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Abstract

Algebraic properties specify some natural properties of programming
and specification constructs. This paper provides an overview of techniques
to guarantee or generate algebraic properties of language constructs by in-
vestigating the syntactic shape of the deduction rules defining their opera-
tional semantics.

1 Introduction
Programming and specification languages are defined in terms of a syntax and a
semantics. The syntax of a language specifies the grammatical structure of well-
formed programs, while its semantics defines the intended meaning of syntacti-
cally valid programs. The definition of the syntax of a language is usually given
in terms of a grammar, most often in the Backus-Naur Form or one of its variants.
The syntax of a language can also be seen as an algebraic structure with program-
ming or specification constructs as operators, or function symbols, that allow one
to construct composite program fragments from their components. This paves
the way to the use of algebraic methods for reasoning about programs. In fact,
when designing a language, a designer usually has certain algebraic properties
of operators in mind, e.g., x0; skip = x0. Such properties can either be validated
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using the semantics of the language with respect to a suitable notion of program
equivalence, or they can be guaranteed a priori “by design” [4, 13, 39, 31, 18, 3].

Algebraic properties specify some natural properties of function symbols from
a given signature. Examples of such properties include commutativity, associativ-
ity and idempotence of binary operators, which are concisely specified, respec-
tively, by the following equations:

f (x0, x1) = f (x1, x0) f ( f (x0, x1), x2) = f (x0, f (x1, x2)) f (x0, x0) = x0.

In the context of programming and specification languages, algebraic properties
prescribe the equivalences that must be respected by all the semantic models of a
language. In other words, they ensure that the semantics of certain composition
schemes must preserve the “intended behaviour” of programs. The most popular
way to define the operational semantics (hence the “behaviour”) of computer lan-
guages is Structural Operational Semantics (SOS) [37, 36, 24]. Hence, it makes
sense to establish generic methods that can guarantee and/or derive algebraic prop-
erties based on the SOS specifications of language constructs. This paper provides
an overview of some of the available techniques to this end. In keeping with the
expository nature of this article, we do not present the results in full generality
since this would obscure the main message. However, we provide references to
the literature for the readers interested in the technical details and generalizations
of the results we cover in this survey.

The rest of this paper is organized as follows. In Section 2, we present some
standard notions from the meta-theory of SOS. In Sections 3, 4 and 5, respectively,
we report on work that aims at isolating sufficient syntactic conditions over SOS
specifications that guarantee the validity of commutativity, associativity and idem-
potence axioms from SOS specifications. In Section 6, we present a survey of ex-
isting meta-theorems to generate sound and ground-complete axiom systems from
SOS specifications. Since these axiom systems are ground-complete, all ground
instances of abstract algebraic properties such as commutativity, associativity and
idempotence can be derived from them. However, the generic meta-theorems pre-
sented in Section 6 do not derive such axioms explicitly. Hence, the techniques
presented in Sections 3-5 can be complementary to those presented in Section 6.
We get back to this issue in our concluding remarks and open problems, which
are presented in Section 7.

2 Preliminaries
In this section we review, for the sake of completeness, some standard definitions
from the meta-theory of SOS that will be used in the remainder of the paper. We
refer the interested reader to [7, 32] for further details.



Definition 1 (Signature and terms). We let V represent an infinite set of variables
with typical members x, x′, xi, y, y′, yi, . . . . A signature Σ is a set of function sym-
bols, each with a fixed arity. We call these symbols operators and usually represent
them by f , g, . . . . An operator with arity zero is called a constant. We define the
set T(Σ) of terms over Σ as the smallest set satisfying the following constraints.

• A variable x ∈ V is a term.

• If f ∈ Σ has arity n and t1, . . . , tn are terms, then f (t1, . . . , tn) is a term.

We use t, t′, ti, . . . to range over terms. We write t1 ≡ t2 if t1 and t2 are syntactically
equal. The function vars : T(Σ) → 2V gives the set of variables appearing in a
term. The set C(Σ) ⊆ T(Σ) is the set of closed terms, i.e., terms that contain
no variables. We use p, p′, pi, . . . to range over closed terms. A substitution σ
is a function of type V → T(Σ). We extend the domain of substitutions to terms
homomorphically. If the range of a substitution lies in C(Σ), we say that it is a
closed substitution.

Definition 2 (Transition System Specifications (TSS), formulae and transition sys-
tems). A transition system specification is a triplet (Σ, L,D) where

• Σ is a signature.

• L is a set of labels. If l ∈ L, and t, t′ ∈ T(Σ) we say that t
l
−→ t′ is a (positive)

formula. A formula is typically denoted by φ, ψ, φ′, φi, . . ..

• D is a set of deduction rules, i.e., pairs of the form (Φ, φ) where Φ is a set
of formulae and φ is a formula. We call the formulae contained in Φ the
premises of the rule and φ the conclusion.

We write vars(r) to denote the set of variables appearing in a deduction rule r. We
say that a formula is closed if all of its terms are closed. Substitutions are also
extended to formulae and sets of formulae in the natural way. A set of positive
closed formulae is called a transition system. The transition system induced by a
TSS is the set of provable positive formulae, using its deduction rules. We write

T ` p
l
−→ p′ if the transition p

l
−→ p′ is provable from the deduction rules in the

TSS T .

We often refer to a formula t
l
−→ t′ as a transition with t being its source, l

its label, and t′ its target. Predicates over terms can be seen as transitions with
a dummy target [41]. A deduction rule (Φ, φ) is typically written as Φ

φ
. We call

a deduction rule f -defining when the outermost function symbol appearing in the
source of its conclusion is f . For simplicity, we assume in the remainder of this



paper that all deduction rules are f -defining for some function symbol f , i.e., there
are no deduction rules with a variable as the source of its conclusion. Note that
we have confined ourselves to positive TSSs, i.e., those that only use formulae of

the form t
l
−→ t′; most of the results presented in what follows have already been

extended to the setting with negative formulae, i.e., formulae of the form t
l
9 , as

premises. We refer to the corresponding papers for further details.
To establish a link between the operational model and the algebraic properties,

a notion of behavioural equivalence should be fixed. A very common notion of
behavioural equivalence that is mentioned frequently in this paper is the following
notion of strong bisimilarity [34, 28].

Definition 3 (Strong Bisimilarity). Let T be a TSS with signature Σ. A relation
R ⊆ C(Σ)×C(Σ) is a strong bisimulation relation if and only if R is symmetric and
for all p0, p1, p′0 ∈ C(Σ) and l ∈ L

(p0 R p1 ∧ T ` p0
l
−→ p′0)⇒ ∃p′1∈C(Σ)(T ` p1

l
−→ p′1 ∧ p′0 R p′1).

Two terms p0, p1 ∈ C(Σ) are called strongly bisimilar, denoted by T ` p0 ↔ p1,
when there exists a strong bisimulation relation R such that p0 R p1.

Any equivalence relation ∼ over closed terms in a TSS T is extended to open
terms in the standard fashion, i.e., for all t0, t1 ∈ T(Σ), the equation t0 = t1 holds
over T modulo ∼ if, and only if, T ` σ(t0) ∼ σ(t1) for each closed substitution σ.

Ideally, the notion of behavioural equivalence should coincide with the equa-
tional theory generated by a set of axioms describing the desired algebraic prop-
erties of the operators in a language. One side of this coincidence is captured
by the soundness theorem, which states that all the (closed) equalities that are
derivable from the axiom system using the rules of equational logic are indeed
valid with respect to the particular notion of behavioural equivalence. The other
side of the coincidence, called ground-completeness, states that all the valid be-
havioural equivalences (on closed terms) are derivable from the axiom system, as
well. These concepts are formalized in what follows.

Definition 4 (Axiom System). An axiom system E over a signature Σ is a set of
equalities of the form t = t′, where t, t′ ∈ T(Σ). A closed equality p = p′, for some
p, p′ ∈ C(Σ), is derivable from E, denoted by E ` p = p′, if and only if it is in the
smallest congruence relation on closed terms induced by the equalities in E.

In the context of a fixed TSS T , an axiom system E is sound with respect
to a notion of behavioural equivalence ∼ if and only if for all p, p′ ∈ C(Σ), if
E ` p = p′, then it holds that T ` p ∼ p′. It is ground-complete if the implication
holds in the other direction.



3 Commutativity Format
Commutativity is an essential property of binary operators specifying that the or-
der of arguments is immaterial. For process algebras, commutativity is defined
with respect to a notion of behavioural equivalence. The commutativity format
proposed in [31], and given below, guarantees commutativity with respect to any
notion of behavioural equivalence that is specified in terms of transitions, e.g., all
notions in van Glabbeek’s spectrum [21, 20] that include strong bisimilarity.

Definition 5 (Commutativity). Given a TSS and a binary operator f in its sig-
nature, f is called commutative w.r.t. ∼, if the following equation is sound w.r.t.
∼:

f (x0, x1) = f (x1, x0).

Next, we present a syntactic restriction of the tyft format of Groote and Vaan-
drager [23] that guarantees commutativity w.r.t. any notion of behavioural equiv-
alence that includes strong bisimilarity.

Definition 6 (Comm-form). A transition system specification over signature Σ is
in comm-form format with respect to a set of binary function symbols COMM ⊆ Σ
if all its f -defining deduction rules with f ∈ COMM have the following form

(d)
{x j

li j
−→ yi j | i ∈ I}

f (x0, x1)
l
−→ t

where j ∈ {0, 1}, I is an arbitrary index set, and variables appearing in the source
of the conclusion and target of the premises are all pairwise distinct. We denote
the set of premises of (d) by H and the conclusion by c. Moreover, for each such
rule, there exist a deduction rule (d’) of the following form in the transition system
specification

(d’)
H′

f (x′0, x
′
1)

l
−→ t′

and a bijective mapping (substitution) ~ on variables such that

• ~(x′0) = x1 and ~(x′1) = x0,

• ~(t′) ∼cc t and

• ~(h′) ∈ H ∪ {c}, for each h′ ∈ H′,

where ∼cc means equality up to swapping of arguments of operators in COMM in
any context. Deduction rule (d’) is called the commutative mirror of (d).



To put it informally, the role of substitution ~ in this definition is to account
for the swapping of variables in the source of the conclusion and a possible
isomorphic renaming of variables. Thus, the above format requires that when
f ∈ COMM, for each f -defining rule, there exists a commutative mirror that en-
ables the “same transitions” when the two arguments of f are swapped. (The
format presented in [31] is more general and allows for much more general types
of rules and an arbitrary swapping of arguments of n-ary commutative function
symbols. We simplified the format to facilitate the presentation here.)

Theorem 7. If a transition system specification is in comm-form format with
respect to a set of binary operators COMM, then all operators in COMM are
commutative with respect to any notion of behavioural equivalence that includes
strong bisimilarity.

Example 8 (Parallel Composition). A frequently occurring commutative operator
is parallel composition. It appears in, amongst others, ACP [14], CCS [27], and
CSP [26, 38]. Here we discuss parallel composition with communication in the
style of ACP [14], of which the others are special cases.

(p0)
x0

l
−→ y0

x0 || x1
l
−→ y0 || x1

(p1)
x1

l
−→ y1

x0 || x1
l
−→ x0 || y1

(p2)
x0

l0
−→ y0 x1

l1
−→ y1

x0 || x1
l
−→ y0 || y1

comm(l0, l1) = l

If the partial synchronization function comm is commutative, then the above TSS
is in comm-form format w.r.t. the singleton set COMM = {||} and hence it follows
from Theorem 7 that || is commutative.

Example 9 (Nondeterministic Choice). Most process languages for the descrip-
tion of sequential and parallel systems contain a form of nondeterministic choice
operator (also called alternative composition). Here we introduce nondetermin-
istic alternative composition as present in CCS [27] and ACP [14].

(c0)
x0

l
−→ y0

x0 + x1
l
−→ y0

(c1)
x1

l
−→ y1

x0 + x1
l
−→ y1

Using Theorem 7, we can derive that nondeterministic choice is a commutative
operator w.r.t. strong bisimilarity or coarser behavioural equivalences. Both of
(c0) and (c1) are in tyft format and, taking COMM = {+}, each is the commutative
mirror of the other under the mapping ~(x0) = x1, ~(x1) = x0, ~(y1) = y0 and
~(y0) = y1.



4 Associativity Format
Associativity (with respect to a given notion of equivalence), defined below, is
an interesting property of binary operators, which does not lend itself easily to
syntactic checks like those described in the previous section.

Definition 10 (Associativity). A binary operator f ∈ Σ is associative w.r.t. an
equivalence ∼ if and only if the following equation is sound w.r.t. ∼:

f (x0, f (x1, x2)) = f ( f (x0, x1), x2).

Because of the nesting of function symbols in associativity axioms, proofs
of associativity are usually much more laborious than proofs of both congruence
properties and commutativity. For example, proofs of congruence, by and large,
make use of induction on the proof structure for transitions and are confined to
look at the proof tree up to depth one. Thus, they can be performed by looking at
deduction rules individually. Proofs of associativity, on the other hand, are usually
concerned with proof trees of depth two and hence, if there are n deduction rules
for a certain binary operator each with m premises, the number of case distinctions
in its associativity proof are nm in the worst case (for each deduction rule and
each premise, there are n possible deduction rules responsible for the transition
mentioned in the premise). This is why in [31, Section 5], two of the authors
report that their initial attempt to devise a syntactic constraint for associativity did
not lead to a concrete rule format. In [18], the same authors (and a co-author)
developed an associativity rule format, which is given below.

This format, called ASSOC-de Simone, is a syntactic rule format that guar-
antees associativity of a binary operator with respect to any notion of behavioural
equivalence that is specified in terms of transitions. We take the de Simone format
[19] as our starting point and add a number of other ingredients, such as predi-
cates [11], to it. Our choice of the de Simone format is motivated by the inherent
complexity of associativity proofs and aims to reduce the size and the number
of the proof trees as much as possible. The extensions are motivated by practi-
cal examples as illustrated in [18]. Despite the simple setting of our format, the
ASSOC-de Simone format is widely applicable to most practical examples we
encountered so far. Moreover, we show in [18] that dropping any of the restric-
tions of the format jeopardizes the meta-result, even for associativity with respect
to notions of behavioural equivalence that are coarser than bisimilarity, such as
trace equivalence.

Definition 11 (The ASSOC-de Simone Rule Format). Let γ : L × L → L be an
associative partial function. Consider the following types of rules which are all in
the de Simone format.



1l. Left-conforming rules 2l. Right-conforming rules

x0
l
−→ y0

f (x0, x1)
l
−→ f (y0, x1)

x1
l
−→ y1

f (x0, x1)
l
−→ f (x0, y1)

3l. Left-choice rules 4l. Right-choice rules

x0
l
−→ y0

f (x0, x1)
l
−→ y0

x1
l
−→ y1

f (x0, x1)
l
−→ y1

5l. Left-choice axioms 6l. Right-choice axioms

f (x0, x1)
l
−→ x0 f (x0, x1)

l
−→ x1

7(l0,l1). Communicating rules

x0
l0
−→ y0 x1

l1
−→ y1

f (x0, x1)
γ(l0,l1)
−→ f (y0, y1)

A TSS is in the ASSOC-de Simone format with respect to f ∈ Σ when for each
l ∈ L, each f -defining rule is of a type given above and the set of all f -defining
rules satisfies the following constraints. (Each proposition P in the following
constraints should be read as “there exists a deduction rule of type P in the set of
f -defining rules”. To avoid repeated uses of parentheses, we assume that ∨ and
∧ take precedence over⇒ and⇔.)

1. 5l ⇒ 2l ∧ 3l,

2. 6l ⇒ 1l ∧ 4l,

3. 7(l,l′) ⇒ (1l ⇔ 2l′) ∧ (3l ⇔ 4l′)
∧ (2l ⇔ 2γ(l,l′)) ∧ (4l ⇔ 4γ(l,l′)) ∧ (1l′ ⇔ 1γ(l,l′)) ∧ (3l′ ⇔ 3γ(l,l′)),

4. 1l ∧ 3l ⇔ ∃l′ γ(l, l′) = l ∧ 7(l,l′) ∧ 5l′ ∧ 6l′ ,

5. 2l ∧ 4l ⇔ ∃l′ γ(l′, l) = l ∧ 7(l,l′) ∧ 5l′ ∧ 6l′ , and

6. (1l ∨ 4l) ∧ (2l ∨ 3l)⇒ (5l ⇔ 6l).

The types of rules presented above give us a nice starting point in the develop-
ment of syntactic conditions on SOS rules that guarantee associativity of operators
while covering many practical applications. These rule types cover all rules that
are in the de Simone format with four additional restrictions:



1. the target of the conclusion can contain at most one (binary) operator,

2. the aforementioned operator is the same as the one appearing in the source,

3. the labels of the premises and the conclusion coincide (apart from instances
of the communicating rule), and

4. testing is disallowed, i.e., if a variable from the source of the conclusion
appears in the source of a premise, the target of the same premise must
appear in the target of the conclusion.

In [18], we present extensions of these rule types with various syntactic features
such as testing and predicates.

Theorem 12. For a TSS in the ASSOC-de Simone format with respect to f ∈ Σ,
it holds that f is associative for each notion of equivalence ∼ that includes strong
bisimilarity.

Next, we present a few applications of the ASSOC-de Simone rule format to
operators from the literature.

Example 13 (Parallel composition). Consider the semantics of ACP parallel com-
position given in Example 8. Assume that the partial function comm on labels is
also associative (as well as commutative). Thus, in terms of the types of deduction
rules, we have deduction rules of type 1, 2, and 7. Therefore, the requirements
in Definition 11 are met and it can be concluded from Theorem 12 that parallel
composition is associative.

Example 14 (Nondeterministic choice). Consider the semantics of nondetermin-
istic choice presented in Example 9. In this TSS we find deduction rules of types
3 and 4. Therefore, the requirements of Definition 11 are met and it can be con-
cluded from Theorem 12 that nondeterministic choice is associative.

Example 15 (Disrupt). The disrupt operator was originally introduced in the
language LOTOS [17], where it is used to model, for example, exception han-
dling. This operator is also used, for instance, in [9], for the description of mode
switches.

x0
l
−→ y0

x0 I x1
l
−→ y0 I x1

x1
l
−→ y1

x0 I x1
l
−→ y1

Here we see that only deduction rules of types 1 and 4 are present. As a conse-
quence of Theorem 12 also disrupt is associative.



5 Idempotence Format
Idempotence is a property of binary composition operators requiring that the com-
position of two identical specifications or programs will result in a piece of speci-
fication or program that is equivalent to the original components.

Definition 16 (Idempotence). A binary operator f ∈ Σ is idempotent w.r.t. an
equivalence ∼ if and only if the following equation is sound w.r.t. ∼:

f (x0, x0) = x0.

We now present a rule format guaranteeing the idempotence of certain binary
operators. It is worth noting that the rule format described below relies on the de-

terminism of certain transition relations. (We recall that a transition relation
l
−→

is deterministic when, for all closed terms p, p′, p′′, if p
l
−→ p′ and p

l
−→ p′′, then

p′ ≡ p′′.) Determinism and idempotence may seem unrelated at first sight. How-
ever, it turns out that in order to obtain a powerful rule format for idempotence, we
need to have the determinism of certain transition relations in place. Example 20
to follow witnesses the role that determinism plays in applications of our format
to operations from the literature.

Definition 17 (The Idempotence Rule Format). Let γ : L × L → L be a partial
function such that γ(l0, l1) ∈ {l0, l1} if it is defined. We define the following two rule
forms.

1l. Choice rules
{xi

l
−→ t} ∪ Φ

f (x0, x1)
l
−→ t

i ∈ {0, 1}

2l0,l1 . Communication rules

{x0
l0
−→ t0, x1

l1
−→ t1} ∪ Φ

f (x0, x1)
γ(l0,l1)
−→ f (t0, t1)

t0 ≡ t1 or (l0 = l1 and
l0
−→ is deterministic )

In each case, Φ can be an arbitrary, possibly empty set of formulae.
In addition, we define the starred version of each form, 1∗l and 2∗l0,l1 .

1∗l . Choice rules
{xi

l
−→ yi}

f (x0, x1)
l
−→ yi

i ∈ {0, 1}



2∗l0,l1 . Communication rules

{x0
l0
−→ y0, x1

l1
−→ y1}

f (x0, x1)
γ(l0,l1)
−→ f (y0, y1)

y0 ≡ y1 or (l0 = l1 and
l0
−→ is deterministic )

A TSS is in idempotence format w.r.t. a binary operator f if

• each deduction rule is g-defining for some operator g,

• each f -defining rule is of the forms 1l or 2l0,l1 , for some l, l0, l1 ∈ L, and

• for each label l ∈ L there exists at least one rule of the forms 1∗l or 2∗l,l.

In [3], we give syntactic criteria guaranteeing the determinism of certain tran-
sition relations. These syntactic constraints can be used to check the side condition
on rules of the form 2l0,l1 and 2∗l0,l1 .

Theorem 18. Assume that a TSS is in the idempotence format with respect to a
binary operator f . Then, f is idempotent w.r.t. to any equivalence ∼ that includes
strong bisimilarity.

Example 19 (Nondeterministic choice). Consider again the semantics of nonde-
terministic choice presented in Example 9. Clearly, the rules given in that example
are in the idempotence format w.r.t. +. Hence, it follows from Theorem 18 that +
is idempotent w.r.t. any equivalence that includes strong bisimilarity.

Example 20 (Strong Time-Deterministic Choice). The choice operator that is
used in the timed process algebra ATP [33] has the following deduction rules,
where the special label χ denotes the passage of one time unit.

x0
a
−→ y0

x0 ⊕ x1
a
−→ y0

x1
a
−→ y1

x0 ⊕ x1
a
−→ y1

x0
χ
−→ y0 x1

χ
−→ y1

x0 ⊕ x1
χ
−→ y0 ⊕ y1

The idempotence of this operator follows from our format since the last rule for ⊕
fits the form 2∗χ,χ because the transition relation

χ
−→ is deterministic over ATP.

6 Deriving Sound and Ground-Complete Axiomati-
zations

Sound and (ground-)complete axiomatizations are central notions to the alge-
braic treatment of programming and specification languages and, in particular,



to process algebras [14, 26, 27]. They capture the basic intuition behind the al-
gebra, and the models of the algebra are expected to respect this intuition (e.g.,
the models induced by the operational semantics modulo bisimilarity). One of
the benefits of having complete axiomatizations is that they enable reasoning at
the level of syntax without committing to particular semantic models. When the
semantic model of behaviour (e.g., the transition system associated to a term) is
infinite, these syntactic techniques may come in very handy.

In [4], an automatic method for generating sound and ground-complete ax-
iom systems for strong bisimilarity over the transition systems induced by GSOS
language specifications is presented. It is assumed that there are only transition
systems −→ ⊆ C(Σ)×L×C(Σ). In the remainder, we give a short overview of the
technique presented in [4] and point out several variants and extensions thereof in
the literature.

The approach of [4] is based on a restricted form of SOS deduction rules,
called the GSOS format [16]. In what follows, for the sake of simplicity and
uniformity, we only consider the positive subset of the GSOS format, defined
below.

Definition 21. (Positive GSOS Format) A deduction rule is in the positive GSOS
format when it is of the following form.

{xi
ai j
−→ yi j | i ∈ I, j ∈ Ji}

f (~x)
a
−→ t

where

• the variables in ~x = (x0, . . . , xn−1) and {yi j | i ∈ I, j ∈ Ji} are all pairwise
distinct,

• I is a subset of {0, . . . , n − 1}, where n is the arity of f ,

• Ji is a finite index set, for each i ∈ I, and

• vars(t) ⊆ {x0, . . . , xn−1} ∪ {yi j | i ∈ I, j ∈ Ji}.

It is well-known that some operators whose operational semantics can be ex-
pressed in the positive GSOS format cannot be finitely axiomatized modulo bisim-
ilarity. Therefore, in order to axiomatize them finitely, one needs auxiliary opera-
tors. (See, e.g., [29].) Thus, in order to achieve a finite ground-complete axioma-
tization, we may need to extend the signature of a language with fresh operators.
The kind of extension required for this purpose is called disjoint extension and is
defined below.



Definition 22 (Disjoint Extension). Consider TSSs T1 = (Σ1, L1,D1) and T2 =

(Σ2, L2,D2). TSS T2 is a disjoint extension of TSS T1 if and only if Σ1 ⊆ Σ2,
D1 ⊆ D2 and the operators from Σ1 do not occur in the sources of the deduction
rules from D2 \ D1.

The crucial property of the notion of disjoint extension that underlies the de-
velopments to follow is that if T2 is a disjoint extension of T1, then two closed
terms over Σ1 are strongly bisimilar w.r.t. T1 if and only if they are strongly bisim-
ilar w.r.t. T2. This means that an axiom system that is sound and ground-complete
w.r.t. bisimilarity over T2 can be used to show all the valid equalities between
closed terms over the signature of T1.

Next, we define when a TSS does not allow infinite traces. Such a TSS is called
trace finite. In [4], syntactic criteria are given for guaranteeing trace finiteness of
a TSS.

Definition 23 (Trace Finiteness). Let T be a TSS in the positive GSOS format. A
term p ∈ C(Σ) is trace finite iff there exists no infinite sequence p0, l0, p1, l1, . . . of

closed terms pi and labels li such that p ≡ p0 and pi
li
−→ pi+1, for all i ≥ 0. The

TSS T is trace finite iff all terms in C(Σ) are trace finite.

The following theorem from [4] states that for trace-finite TSSs in the positive
GSOS format, we can always add sufficiently many auxiliary operators in order to
generate a finite ground-complete axiomatization of strong bisimilarity. The pro-
cedure to obtain such a ground-complete axiomatization is sketched subsequently.

Theorem 24. Let T be a trace-finite TSS in the GSOS format. Then, there are a
disjoint extension T ′ of T and a finite axiom system E′ such that E′ is a sound
and ground-complete axiomatization of bisimilarity on closed terms from T ′.

The approach of [4] relies on the presence of three basic operators in the signa-
ture, namely a constant 0, denoting inaction or deadlock, a unary action prefixing
operator a._, for each a ∈ L, and a binary nondeterministic choice _ + _, already
presented in Example 9. These operators allow one to denote all finite synchro-
nization trees in the sense of Milner [27].

The inaction constant 0 has no transition and hence it has no defining rule
in the semantics. The deduction rule for action prefixing is given below and the
deduction rules for nondeterministic choice are those presented in Example 9.

a.x0
a
−→ x0

These basic operators are finitely axiomatized modulo bisimilarity by the fol-
lowing axiom system [25].



x0 + x1 = x1 + x0

(x0 + x1) + x2 = x0 + (x1 + x2)
x0 + x0 = x0

x0 + 0 = x0

Note that the above axioms are sound not only for the small TSS contain-
ing only the three operators introduced above, but also for any disjoint extension
thereof. Hence, if the TSS to be axiomatized does not contain these operators, we
can safely add them to the signature and the above-given axiom system remains
sound in this extended TSS as well as in all of its disjoint extensions. All the
equations that are generated by the method in [4] are “robust”, in the sense that
they remain valid for any disjoint extension of a GSOS language.

The idea behind the procedure for the automatic generation of finite axiom-
atizations of bisimilarity presented in [4] is as follows. Assume that we have a
TSS T in (positive) GSOS format that disjointly extends the TSS described above
for finite synchronization trees. Since we already have the above-given complete
axiomatization of bisimilarity over finite synchronization trees, in order to obtain
a ground-complete axiomatization of bisimilarity over T , it suffices only to gener-
ate a disjoint extension of T and a finite axiom system that can be used to rewrite
each closed term into an equivalent finite synchronization tree.

The axiomatization procedure starts with the axiom system given above. Then,
on top of these laws, for each operator we generate new axioms by using the
above-mentioned operators and other auxiliary ones. Some operators, namely the
smooth and distinctive ones introduced in Definition 26 to follow, distribute w.r.t.
nondeterministic choice in some of their arguments and can be handled without
recourse to auxiliary operators. Other operators, namely the smooth ones that are
not distinctive, can be expressed as nondeterministic compositions of auxiliary
operators that are smooth and distinctive. Others still are expressed in terms of
auxiliary smooth operators with possibly different arity.

Definition 25. (Smooth Operators) An n-ary function symbol f is called smooth
when all f -defining deduction rules are of the following form

{xi
ai
−→ yi | i ∈ I}

f (x0, . . . , xn−1)
a
−→C[−→x ,−→y ]

,

where I ⊆ {0, .., n − 1}, C[−→x ,−→y ] is a term containing only variables in −→x and −→y
and moreover no xi appearing in the source of a premise appears in the target of
the conclusion.



Definition 26. (Distinctive Operators) A smooth operator is called distinctive,
when for each two distinct f -defining rules of the following form

{xi
ai
−→ yi | i ∈ I}

f (x0, . . . , xn−1)
a
−→C[−→x ,−→y ]

{x′i
a′i
−→ y′i | i ∈ I′}

f (x′0, . . . , x
′
n−1)

a′
−→C′[

−→
x′,
−→
y′]
,

it holds that I = I′ and there exists an i ∈ I such that ai , a′i .

Example 27. The parallel composition operator of Example 8 is smooth but not
distinctive.

To axiomatize a distinctive operator f , it suffices to add the following equa-
tions, which describe the interplay between f and the operations for finite syn-
chronization trees, to our axiom system.

1. Distributivity laws: If i ∈ I for each deduction rule of the form given in
Definition 25, we have the equation:

f (x0, . . . , xi + x′i , . . . , xn−1) = f (x0, . . . , xi, . . . , xn−1)+ f (x0, . . . , x′i , . . . , xn−1).

2. Action laws: For each f -defining rule of the form given in Definition 25,
we have the equation

f (P0, . . . , Pn−1) = a.C[
−→
P ,−→y ],

where Pi = ai.yi, if i ∈ I, and Pi = xi, otherwise.

3. Inaction laws: We have a law of the form

f (P0, . . . , Pn−1) = 0,

where

• each Pi is of the form 0, xi or bi.xi for some label bi and

• for each deduction rule of the form given in Definition 25, there is an
index i ∈ I such that Pi = 0 or Pi = bi.xi, for some bi , ai.

The axiom system obtained thus far gives a sound and ground-complete ax-
iomatization of smooth and distinctive operators (possibly over a disjoint exten-
sion of the original language with inaction, action prefixing and nondeterministic
choice). In order to axiomatize smooth operators that are not distinctive, we par-
tition their deduction rules into sets of rules satisfying the criteria of Definition
26. This is always possible and in the worst case singleton sets of rules trivially



satisfy these criteria. Then, for each partition, we introduce an auxiliary operator
with the defining rules given in that partition. The introduced operators are by
construction smooth and distinctive. Hence, we can apply the construction given
before to these operators to axiomatize them.

Assume that for a smooth but non-distinctive operator f , the set of deduction
rules is partitioned into n sets and thus n smooth and distinctive function symbols
f0 to fn−1 are introduced. Then, in addition to the axiom system for each auxiliary
operator, we introduce the following axiom.

f (x0, . . . , xn−1) = f0(x0, . . . , xn−1) + · · · + fn−1(x0, . . . , xn−1)

The above axiom together with the axioms generated for f0, . . . , fn−1 give a sound
and ground-complete axiomatization for the smooth operator f .

The following example illustrates this procedure.

Example 28. Consider again the parallel composition operator of Example 8.
The trivial partitioning of its deduction rules gives rise to 3 auxiliary operators
||0, ||1, and ||2, with the following semantics.

(p0)
x0

l
−→ y0

x0 ||0 x1
l
−→ y0 || x1

(p1)
x1

l
−→ y1

x0 ||1 x1
l
−→ x0 || y1

(p2)
x0

l0
−→ y0 x1

l1
−→ y1

x0 ||2 x1
l
−→ y0 || y1

comm(l0, l1) = l

Then, applying the procedure given before, we obtain the following axiom system.

x0 + x1 = x1 + x0 (x0 + x1) + x2 = x0 + (x1 + x2)
x0 + x0 = x0 x0 + 0 = x0

(a.x0) ||0 x1 = a.(x0 || x1) x0 ||1(a.x1) = a.(x0 || x1)
(a.x0) ||2(b.x1) = c.(x0 || x1) if comm(a, b) = c
0 ||0 x1 = 0 x0 ||1 0 = 0
0 ||2 x1 = 0 x0 ||2 0 = 0
(a.x0) ||2(b.x1) = 0 if comm(a, b) is undefined

(x0 + x′0) ||0 x1 = (x0 ||0 x1) + (x′0 ||0 x1)
x0 ||1(x1 + x′1) = (x0 ||1 x1) + (x0 ||1 x′1)
(x0 + x′0) ||2 x1 = (x0 ||2 x1) + (x′0 ||0 x1)
x0 ||2(x1 + x′1) = (x0 ||2 x1) + (x0 ||2 x′1)
x0 || x1 = x0 ||0 x1 + x0 ||1 x1 + x0 ||2 x1

The generated axioms do resemble the original axioms of [14] to a large extent.
The auxiliary operators ||0, ||1 and ||2 are called left, right and communication
merge in the literature.



Using the techniques introduced so far, one can axiomatize smooth operators.
Non-smooth operators may test some of their arguments or make copies of them.
As described in detail in [4, Section 4], we can axiomatize an n-ary non-smooth
operator f by means of an m-ary smooth operator g that simulates all the copying
and testing done by the rules for f . The following example illustrates this, rather
technical, procedure on a simple non-smooth operation.

Example 29. Consider a (hypothetical) unary operator f with the following op-
erational semantics.

x0
a
−→ y0 x0

b
−→ y′0

f (x0)
a
−→ g(x0, y′0)

The function symbol f is not smooth, because x0 appears twice as the source of
premises and, moreover, both x0 and the result of one of its transitions, i.e., y′0,
appear in the target. To remedy this, we introduce a binary auxiliary operator h
with the following semantics.

x0
a
−→ y0 x1

b
−→ y1

h(x0, x1)
a
−→ g(x0, y1)

The function symbol h is now smooth and thus, the procedure given before can
readily axiomatize it. Adding the following equation will complete the axiomati-
zation of f :

f (x0) = h(x0, x0).

To conclude, using the procedure sketched above, by adding sufficiently many
auxiliary operators, one can finitely axiomatize bisimilarity over closed terms in
any TSS in the positive GSOS format.

A generalization of Theorem 24 to non-trace-finite and non-positive TSSs is
also presented in [4]; the generalization to non-trace-finite TSSs requires the addi-
tion of an infinitary conditional equation, the Approximation Induction Principle
from [10], to the generated axiom system.

The techniques from [4] were extended in [13] to cater for explicit termination
of processes. This approach, although more complicated in nature, gives rise
to more intuitive and more compact sets of equations compared to the original
approach of [4]. The resulting format is called the TAGH format. (The acronym
TAGH format stands for termination and GSOS hybrid format.)

The definition of languages in the GSOS and the TAGH formats requires that
the signature, the set of action labels, and the set of deduction rules be finite.
In [1], Aceto defines the infinitary GSOS format. It extends the GSOS format by
allowing for a countable signature, a countable set of action labels, and a countable



set of deduction rules. The sub-format regular GSOS guarantees that every closed
term describes a finite labelled transition system [2]. For this sub-format, Aceto
presents a variation on the procedure described above that allows one to generate
a sound and ground-complete axiomatization for bisimilarity, which makes use of
the Recursive Specification Principle [12].

Bloom [15] has shown that the approach of [4] can also be used for gener-
ating axioms for rooted branching bisimilarity, and van Glabbeek claims in [22]
that this is also the case for rooted-η bisimilarity. The latter work also offers an
adaptation of the approach of [4] that yields finite, sound and ground-complete
axiomatizations for rooted branching and rooted delay bisimilarities [20].

Axiom systems for preorders have been generated, too, see for instance [39].
Along the same lines, [40] generates prioritized rewrite systems for TSSs with an
ordering on deduction rules (see [30]).

7 Conclusions and Open Problems
In this paper, we have presented an overview of some of the existing meta-results
for guaranteeing the validity of algebraic properties and for generating ground-
complete axiom systems from operational semantics. There is an ongoing re-
search in this field and we currently have proposals for rule formats for unit and
zero elements; see [8]. A closely related line of research aims at developing (pos-
sibly automatic) proof techniques for establishing the soundness of axiom systems
using the SOS specification of a language; see, e.g., the papers [19, 42, 5].

There remain many open problems to be addressed. An extension of the
ASSOC-de Simone format with negative premises seems a challenging research
problem to us. Also, relaxing the formats of Sections 3-5 to guarantee algebraic
properties for weaker notions of behavioural equivalence than bisimilarity could
be worth investigating. If a TSS conforms to any of the rule formats presented in
this paper, any disjoint extension of such a TSS also conforms to the same format.
Hence, the algebraic properties proven by the meta-theorems are robust, in the
sense that they remain sound under any disjoint extension. It is in general very
challenging and interesting to address the robustness of algebraic properties under
extensions of TSSs. Another interesting topic for future research is to combine the
techniques of Sections 3-5 with those presented in Section 6 in order to generate
“more natural” axiomatizations, which resemble the axiomatizations presented so
far by the language designers. A challenging open problem in this research area
is the development of methods for the automatic generation of axiomatizations of
behavioural equivalences that are complete over arbitrary open terms. The hard-
ness of this problem is witnessed by the lack of such results even for specific
process algebras that contain operators like restriction and parallel composition



with synchronization. See [6] for a survey of results on complete axiomatizations
up to 2005.
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