
A Rule Format for Associativity

Sjoerd Cranen, MohammadReza Mousavi and Michel A. Reniers

Department of Computer Science, Eindhoven University of Technology, P.O. Box 513,
NL-5600 MB Eindhoven, The Netherlands

Abstract. We propose a rule format that guarantees associativity of bi-
nary operators with respect to all notions of behavioral equivalence that
are defined in terms of (im)possibility of transitions, e.g., the notions
below strong bisimilarity in van Glabbeek’s spectrum. The initial format
is a subset of the De Simone format. We show that all trivial generaliza-
tions of our format are bound for failure. We further extend the format
in a few directions and illustrate its application to several formalisms in
the literature. A subset of the format is studied to obtain associativity
with respect to graph isomorphism.

1 Introduction

Structural Operational Semantics (SOS) [15] provides a convenient and intuitive
way of specifying behavior of systems in terms of states and (labeled) transitions.
There are essential properties that must be repeatedly proven for each instance
of SOS specification, and the proofs of such properties often follow standard
yet tedious lines of reasoning. To facilitate such proofs, many rule formats have
been developed for SOS (for an overview, see [1, 14]), each with their own syn-
tactic features such as predicates, data stores, and negative formulae. Around
each of these formats different meta-theorems have been formulated and proven.
These meta-theorems aim at providing a quick and syntactical way of prov-
ing the aforementioned properties for the semantics specified by the deduction
rules. Examples of such meta-theorems include those concerning congruence of
behavioral equivalences [7] and commutativity of operators [12].

Associativity (with respect to a given notion of equivalence) is an interesting
property of binary operators, which does not lend itself easily to such syntac-
tic checks. Proofs of associativity are usually much more laborious than proofs
of both congruence and commutativity. For example, proofs of congruence, by
and large, make use of induction on the proof structure for transitions and are
confined to look at the proof-tree up to depth one. Thus, they can be performed
by looking at deduction rules individually. Proofs of associativity, however, are
usually concerned with proof-trees of depth two and hence, if there are n de-
duction rules for a certain binary operator each with m premises, the number
of case-distinctions in its associativity proof are nm in the worst case (for each
deduction rule and each premises, there are n possible deduction rules responsi-
ble for the transition mentioned in the premise). This is why in [12, Section 5],
we report that our initial attempt to devise a property for associativity did not

lead to a concrete rule format. We are not aware of any other rule format for
associativity to date. In [10], an abstract 2-categorical framework is presented,
which guarantees algebraic properties such as commutativity and associativity.
Deriving concrete rule formats from this abstract framework is mentioned as
future research in [10].

In this paper we revisit this problem and propose a syntactic rule format
that guarantees associativity of a binary operator with respect to any notion of
behavioral equivalence that is specified in terms of transitions, e.g., all notions
below strong bisimilarity in van Glabeek’s spectrum [9, 8]. We take the De Si-
mone format [7] as our starting point and add a number of other ingredients,
such as predicates [3], to it. Our choice of De Simone format is motivated by
the inherent complexity of associativity proofs and is thus aimed to reduce the
size and the number of the proof trees as much as possible. The extensions are
motivated by practical examples as illustrated in the remainder of this paper.
Despite the simple setting of our format, as we show in this paper, our format is
widely applicable to most practical examples we encountered so far. Moreover,
we show that dropping any of these restrictions jeopardizes the meta-result, even
for associativity with respect to the weaker notions of behavioral equivalence,
e.g., trace equivalence.

The rest of this paper is structured as follows. We start in Section 2 by
presenting some preliminary notions concerning associativity and SOS, used
throughout the rest of the paper. In Section 3, we present our basic rule for-
mat for associativity and state and prove our associativity meta-theorem with
respect to all notions of equivalence that are weaker than (i.e., contain) strong
bisimilarity. Section 4 extends our rule format in various directions. In Section 5,
we impose some constraints on our format in order to obtain associativity with
respect to isomorphism (and all weaker notions). Finally, Section 6 concludes
the paper and points out possible directions for future research.

2 Preliminaries

For sake of completeness, we quote standard definitions from concurrency theory
and the meta-theory of SOS, which are used in the rest of this paper. A reader
familiar with these standard definitions may skip this section altogether.

Definition 1 (Signature and terms). We assume an infinite set of variables
V (with typical members x, y, x′, y′, xi, yi, . . .). A signature Σ is a set of func-
tion symbols (operators) with fixed arities. Functions with zero arity are called
constants. A term t ∈ T(Σ) is defined inductively as follows:
• A variable x ∈ V is a term.
• If t1, . . . , tn are terms then for all f ∈ Σ with arity n, f(t1, . . . , tn) is a term.

Terms are typically denoted by t, t′, ti, t′i, Syntactic equality on terms is de-
noted by ≡. A closed term p ∈ C(Σ), is a term which does not contain any
variables. A substitution σ is a function from V to T(Σ). The domain of sub-
stitution σ is lifted naturally to terms. The range of a closing substitution σ is
C(Σ).

Definition 2 (Transition System Specification (TSS), formula). A tran-
sition system specification (TSS) is a tuple (Σ,Rel,D) where
• Σ is a signature
• Rel is a set of relation symbols, where for all −→∈ Rel and t, t′ ∈ T(Σ).

We define that (t, t′) ∈−→ is a formula.
• D is a set of deduction rules. A deduction rule is defined as a tuple (H, c),

where H is a set of formulae and c is a formula. The formula c is called the
conclusion and the formulae from H are called the premises of the deduction
rule.

A formula (also called transition) (t, t′) ∈−→ is usually denoted by the
more intuitive notation t −→ t′. We refer to t as the source and to t′ as the
target of the transition. Mostly, in case there is more than one relation symbol,
we use Rel = { l−→| l ∈ L} for some set of labels L. A deduction rule (H, c) is

usually denoted by
H

c
. Such a deduction rule is an (f, l)-defining rule of an n-ary

operator f ∈ Σ and label l ∈ L if and only if c is of the form f(x1, · · · , xn) l−→ t.
A deduction rule is an f-defining rule if it is an (f, l)-defining rule for some l ∈ L.

Definition 3 (De Simone format [7]). A deduction rule is in the De Simone
format if it is of the form

{xi
li−→ yi | i ∈ I}

f(x1, . . . , xn) l−→ t
, P

where f ∈ Σ has arity n, I ⊆ {1, . . . , n} is a finite set of indices, P is a predicate
on the labels in the deduction rule and moreover,
• for 1 ≤ i < j ≤ n, xi and xj are different variables and for 1 ≤ i ≤ n and
j ∈ I, xi and yj are distinct variables,

• t is a term in which the variables from {xi | i 6∈ I} ∪ {yi | i ∈ I} occur at
most once.

A TSS is in the De Simone format if and only if all of its deduction rules are.

Definition 4 (Provability). A derived deduction rule
P

c
, also written as the

tuple (P, c), is provable from a TSS T , denoted T ` (P, c), when there exists
a proof structure, i.e., well-founded upwardly branching tree with formulae as
nodes and of which
• the root node is labeled by c,
• if a node is labeled by ψ and the labels of the nodes above it form the set K

then either
• ψ ∈ P ∧K = ∅ or

• K

ψ
is an instance of a deduction rule of T .

A formula ϕ is provable from T , denoted T ` ϕ if and only if T ` (∅, ϕ).

Definition 5 (Bisimulation). Let T be a TSS with signature Σ. A relation
R ⊆ C(Σ)× C(Σ) is a bisimulation relation if and only if R is symmetric and
for all p0, p1, p

′
0 ∈ C(Σ) and l ∈ L

(p0R p1 ∧ T ` p0
l−→ p′0) ⇒ ∃p′

1∈C(Σ)(T ` p1
l−→ p′1 ∧ p′0R p′1).

Two terms p0, p1 ∈ C(Σ) are called bisimilar, denoted by p0 ↔ p1 when there
exists a bisimulation relation R such that p0Rp1.

It is easy to check that bisimilarity is indeed an equivalence. Bisimilarity
can be extended to open terms by requiring that t0 ↔ t1 when σ(t0) ↔ σ(t1)
for all closing substitutions σ : V → C(Σ). In the remainder of this paper, we
restrict our attention to the notions of equivalence on closed terms that contain
strong bisimilarity. However, all our results carry over (without any change) to
the notions on open terms that contain strong bisimilarity on open terms in the
above sense. Another notion of equivalence that we use in the remainder of this
paper is isomorphism, as defined below.

Definition 6. (Isomorphism) Two closed terms p and q are isomorphic, denoted
by p ∼i q, when there exists a bijective function h : reach(p) → reach(q) such
that h(p) = q and if h(p0) = q0 and h(p1) = q1, then p0

l−→ p1 if and only
if q0

l−→ q1, where reach(p) is the smallest set satisfying p ∈ reach(p) and if
p′ ∈ reach(p) and p′

l−→ q′, then q′ ∈ reach(p) (i.e., the set of closed terms
reachable from p).

Definition 7 (Associativity). A binary operator f ∈ Σ is associative w.r.t.
an equivalence ∼ on closed terms if and only if for each p0, p1, p2 ∈ C(Σ), it
holds that f(p0, f(p1, p2)) ∼ f(f(p0, p1), p2).

3 The ASSOC-De Simone Format

In this section, we first specify a limited number of rule types from the De Simone
format. Then, we define a number of constraints on the occurrences of rules of
such types that guarantee associativity of operators defined by such rules. The
format is illustrated by means of a number of examples from the literature. The
constraints are obtained by analyzing all proof structures that can be constructed
using this restricted set of rule types. The proof of the meta-result, which is a
detailed analysis of the proof structures described above, is given next.

3.1 Format

Definition 8 (The ASSOC-De Simone Rule Format). Consider the follow-
ing types of rules which are all in the De Simone format. Let γ : L× L→ L be
an associative partial function (w.r.t. syntactic equality).

1l. Left-conforming rules 2l. Right-conforming rules
x

l−→ x′

f(x, y) l−→ f(x′, y)

y
l−→ y′

f(x, y) l−→ f(x, y′)

3l. Left-choice rules 4l. Right-choice rules
x

l−→ x′

f(x, y) l−→ x′

y
l−→ y′

f(x, y) l−→ y′

5l. Left-choice axioms 6l. Right-choice axioms 7(l0,l1). Communicating rules

f(x, y) l−→ x f(x, y) l−→ y

x
l0−→ x′ y

l1−→ y′

f(x, y)
γ(l0,l1)−→ f(x′, y′)

A TSS is in the ASSOC-De Simone format with respect to f ∈ Σ when for
each l ∈ L, each f-defining rule is of a type given above and the set of all
f-defining rules satisfies the following constraints. (Each proposition P in the
following constraints should be read as “there exists a deduction rule of type P
in the set of f-defining rules”. To avoid repeated uses of parentheses, we assume
that ∨ and ∧ take precedence over ⇒ and ⇔.)

1. 5l ⇒ 2l ∧ 3l,
2. 6l ⇒ 1l ∧ 4l,
3. 7(l,l′) ⇒ (1l ⇔ 2l′) ∧ (3l ⇔ 4l′)

∧ (2l ⇔ 2γ(l,l′)) ∧ (4l ⇔ 4γ(l,l′)) ∧ (1l′ ⇔ 1γ(l,l′)) ∧ (3l′ ⇔ 3γ(l,l′)),
4. 1l ∧ 3l ⇔ ∃l′ γ(l, l′) = l ∧ 7(l,l′) ∧ 5l′ ∧ 6l′ ,
5. 2l ∧ 4l ⇔ ∃l′ γ(l′, l) = l ∧ 7(l,l′) ∧ 5l′ ∧ 6l′ ,
6. (1l ∨ 4l) ∧ (2l ∨ 3l) ⇒ (5l ⇔ 6l).

The types of rules presented above give us a nice starting point while covering
many practical applications. These rule types cover all rules that are in the De
Simone format with four additional restrictions: Firstly, the target of the con-
clusion can contain at most one (binary) operator, secondly, the aforementioned
operator is the same as the one appearing in the source, thirdly, the labels of
the premises and the conclusion coincide (apart from the communicating rule),
and finally testing is disallowed.

The main sources of complication in our format are pairs 1l ∧ 3l and 2l ∧
4l. If no such pairs are present in the TSS under consideration and moreover,
label l generated by 5l or 6l cannot synchronize with other labels, i.e., @l,l′(5l ∨
6l) ∧ (7(l,l′) ∨ 7(l′,l)), then the last three constraints need not be checked. (The
last constraint can be dropped in the light of the above-mentioned facts and
constraints 1 and 2.) In all practical cases that we have encountered thus far,
these conditions hold. Moreover, for each operator with a rule of type 7(l0,l1), if
the presence of an f -defining rule Xl, for X ∈ {1, 2, 3, 4}, implies the presence
of Xl′ for all l′, then for such an operator, constraint 3 can be simplified to
7(l,l′) ⇒ ((1l′′ ⇔ 2l′′) ∧ (3l′′ ⇔ 4l′′)). The former assumption on Xl holds for

most associative operators in practice but fails for few, such as CSP’s parallel
composition [16, Chapter 7]. Obviously for operators without defining rules of
type 7(l0,l1), constraint 3 is trivially satisfied.

Theorem 1. For a TSS in the ASSOC-De Simone format with respect to f ∈ Σ,
it holds that f is associative for each notion of equivalence ∼ containing strong
bisimilarity.

3.2 Examples

In this section we illustrate the ASSOC-De Simone format by means of operators
from the literature.

Example 1 (Alternative composition). In most process languages for the descrip-
tion of sequential and parallel systems a form of alternative composition or choice
is present. Here we present nondeterministic alternative composition as present
in CCS [11] and ACP [4].

x
l−→ x′

x+ y
l−→ x′

y
l−→ y′

x+ y
l−→ y′

In this example we find deduction rules of types 3 and 4. Therefore, the re-
quirements are met and it can be concluded that alternative composition is
associative.

Example 2 (Parallel composition). Another frequently occurring associative op-
erator is parallel composition. It appears in amongst others ACP, CCS, and
CCS. Here we discuss parallel composition with communication in the style of
ACP [4], for which the others are special cases. It is assumed that an associative
(and commutative) partial function γ on labels is given that defines the result of
communication and determines the absence or presence of the right-most rule.

x
l−→ x′

x ‖ y l−→ x′ ‖ y
y

l−→ y′

x ‖ y l−→ x ‖ y′
x

l−→ x′ y
l′−→ y′

x ‖ y γ(l,l′)−→ x′ ‖ y′

Thus, in terms of the types of deduction rules, we have deduction rules of type
1, 2, and 7. Therefore, the requirements are met and it can be concluded that
parallel composition is associative.

Example 3 (Disrupt). The disrupt is originally introduced in the language LO-
TOS [6], where it is used to model for example exception handling. Also, it is
used, for example in [2], for the description of mode switches.

x
l−→ x′

x I y
l−→ x′ I y

y
l−→ y′

x I y
l−→ y′

Here we see that only deduction rules of types 1 and 4 are present. As a conse-
quence also disrupt is associative.

Example 4 (External choice). The external choice operator � from CSP [16] has
the following deduction rules, where l 6= τ :

x
τ−→ x′

x � y
τ−→ x′ � y

y
τ−→ y′

x � y
τ−→ x � y′

x
l−→ x′

x � y
l−→ x′

y
l−→ y′

x � y
l−→ y′

These are of the types 1, 2, 3 and 4, respectively. The constraints of the ASSOC-
De Simone format are satisfied since the rules of type 1 and 3 (and 2 and 4) are
only there for different labels. Therefore, external choice is associative.

3.3 Proof of Theorem 1

We start with the following auxiliary definition, which will be used in the re-
mainder of our proof.

Definition 9. (Syntactic Equality Modulo Associativity) Equality modulo asso-
ciativity of an operator f , denoted by 'f , is the smallest reflexive and symmetric
relation satisfying f(p0, f(p1, p2)) 'f f(f(p0, p1), p2), for each p0, p1, p2 ∈ C(Σ).

The following lemma gives us a stronger thesis from which the theorem fol-
lows.

Lemma 1. An operator f ∈ Σ is associative w.r.t. ∼ if 'f is a bisimulation
relation.

Proof. If we prove that 'f is a bisimulation relation, then the theorem follows,
because we then have that f(p0, f(p1, p2))↔ f(f(p0, p1), p2) and from ↔ ⊆∼, it
follows that f(p0, f(p1, p2)) ∼ f(f(p0, p1), p2).

To obtain that 'f is a bisimulation relation, we construct all possible proof

structures Pr with f(p0, f(p1, p2))
l−→ p′ as conclusion using only rules of the

types given in Definition 8. We then show that for each such proof, there is a
proof Pr′ with f(f(p0, p1), p2)

l−→ p′′ as a conclusion for some p′′ such that
p′ 'f p

′′ and that Pr′ uses the premises of Pr. We do the same thing the other
way around, so we may conclude that 'f is a bisimulation. By lemma 1 we then
conclude that f is associative.

To be able to show the results in a compact way, we introduce the following
acronym for proof structures. Let us denote the instantiation of rule r (r ∈
{1, . . . , 7}) with n premises with r(r1, r2, . . . , rn), where ri is the rule that is
instantiated on premise i. Furthermore, if no rule is instantiated then we denote
this with the symbol ‘−’, to indicate that no rule is used.

Now the proof for a transition t
l−→ c can be denoted with an expression

r · (r1, r2, . . . , rn) when the conclusion of r matches t l−→ c and premise i of
rule r matches the conclusion of rule ri. When the rule used to derive a proof
for premises ri is not relevant, we may write r · (r1, . . . , ri−1,−, . . . , rn). For
readability and when no confusion may arise, we write r ·r1 for r(−, r1), r(r1,−)
or r · (r1), and write r for r.(−,−), r · (−), or r · ().

Example 5. A proof for the derived deduction rule

x
l0−→ x′ z

l1−→ z′

f(x, f(y, z))
γ(l0,l1)−→ f(x′, f(y, z′))

is the following

x
l0−→ x′

z
l1−→ z′

f(y, z) l1−→ f(y, z′)

f(x, f(y, z))
γ(l0,l1)−→ f(x′, f(y, z′)) .

It consists of an instantiation of rule type 7(l0,l1) and one of type 2l1 , and may
therefore be written as 7(l0,l1) · (−, 2l1) or simply 7(l0,l1) · 2l1 .

Tr Tl cr cl further req.

1l 1l · 1l f(x′, f(y, z)) f(f(x′, y), z)
2l · 1l 1l · 2l f(x, f(y′, z)) f(f(x, y′), z)
2l · 2l 2l f(x, f(y, z′)) f(f(x, y), z′)
2l · 3l 3l · 2l f(x, y′) f(x, y′)
2l · 4l 7(l′,l) · 5l′ f(x, z′) f(x, z′) γ(l′, l) = l
2l · 5l 5l f(x, y) f(x, y)
2l · 6l 1l · 5l f(x, z) f(x, z)
2γ(l,l′) · 7(l,l′) 7(l,l′) · 2l f(x, f(y′, z′)) f(f(x, y′), z′)
3l 3l · 3l x′ x′

4l · 1l 1l · 4l f(y′, z) f(y′, z)
4l · 2l 7(l′,l) · 6l′ f(y, z′) f(y, z′) γ(l′, l) = l
4l · 3l 3l · 4l y′ y′

4l · 4l 4l z′ z′

4l · 5l 3l · 6l y y
4l · 6l 6l z z
4γ(l,l′) · 7(l,l′) 7(l,l′) · 4l f(y′, z′) f(y′, z′)
5l 3l · 5l x x
6l 1l · 6l f(y, z) f(y, z)
7(l,l′) · 1l′ 1γ(l,l′) · 7(l,l′) f(x′, f(y′, z)) f(f(x′, y′), z)
7(l,l′) · 2l′ 7(l,l′) · 1l f(x′, f(y, z′)) f(f(x′, y), z′)
7(l,l′) · 3l′ 3γ(l,l′) · 7(l,l′) f(x′, y′) f(x′, y′)
7(l,l′) · 4l′ 7(l,l′) · 3l f(x′, z′) f(x′, z′)
7(l,l′) · 5l′ 3l · 1l f(x′, y) f(x′, y) γ(l, l′) = l
7(l,l′) · 6l′ 1l · 3l f(x′, z) f(x′, z) γ(l, l′) = l
7(l,γ(l0,l1)) · 7(l0,l1) 7(γ(l,l0),l1) · 7(l,l0) f(x′, f(y′, z′)) f(f(x′, y′), z′) γ(l, γ(l0, l1)) =

γ(γ(l, l0), l1)

Table 1. All proofs with f(x, f(y, z)) or f(f(x, y), z) in the source of the conclusion.

Table 1 shows all the mentioned proofs in an abbreviated way. Column Tr

lists the proof structure of proofs with the source of the conclusion f(x, f(y, z)),

Tl lists the proof structures of those with source of the conclusion f(f(x, y), z).
The corresponding targets of the conclusions are listed in columns cr and cl.

What is not listed in the table, but what is relevant to the proof of correctness,
are the labels of the conclusion transition. These labels are always equal except
for the last row, where the labels are γ(l, γ(l0, l1)) and γ(γ(l, l0), l1), respectively.
By associativity of the function γ these labels are also equal.

We have proved f to be associative if our format guarantees that whenever
the rules needed for a proof in the Tr column are present, then the rules needed
for the corresponding proof in Tl are present too and the other way around.
This is trivially true for those rows in the table where the sets of rules used
to construct the proof are the same. In Table 2 we have eliminated these rows.
This yields the requirements, listed in the column ‘To Prove’, on the presence
of certain rules. In the column ‘Follows From’, we indicate which constraints in
Definition 8 discharge the proof obligations in the ‘To Prove’ column.

Tr Tl To Prove Follows From

2l · 4l 7(l′,l) · 5l (2l ∧ 4l) ⇔ (∃l′7(l′,l) ∧ 5l′) Constraint 5
2l · 5l 5l 5l ⇒ 2l Constraint 1
2l · 6l 1l · 5l (2l ∧ 6l) ⇔ (1l ∧ 5l) ⇒ Constraints 6, 2

⇐ Constraints 6, 1
2γ(l,l′) · 7(l,l′) 7(l,l′) · 2l 7(l,l′) ⇒ (2l ⇔ 2γ(l,l′)) Constraint 3
4l · 2l 7(l′,l) · 6l′ (2l ∧ 4l) ⇔ (7(l′,l) ∧ 6l′) Constraint 5
4l · 5l 3l · 6l (4l ∧ 5l) ⇔ (3l ∧ 6l) ⇐ Constraints 6, 1

⇒ Constraints 6, 2
4l · 6l 6l 6l ⇒ 4l Constraint 2
4γ(l,l′) · 7(l,l′) 7(l,l′) · 4l 7(l,l′) ⇒ (4l ⇔ 4γ(l,l′)) Constraint 3
5l 3l · 5l 5l ⇒ 3l Constraint 1
6l 1l · 6l 6l ⇒ 1l Constraint 2
7(l,l′) · 1l′ 1γ(l,l′) · 7(l,l′) 7(l,l′) ⇒ (1l′ ⇔ 1γ(l,l′)) Constraint 3
7(l,l′) · 2l′ 7(l,l′) · 1l 7(l,l′) ⇒ (1l ⇔ 2l′) Constraint 3
7(l,l′) · 3l′ 3γ(l,l′) · 7(l,l′) 7(l,l′) ⇒ (3l′ ⇔ 3γ(l,l′)) Constraint 3
7(l,l′) · 4l′ 7(l,l′) · 3l 7(l,l′) ⇒ (3l ⇔ 4l) Constraint 3
7(l,l′) · 5l′ 3l · 1l 7(l,l′) · 5l′ ⇔ 3l · 1l Constraint 4
7(l,l′) · 6l′ 1l · 3l 7(l,l′) · 6l′ ⇔ 1l · 3l Constraint 4
7(l,γ(l0,l1)) · 7(l0,l1) 7(γ(l,l0),l1) · 7(l,l0) 7(l,γ(l0,l1)) ∧ 7(l0,l1) ⇔ Associativity of γ

7(γ(l,l0),l1) ∧ 7(l,l0)

Table 2. Table 1 without the trivial cases.

3.4 Counter-Examples

The seven basic types of rules that are allowed by the ASSOC-De Simone for-
mat are more restrictive than arbitrary rules in the De Simone format in two
respects. First, the De Simone format allows for complex terms as the target of

the conclusion. However, we only allow for either a variable or applications of
the operator being defined (i.e., appearing in the source of the conclusion) on
variables. Second, for rules of the first six types, the premise has the same label
as the conclusion. In this section, we show that dropping the first restriction
jeopardizes our associativity meta-result even with respect to trace equivalence,
which is one of the weakest notions of behavioral equivalence. The following two
counter-examples witness that we cannot trivially relax this condition. The first
counter-example uses an unary function and the second one uses an associative
binary operator (different from the one being defined).

Example 6 (Complex target, I). Consider the terms f(a, f(a, a)) and f(f(a, a), a)
w.r.t. the following TSS

f(x, y) a−→ g(x) g(x) b−→ x

The term f(a, f(a, a)) can make an a-transition followed by a b-transition and
then it deadlocks. However, the f(f(a, a), a) term can make two consecutive
ab-traces: f(f(a, a), a) a−→ g(f(a, a)) b−→ f(a, a) a−→ g(a) b−→ b.

Example 7 (Complex target, II). Consider the following TSS with the signature
containing two constants 0 and a and binary operators f and g (which respec-
tively represent left-merge and parallel-composition operators).

(a)
a

a−→ 0
(f)

x
a−→ x′

f(x, y) a−→ g(x′, y)

(g0)
x

a−→ x′

g(x, y) a−→ g(x′, y)
(g1)

y
a−→ y′

g(x, y) a−→ g(x, y′)

Consider the terms f(a, f(0, a)) and f(f(a, 0), a). The former term can only
make an a-transition into g(0, f(0, a)) (by the proof structure f ·a); the target of
this transition, in turn, deadlocks. The latter term can only make an a-transition
into g(g(0, 0), a) (by the proof structure g0 · g0 · a); however the target of this
transition can make one further a-transition into g(g(0, 0), 0).

The restriction of the treatment to deduction rules without relabeling (ex-
cluding the communicating rule) is not essential, but allows for a simpler pre-
sentation of the format. It remains future work to formulate and prove a rule
format for associativity in the presence of relabeling.

In Section 4, we extend our format by introducing testing in the premises
and predicates.

4 Possible Extensions

In this section, we investigate extensions of our format in various directions.

4.1 Testing Rules

De Simone format does not allow for premises of which the targets do not appear
in the target of the conclusion. This phenomenon is called testing in the SOS
literature and, albeit disallowed by De Simone format, is of practical relevance,
e.g., in modeling predicates. Thus, in this section, we introduce the concept of
testing to our ASSOC-De Simone format to cover these practical cases. The only
relevant type of testing which allows us to model predicates is given by the
following type of rules. As we demonstrate in Section 4.3, other sorts of testing
(predicate) rules can be coded using a combination of rules already present in
our ASSOC-De Simone format.

8(l,l′). Left-choice + test 9(l′,l). Right-choice + test

x
l−→ x′ y

l′−→ y′

f(x, y) l−→ x′

x
l′−→ x′ y

l−→ y′

f(x, y) l−→ y′

The constraints we give next for the above two types of testing rules can be
generalized to arbitrary testing rules (with relabeling and changing operators).

Definition 10 (The ASSOC-De Simone Rule Format with Testing). A
TSS is in the ASSOC-De Simone format with testing w.r.t. f , when each defining
rule is of one of the previously given types, the rules of types {1l, . . . , 6l, 7(l,l′)}
satisfy the constraints of the ASSOC-De Simone format w.r.t. f and moreover,
the following constraints hold for the rules of types 8(l,l′) and 9(l,l′):

1. 8(l,l′) ∧ Xp ⇒ 3l and 9(l′,l) ∧ Xp ⇒ 4l, for each Xp ∈ {1l′ , . . . , 6l′ , 7(l0,l1) |
γ(l0, l1) = l′ ∧ l0 6= l′ ∨ l1 6= l′},

2. (8(l,l′) ∧ 1l) ⇒ ∃l′′γ(l′′, l) = l ∧ 7(l′′,l) ∧ 5l′′ and (9(l′,l) ∧ 2l) ⇒ ∃l′′γ(l′′, l) =
l ∧ 7(l′′,l) ∧ 5l′′ ,

3. 8(l,l′) ∧ 6l ⇒ 5l and 9(l′,l) ∧ 5l ⇒ 6l,
4. 7(l0,l1) ⇒ (8(l1,l′) ⇔ 8(γ(l0,l1),l′))∧ (8(l0,l′) ⇔ 9(l′,l1))∧ (9(l′,γ(l0,l1)) ⇔ 9(l′,l0)),
5. 8(l,l′) ∧ 8(l,l′′) ⇒ 8(l′,l′′) ∨ (7(l′,l′′) ∧ 8(l,γ(l′,l′′))) and 9(l′,l) ∧ 9(l′′,l) ⇒ 9(l′,l′′) ∨

(7(l′,l′′) ∧ 9(γ(l′,l′′),l)).

Theorem 2. For a TSS in the ASSOC-De Simone format with testing w.r.t.
f ∈ Σ, it holds that f is associative for each notion of equivalence ∼ containing
strong bisimilarity.

Due to space limitations, proof of the theorem is omitted. Later in Section 4.3,
we show how rules of type 8 and 9 can be used to obtain associativity of operators
in the definition of which predicates are involved, e.g., sequential composition
operator.

4.2 Changing Operators

In the ASSOC-De Simone format, the only operator that may appear in the
target of the conclusion is the same as the operator appearing in the source.

This assumption may not hold in practice and is not essential to our meta-
result, either. Thus, in this section, we relax this assumption and allow for rules
of the following shape.

1l. Left-conf. rules 2l. Right-conf. rules 7(l0,l1). Comm. rules

x
l−→ x′

f(x, y) l−→ g(x′, y)

y
l−→ y′

f(x, y) l−→ g(x, y′)

x
l0−→ x′ y

l1−→ y′

f(x, y)
γ(l0,l1)−→ g(x′, y′)

Note that if g is taken to be the same as f , then we recover the original types
of rules allowed in the ASSOC-De Simone format.

Definition 11 (The ASSOC-De Simone Rule Format with Changing Op-
erators). Let Σ′ ⊆ Σ. A TSS is in the ASSOC-De Simone format with changing
operators w.r.t. Σ′ when for each f ∈ Σ′ the following constraints are satisfied:
• the f-defining rules are in the ASSOC-De Simone format (with relaxed targets

of conclusions as described above),
• for each l ∈ L, the (f, l)-defining rules of type 7 all have the same operator
g ∈ Σ′ in the target of the conclusion, and there are no (f, l)-defining rules
of type 1 or 2 with f 6= g, where g is the operator appearing in the target of
the conclusion.

Theorem 3. For a TSS in the ASSOC-De Simone format with changing oper-
ators w.r.t. Σ′ ∈ Σ, it holds that each f ∈ Σ′ is associative for each notion of
equivalence ∼ containing strong bisimilarity.

Proof. The proof is obtained by adapting Table 1 for those occurrences of rules of
types 1, 2 and 7 with a changing operator, say g. The targets of the conclusions,
i.e., cl and cr then stay the same terms with all occurrences of f replaced by g.

Example 8 (Communication merge). Consider the communication merge oper-
ator | from ACP [4] with the following deduction rule

x
l−→ x′ y

l′−→ y′

x | y γ(l,l′)−→ x′ ‖ y′

and additionally those of the parallel composition operator from Example 2.
Recall that the communication function γ is assumed to be associative. Note
that this rule is of type 7(l,l′). The constraints of the ASSOC-De Simone format
with changing operators are satisfied. Thus, as a consequence, communication
merge is associative.

4.3 Predicates

Assume that a predicate P is given by deduction rules of the following form.

Px

Pf(x,y)

Py

Pf(x,y)

Px Py

Pf(x,y)

In order to accommodate such predicates in our framework and our format, we
use a translation inspired by [17]. The following deduction rules of types 1P , 2P ,
and 7(P,P), respectively, code predicate P in the ASSOC-De Simone format.

x
P−→ x′

f(x, y) P−→ f(x′, y)

y
P−→ y′

f(x, y) P−→ f(x, y′)

x
P−→ x′ y

P−→ y′

f(x, y) P−→ f(x′, y′)

Other possible types of rules for defining predicates can be coded similarly inside
the ASSOC-De Simone rule format. The major difficulty here is in combining
predicates with transitions. This can be done in our framework, using either
communicating rules (type 7(l,l′)) or testing rules (types 8(l,l′) or 9(l,l′)). The
following example illustrates this.

Example 9 (Sequential Composition). Consider the following deduction rules
defining the sequential composition operator.

x
l−→ x′

x · y l−→ x′ · y
x ↓ y

l−→ y′

x · y l−→ y′
x ↓ y ↓
x · y ↓

The second deduction rule uses the termination predicate as a premise. Trans-
lation of the later two deduction rules to a setting without predicates gives

x
↓−→ x′ y

l−→ y′

x · y l−→ y′

x
↓−→ x′ y

↓−→ y′

x · y γ(↓,↓)−→ x′ · y′

with γ(↓, ↓) =↓ and undefined otherwise. These rules are of type 1l, 9(↓,l), and
7(↓,↓). In Definition 10, the only constraints of which the left-hand-side of the
implications hold are 4 and 5. Thus, we only need to check that (8(↓,l′) ⇔
8(↓,l′)) ∧ (8(↓,l′) ⇔ 9(l′,↓)) ∧ (9(l′,↓) ⇔ 9(l′,↓)) and 9(↓,↓) ∨ (7(↓,↓) ∧ 9(↓,l)). The
former holds trivially since none of the propositions appearing in the three bi-
implications hold. The latter holds, as well, because we have that 7(↓,↓) ∧ 9(↓,l).
Thus, we can conclude that all constraints of the ASSOC-De Simone format with
testing are satisfied and hence sequential composition is associative.

5 Associativity for Isomorphism

Although associativity w.r.t. strong bisimilarity provides us with a strong meta-
result that is capable of dealing with all applications in practice, an even stronger
result can be obtained, if we prove associativity w.r.t. isomorphism as given in
Definition 6.

In this section, we first show that our meta-result does not trivially carry over
to the case where isomorphism is considered as the notion of equivalence. Then,
we seek extra conditions under which associativity w.r.t. isomorphism indeed
holds. The following example shows why the ASSOC-De Simone format cannot
be used as is for proving associativity w.r.t. isomorphism.

Example 10 (Associativity w.r.t. Isomorphism). Consider the following TSS.

(ai)
ai

ai−→ ai

(α, β)
x

α−→ x′ y
β−→ y′

f(x, y)
γ(α,β)−→ f(x′, y′)

(la0)
x

a0−→ x′

f(x, y) a0−→ x′
(ra0)

y
a0−→ y′

f(x, y) a0−→ y′

α β γ(α, β)
a0 a1 a′

a1 a2 a′

a0 a
′ a0

a′ a2 a0

where rule (ai) is present only for i = 0, 1, 2 and rule (α, β) is only defined for
all pairs of α and β for which the table on the right provides an entry. Next, the
LTS’s of the terms f(f(f(a0, f(a1, a2)), a1), a2) and f(f(a0, f(a1, a2)), f(a1, a2))
are depicted. Note that these two LTS’s are not isomorphic since one of them
comprises three states and the other one comprises four states.

f(f(f(a0, f(a1, a2)), a1), a2)

f(a0, f(a1, a2))

a0

a0

a0

f(a0, f(a1, a2))

a0

a0

a0a0

a0

f(f(a0, f(a1, a2)), f(a1, a2))

f(a0, f(a1, a2))

a0

a0

a0

a0

a0

a0

Theorem 4 gives sufficient conditions for associativity w.r.t. isomorphism.

Theorem 4. For a TSS in the ASSOC-De Simone format w.r.t. f ∈ Σ such
that, disregarding the labels, the set of all f-defining rules satisfies (1∨ 2∨ 7) ⇔
¬(3∨ 4∨ 5∨ 6∨ 8∨ 9) (all f-defining rules are either of types 1, 2 and 7, or are
all of the other types), then f ′ is associative w.r.t. isomorphism.

Proof. The proviso of Theorem 4 requires that the f -defining rules are either of
the types 1,2,7 or of the types 3,4,5,6,8,9. We call the deduction rules of the first
type f-preserving and those of the second type f-eliminating.

If all f -defining rules are f -preserving, then all states in the LTS of f(p0, f(p1, p2))
are of the form f(q0, f(q1, q2)). Then, define h(f(q0, f(q1, q2)))

.= f(f(q0, q1), q2).
Then, it is straightforward to check (by consulting the corresponding rows of Ta-
ble 1) that h is the bijective function satisfying the constraints of Definition 6.

If all f -defining rules are f -eliminating, then define h(f(p0, f(p1, p2)))
.=

f(f(p0, p1), p2) (for the initial state) and f(p′) = p′ for all nodes reachable from
the initial state. Note that the initial state cannot have a self-loop, because the
size of the term strictly decreases in each transition. Thus, the above definition
gives rise to a (function and a) bijection. It is also straightforward to check that
in the rows of Table 1 when the applied rules are all f -eliminating, then the
targets of the transitions are syntactically equal and thus our bijection satisfies
the constraints of Definition 6.

6 Conclusions

In the context of binary operators specified by means of deduction rules in the
well-known De Simone format, we developed a rule format guaranteeing associa-

tivity w.r.t. any notion of behavioral equivalence containing strong bisimilarity.
The format is adapted for the setting with predicates, testing rules and ‘chang-
ing operators’. Applicability of the format is shown by means of examples from
literature.

We plan to extend the ASSOC-De Simone format to deal with relabeling and
negative premises [5]. Another direction for future research is a more general
format in the setting of weak equivalences such as branching bisimilarity and
weak bisimilarity. An extension of the ASSOC-De Simone format to deal with a
notion of state/date is also anticipated (see [13]).
Acknowledgment. Insightful comments of CONCUR’08 reviewers led to a
number of improvements and are gratefully acknowledged.

References

1. L. Aceto, W. Fokkink, and C. Verhoef. Structural Operational Semantics. In
Handbook of Process Algebra, Chapter 3, pages 197–292. Elsevier, 2001.

2. J.C.M. Baeten and J.A. Bergstra. Mode transfer in process algebra. Technical
Report CSR-00-01, Dept. of Computer Science, TU/Eindhoven, 2000.

3. J.C.M. Baeten and C. Verhoef. A congruence theorem for structured operational
semantics with predicates. In Proc. of CONCUR’93, volume 715 of LNCS, pages
477–492. Springer, 1993.

4. J.C.M. Baeten and W.P. Weijland. Process Algebra. Cambridge, 1990.
5. R. Bol and J.F. Groote. The meaning of negative premises in transition system

specifications. JACM, 43(5):863–914, September 1996.
6. E. Brinksma. A tutorial on LOTOS. In Proc. of Protocol Specification, Testing

and Verification V, pages 171-194. North-Holland, 1985.
7. R. de Simone. Higher-level synchronizing devices in MEIJE-SCCS. TCS, 37:245–

267, 1985.
8. R.J. van Glabbeek. The linear time - branching time spectrum I. In Handbook of

Process Algebra, Chapter 1, pages 3–99. Elsevier, 2001.
9. R.J. van Glabbeek. The linear time - branching time spectrum II. In Proc. of

CONCUR’93, volume 715 of LNCS, pages 66–81. Springer, 1993.
10. I. Hasuo, B. Jacobs, and A. Sokolova. The microcosm principle and concurrency

in coalgebra. In Proc. of FOSSACS’08, LNCS. Springer, 2008. To appear.
11. A.J.R.G. Milner. A Calculus of Communicating Systems, volume 92 of LNCS.

Springer, 1980.
12. M.R. Mousavi, M.A. Reniers, and J.F. Groote. A syntactic commutativity format

for SOS. IPL, 93:217–223, 2005.
13. M.R. Mousavi, M.A. Reniers, and J.F. Groote. Notions of bisimulation and con-

gruence formats for SOS with data. I&C, 200(1):107–147, 2005.
14. M.R. Mousavi, M.A. Reniers, and J.F. Groote. SOS formats and meta-theory: 20

years after. TCS, (373):238–272, 2007.
15. G.D. Plotkin. A structural approach to operational semantics. JLAP, 60:17–139,

2004.
16. A.W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, 1997.
17. C. Verhoef. A congruence theorem for structured operational semantics with

predicates and negative premises. Nordic Journal of Computing, 2(2):274–302,
1995.

