problem in a
(non-deterministic) transition relation. This transition relation is defined as the
conjunction of the following formulas for each UDP in the cell:∨

π∈Πn

/
≡module

udp

next(o) ↔ Judp,~i, o, πKB×B

To make these formulas work on Booleans, we also use a dual-rail encoding
of the ternary values, where we define 0 = (true, false), 1 = (false, true), and

X = (true, true). Furthermore, (vL, vH) ↔ (wL, wH) = (vL ↔ wL)∧ (wL ↔ wH).
The dual-rail encoding J·KB×B of UDPs is a straight-forward modification of the
dual-rail encoding given in [8], where instead of modeling the order used by
simulators we use the order given as extra argument.

Using such a non-deterministic BTS, we can now express the reachability
problem in the input language of the SMV model checker. The property we
want to verify is the negation of the counterexample states that we want to
reach. This way, we get a trace leading to a counterexample state in case an
order-dependent UDP can exhibit this behavior in an execution. Note however
that we have to restrict the considered traces to the legal traces, as specified
by the $hold timing checks. This is implemented by adding a state variable
hold constraints that is true if all states of the currently considered trace have
not violated any timing check.

The LTL formula to be checked for a pair i and j of order-dependent inputs
is the following, where, by slight abuse of notation, we let i6 �module

udp j denote the
set of all counterexample states for this pair:

G ¬

hold constraints ∧
∨

s∈i 6 �module
udp j

s

As an example, we extend the UDP given in Figure 1 with an asynchronous

reset signal as shown in Figure 3. Furthermore, we consider the same $hold
timing checks for the ck and d inputs that were discussed in Section 3.2.

primitive p r im f f e n r s t (q , d , ck , en , r s t) ;
output q ; reg q ;
input d , ck , en , r s t ;

table
// d ck en r s t : q : q+

0 (01) 1 ? : ? : 0 ;
1 (01) 1 0 : ? : 1 ;
? (10) ? 0 : ? : −;
∗ ? ? 0 : ? : −;
? ? 0 0 : ? : −;
? ? ∗ 0 : ? : −;
? ? ? 1 : ? : 0 ;
? ? ? ∗ : 0 : 0 ;

endtable
endprimitive

Fig. 3. D Flip-Flop with Enable and Reset

For this UDP our method finds a counterexample for the inputs d and rst.
However, this counterexample depends on the previous output value being 1

or X and the input rst having the previous value 1. Such a configuration is not
reachable, since setting the input rst to 1 in some previous state always results in
the value 0 for the output. This is verified by the SMV model checker, reporting
that none of the reachable states is a counterexample state.

No order-dependency between the inputs d and ck is found by our method
due to the $hold timing checks, as discussed in Section 3.2, and therefore no
orders have to be considered which differ in these two inputs.

For the inputs ck and en however, a set of counterexample states is found.
When applying the encoding and checking reachability, a trace to a counterex-
ample state is produced, where the previous output is 1, inputs d and rst are 0,
and both inputs ck and en change from 0 to 1. This indeed may lead to two
different outputs of the UDP, since either the output remains unchanged if the
enable signal en is still 0 while the change in the clock ck is processed, or the
output takes on the value 0 from the input d if the enable signal is first set to 1
and then the rising edge of ck is considered.

5 Experimental Results

To check the applicability of our method, we used it on the Nangate Open Cell
Library [7]. It contains 10 different cells that instantiate a sequential UDP and
that are in the subset of Verilog studied in this paper.

Using the SMV encoding of the previous section and the NuSMV model
checker [3], we found a reachable order-dependent state for all of the cells. How-
ever, these counterexamples were due to the value X being allowed as an input
of the cell, something that is not possible in a hardware implementation. Hence,
we restricted the external inputs to be binary, i.e., to be either 0 or 1. With
this restriction, only for 6 cells states exist that can cause an order-dependency.
For 4 of these cells none of the counterexample states can be reached, hence the
UDPs used in these cells with binary inputs are order-independent.

For the last 2 cells, which are the cells DFFRS and SDFFRS implementing a
Flip-Flop (with scan logic) that can be set and reset, a counterexample state can
still be reached. The inputs that cause this behavior are in both cases the set
and reset inputs. When switching both from active to inactive, the order of this
deactivation determines the output of the cell. When deactivating the set signal
first, then the reset is still active, forcing the output to be 0. Otherwise, when
first deactivating the reset signal, the activated set signal will set the output to
be 1. Looking at the Verilog implementation, it seems that for this combination
of inputs a $hold check was forgotten, since a $setup check has been specified.
This demonstrates that formal verification of these timing checks is needed and
that our method is able to indicate what timing checks might be missing.

We measured the time it took NuSMV to model check reachability of possible
counterexample states for both the presented method based on the commuting
diamond property and the naive approach based on Lemma 3. It showed that the
approach based on the diamond property was consistently faster. Particularly for
the largest cell SDFFRS the model checking time could be reduced from more than

40 minutes to less than 40 seconds. Also NuSMV’s memory consumption was
reduced, in the case of the cell SDFFRS from more than 880 MB to ca. 110 MB.

Moreover, we have verified a proprietary cell library provided by a client to
Fenix Design Automation and found a reachable order dependency there. The
reported counterexample is more complex in nature and cannot be traced back
to (and possibly even solved by the addition of) missing $hold checks. We are
investigating other timing specifications / analyses that can generically solve
such order dependencies.

6 Conclusions

In this paper, we presented formal analysis techniques for detecting nondeter-
minism in Verilog cell libraries. The source of non-determinism in cell libraries
is the arbitrary order of handling multiple changes in inputs. We showed that
instead of checking all possible ordering, which is exponential in the number of
inputs, it suffices to check the two possible evaluations for each pair of inputs.
This approach not only efficiently detects possible sources of non-determinism,
but is also complete in that any detected source of non-determinism can lead
to two different outputs from some initial state. Our approach is complemented
with the language-based control of non-determinism using setup and hold con-
structs in Verilog. We combined these two approaches and implemented them in
a model-checking tool. Open source as well as proprietary cell libraries were ana-
lyzed using our implementation and in both cases a number of counterexamples
(reachable nondeterministic behavior) were reported using our implementation.

References

1. IEEE Std 1364-2005: IEEE Standard for Verilog Hardware Description Language.
IEEE Computer Society Press, 2006.

2. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

3. A. Cimatti et al. NuSMV Version 2: An OpenSource Tool for Symbolic Model
Checking. In Proceedings of CAV’02, volume 2404 of Lecture Notes in Computer
Science, pages 359–364, 2002. See also http://nusmv.irst.itc.it.

4. C. Helmstetter, F. Maraninchi, and L. Maillet-Contoz. Test coverage for loose timing
annotations. In Proceedings of FMICS/PDMC’06, volume 4346 of Lecture Notes in
Computer Science, pages 100–115. Springer Verlag, 2007.

5. C. Helmstetter, F. Maraninchi, L. Maillet-Contoz, and M. Moy. Automatic gen-
eration of schedulings for improving the test coverage of Systems-on-a-Chip. In
Proceedings of FMCAD’06, pages 171–178. IEEE Computer Society Press, 2006.

6. S. Kundu, M.K. Ganai, and R. Gupta. Partial order reduction for scalable testing
of SystemC TLM designs. In Proc. of DAC’08, pages 936–941. ACM Press, 2008.

7. Nangate Inc. Open Cell Library v2008 05, 2008. Downloadable from
http://www.nangate.com/openlibrary/.

8. M. Raffelsieper, J.-W. Roorda, and M. R. Mousavi. Model Checking Verilog Descrip-
tions of Cell Libraries. In Proceedings of ACSD’09, pages 128–137. IEEE Computer
Society Press, 2009.

