
Impossibility Results for the Equational Theory
of Timed CCS ?

Luca Aceto1, Anna Ingólfsdóttir1, and MohammadReza Mousavi1,2

1 Department of Computer Science, Reykjav́ık University, Kringlan 1, IS-103,
Reykjav́ık, Iceland

2 Department of Computer Science, Eindhoven University of Technology,
NL-5600MB Eindhoven, The Netherlands

Abstract. We study the equational theory of Timed CCS as proposed
by Wang Yi in CONCUR’90. Common to Wang Yi’s paper, we particu-
larly focus on a class of linearly-ordered time domains exemplified by the
positive real or rational numbers. We show that, even when the set of
basic actions is a singleton, there are parallel Timed CCS processes that
do not have any sequential equivalent and thus improve on the Gap The-
orem for Timed CCS presented by Godskesen and Larsen in FSTTCS’92.
Furthermore, we show that timed bisimilarity is not finitely based both
for single-sorted and two-sorted presentations of Timed CCS. We fur-
ther strengthen this result by showing that, unlike in some other process
algebras, adding the untimed or the timed left-merge operator to the
syntax and semantics of Timed CCS does not solve the axiomatizability
problem.

1 Introduction

In [12], Wang Yi proposed Timed CCS (TCCS) as a possible timed extension
of Milner’s CCS [7]. (See [10] for another timed extension of CCS.) There, he
gave syntax and operational semantics of the calculus as well as a number of
equational laws, including a form of expansion law that allows one to resolve
parallelism and transform parallel processes into a nondeterministic composition
of sequential processes.

However, it turned out that the expansion law of [12] is not sound with re-
spect to timed bisimilarity [5, 13]. In [13], Wang Yi put forward an alternative
correct version of the expansion law of [12]. However, the correction involved
the introduction of the so-called time variables and a substantially more compli-
cated calculus. A natural question was then whether there is a sound expansion
theorem for the simple calculus of [12] and whether the calculus of [12] affords
a finite complete (respectively, ω-complete) axiomatization.

The former question was answered negatively in [5] by showing that for all
n > 0 there are expressions with n + 1 parallel components for which there are

? The work of the authors has been partially supported by the project “The Equational
Logic of Parallel Processes” (nr. 060013021) of The Icelandic Research Fund.

no bisimilar terms with n parallel components or less (Gap Theorem). In other
words, parallel composition cannot in general be eliminated from TCCS terms.

The latter question has been addressed partially in [14] and [1], which present
complete axiomatizations for the finite [14] and regular [1] fragments of TCCS,
respectively. However, it has remained an open question whether the full calculus,
including parallel composition, affords a finite (ω-)complete axiomatization or
not.

The aim of this paper is to re-visit this question. We show that different
presentations of TCCS cannot be finitely axiomatized modulo timed bisimilarity.
We further strengthen this result by showing that, unlike in some other process
algebras, adding the left-merge operator (timed or un-timed) to the theory of
TCCS does not solve the axiomatizability problem. We also present an improved
version of the gap theorem and show that even in the presence of a single action,
parallel composition cannot be resolved in TCCS.

The rest of this paper is organized as follows. In Section 2, we present the ba-
sic definitions concerning TCCS, timed bisimilarity and equational logic. Section
3 is devoted to the single-sorted presentation of TCCS and shows that it cannot
be finitely axiomatized modulo timed bisimilarity. In Section 4, we study the
two-sorted presentation of TCCS and show, first of all, that, even in the pres-
ence of just one action, parallelism cannot be resolved in TCCS (Gap Theorem).
We also prove that the theory of the two-sorted presentation of TCCS cannot
be finitely axiomatized either. Section 5 studies the addition of the untimed as
well as the timed lef-merge operator to TCCS and shows that adding neither
of these operators solves the axiomatizability problem. Section 6 concludes the
paper and presents directions of ongoing and future research.

2 Preliminaries

2.1 TCCS: Syntax and Semantics

Following [6], we define a monoid (X, +, 0) to be:

– left-cancellative iff (x + y = x + z) ⇒ (y = z), and
– anti-symmetric iff (x + y = 0) ⇒ (x = y = 0).

We define a partial order on X as x ≤ y iff x + z = y for some z ∈ X. A
time domain is a left-cancellative anti-symmetric monoid (D,+, 0) such that ≤
is a total order. If d0 ≤ d1, then we write d1 − d0 for the unique d such that
d1 = d0 + d. A time domain is non-trivial if D contains at least two elements.
Note that every non-trivial time domain does not have a largest element. A time
domain has 0 as cluster point iff for each d ∈ D such that d 6= 0 there is a d′ ∈ D
such that 0 < d′ < d. In the remainder of the paper, we assume that our time
domain, denoted henceforth by D, is non-trivial and has 0 as a cluster point.

The syntax of TCCS processes (closed terms) is given by the following gram-
mar.

t ::= 0 | µ.t | ε(d).t | s + t | s || t

2

In the grammar given above, 0 stands for the deadlocking process (not to be
confused with 0 in the time domain), µ. represents action-prefix operators for
µ ∈ A where A is the set of (delayable) actions. Given a time domain D, ε(d). is
an operator for each d ∈ D, and represents a time delay of length at least d before
proceeding with the remaining process. For the sake of simplicity, we assume that
all delays are non-zero; ε(0).t can be interpreted as a syntactic sugar for t, but we
avoid zero delays altogether throughout the rest of this paper. Nondeterministic
choice is denoted by + and parallel composition is denoted by ||.

We write µ for µ.0 and µ(d) for ε(d).µ. Our proofs, in the remainder of this
paper, remain sound even when the set A of actions is a singleton {a}. We write
an to stand for 0 if n = 0, and a.an−1, otherwise.

TCCS (open) terms are constructed inductively using the operators of the
syntax and a countably infinite set of variables V , with typical members x, x0, y,
y0, The size of a term is its length in symbols. The set of variables appearing
in term t is denoted by vars(t). A substitution σ is a function from variables to
TCCS terms. The range of a closing substitution is the set of TCCS processes.
The domain of a substitution is lifted naturally from variables to terms.

We take two different approaches to formalizing the syntax of TCCS in a
term algebra.

1. The first approach is to use a single-sorted algebra with the only available
sort representing processes. Then, both a. and ε(d). are sets of unary op-
erators for each a ∈ A and d ∈ D.

2. The other approach is to take two different sorts, one for time and one for
processes, denoted by T and P, respectively. Then, ε() is a single function
symbol with arity T × P → P. When using this approach, we use d, d′, d0,
. . . as variables of sort T and closing substitutions map variables of sort T
to elements of the time domain D.

The Plotkin-style rules defining the operational semantics of TCCS are given
below.

0
ε(d)→ 0 µ.x

µ→x µ.x
ε(d)→ µ.x

ε(d).x
ε(d)→ x ε(d + e).x

ε(d)→ ε(e).x

x
ε(e)→ y

ε(d).x
ε(d+e)→ y

x0
µ→ y

x0 + x1
µ→ y

x1
µ→ y

x0 + x1
µ→ y

x0
ε(d)→ y0 x1

ε(d)→ y1

x0 + x1
ε(d)→ y0 + y1

x0
µ→ y0

x0 ||x1
µ→ y0 ||x1

x1
µ→ y1

x0 ||x1
µ→x0 || y1

x0
ε(d)→ y0 x1

ε(d)→ y1

x0 ||x1
ε(d)→ y0 || y1

The rules above, define two types of transition relations: a→ , where a ∈ A, for

action transitions and
ε(d)→ , where d ∈ D, for time-delay transitions. We use an

→ to
denote n consecutive a-transitions (whose intermediate processes are irrelevant).
The following lemma lists some interesting properties of the semantics of TCCS.

3

Lemma 1 The following statements hold for each process p and time delay d.

1. There exists a unique process pd such that p
ε(d)→ pd.

2. If p does not contain parallel composition and p
a→ p′, then pd

a→ p′, where pd

is defined above.

The notion of equivalence over TCCS that we are interested in is the following
notion of timed bisimilarity.

Definition 2 A symmetric relation R on TCCS processes is a timed bisimula-
tion relation when for all (p, q) ∈ R,

1. for all actions a and processes p′, if p
a→ p′ then there exists a process q′ such

that q
a→ q′ and (p′, q′) ∈ R;

2. for all time delays d and processes p′, if p
ε(d)→ p′ then there exists a process

q′ such that q
ε(d)→ q′ and (p′, q′) ∈ R.

Two processes p and q are timed bisimilar, or just bisimilar, denoted by p ↔ q
when there exists a timed bisimulation relation R such that (p, q) ∈ R.

The notion of bisimilarity generalizes naturally to open terms: s and t are
bisimilar, when σ(s)↔ σ(t) for each closing substitution σ.

It is well-known that timed bisimilarity is a congruence over TCCS [12].
We define the following notion of time insensitive processes and show that a

TCCS process is time insensitive if and only it is bisimilar to a CCS process.

Definition 3 A TCCS process p is initially time insensitive when for all d, if

p
ε(d)→ pd, then pd ↔ p.

The set of time insensitive processes is the largest set PTI of TCCS processes
such that, whenever p ∈ PTI , (i) p is initially time-insensitive, and (ii) if p

a→ pa

then pa ∈ PTI is time insensitive for each a ∈ A and each process pa.

For example, a(d) is not (initially) time insensitive, a.a(d) is initially time in-
sensitive but not time insensitive, and a.ε(d).0 is (initially) time insensitive.

Theorem 4 A TCCS process p is time insensitive if and only if there exists a
process q such that p↔ q and q does not contain time-delay prefixing operators,
i.e., q is a CCS process.

2.2 Equational Theory

Given a signature Σ, a set E of equations t = t′, where t and t′ are terms (of
the same sort), is called an axiom system.

4

We write E ` t = t′ when t = t′ is derivable from E by the following set
of deduction rules. Deduction rule is a rule schema for each operator f in the
signature.

E ` t = t

E ` t = t′

E ` t′ = t

E ` t0 = t1 E ` t1 = t2

E ` t0 = t2

E ` t0 = t′0 . . . E ` tn = t′n
E ` f(t0, . . . , tn) = f(t′0, . . . , t

′
n)

t = t′ ∈ E

E ` σ(t) = σ(t′)

Without loss of generality, we assume that E is closed under symmetry, i.e.,
t = t′ ∈ E if and only if t′ = t ∈ E, so that need not be considered in proofs. It
is well-known that if an equation relating two closed terms can be proven from
an axiom system E, then there is a closed proof for it.

An equation t = t′ is sound (modulo timed bisimilarity) if the terms t and t′

are timed bisimilar. An axiom system is sound if each of its equations is sound.
An example of a collection of equations from [12] that are sound with respect to
timed bisimilarity is given below. The axioms A4, M1 and D1 (used from left to
right) are enough to establish that each TCCS term that is bisimilar to 0 is also
provably equal to 0. Thus, in the technical developments from Section 4 onwards,
we shall assume, without loss of generality, that each axiom system we consider
includes the equations given below. This assumption means, in particular, that
our axiom systems allows us to identify each term that is bisimilar to 0 with 0.

A1 x + y = y + x A2 (x + y) + z = x + (y + z)
A3 x + x = x A4 x + 0 = x
M1 0 ||x = 0 M2 x || 0 = x
D1 ε(d).0 = 0 D2 ε(d).(x + y) = ε(d).x + ε(d).y
D3 ε(d).(x || y) = ε(d).x || ε(d).y D4 ε(d).ε(d′).x = ε(d + d′).x
P a.x = a.x + ε(d).a.x

Henceforth, process terms are considered modulo associativity and commutativ-
ity of + and ||. We use a summation and a product, denoted by

∑
i∈{1,...,k} si

and
∏

j∈{1,...,k′} tj , to stand for s1 + · · ·+sk and t1 || · · · || tk′ , respectively, where
the empty sum and product represent 0. We say that a term t has a 0 factor if
it contains a subterm of the form

∏
j∈{1,...,k′} tj , where some tj is bisimilar to

0. It is easy to see that, modulo the equations given above, every TCCS term s
can be written as

∑
i∈I si, for some finite index set I, and terms si (i ∈ I) that

are not 0 and do not have themselves the form s′ + s′′, for some terms s′ and
s′′. The terms si (i ∈ I) will be referred to as the summands of t. Again modulo
the equations given above, each si can be assumed to have no 0 factors.

3 Single-Sorted TCCS

In this section, as a warm up for the more complex results to follow, we show
that single-sorted TCCS has no finite basis provided that the time domain is

5

infinite. (Note that each time domain D that we consider in this paper does not
have a largest element and is therefore infinite.)

Theorem 5 If time domain D is infinite, then bisimilarity over single-sorted
TCCS has no finite basis.

We start with proving the following lemma which implies the above theorem.

Lemma 6 Assume that E is a finite axiom system that is sound modulo bisim-
ilarity. Let d be greater than the maximal delay prefixing mentioned in terms in
E. For all provable equations t = u such that either t or u contain ε(d), then
both t and u contain ε(d).

Proof. To prove Lemma 6, we proceed by an induction on the derivation struc-
ture for E ` t = u and make a case distinction based on the last deduction rule
applied to derive E ` t = u. The cases for , and are either trivial or follow
immediately from the induction hypothesis. The most involved case is when the
last deduction rule is .

For a TCCS process p, we define the action depth of p, denoted by adepth(p),
as the length of the maximal action trace that p affords (by omitting the time-
delay transitions in between). It then follows that, for any two TCCS terms s
and t, if s↔ t then adepth(σ(s)) = adepth(σ(t)) for all closing substitutions σ.

Lemma 7 Let t, u be bisimilar TCCS terms. Then vars(t) = vars(u).

Proof. Assume x ∈ vars(t) \ vars(u). Construct a substitution σ that maps x
to an, for some n larger than the sizes of both t and u, and all other variables to
0. Then, adepth(σ(t)) ≥ n > adepth(σ(u)) and hence t and u are not bisimilar.

We are now ready to complete the proof of Lemma 6. Assume that t′ = u′ ∈
E, t = σ(t′), u = σ(u′) and ε(d) occurs in t. Since d is greater than the largest
constant appearing in E, neither t′ nor u′ contain occurrences of ε(d). Thus,
there exists a variable x ∈ vars(t′) such that σ(x) has an occurrence of ε(d).
By Lemma 7 and the soundness of the equation t′ = u′ modulo bisimilarity,
x ∈ vars(u′). Thus, σ(u′) also contains σ(x) as a subterm, which in turn has an
occurrence of ε(d). �

Proof of Theorem 5. Assume that single-sorted TCCS affords a finite
complete axiomatization E and d is greater than the largest delay appearing in
E. (If no element of D appears in terms in E then let d be an arbitrary element
of D.) Axiom D1 is sound. However, it follows from Lemma 6 that the instance
of D1 for d ∈ D is not derivable from E and thus Theorem 5 follows. �

The lesson to be drawn from the above result is that, in the presence of
an infinite time domain, when studying the equational theory of TCCS, it is
much more natural to consider a two-sorted presentation of the calculus. For
this reason, the rest of this paper is devoted to the study of the equational
theory of two-sorted TCCS.

6

4 Two-Sorted TCCS

4.1 Gap Theorem

In this section, we present and prove the so-called gap theorem for TCCS, origi-
nally offered in [5], which shows that parallel composition cannot be eliminated
in general from TCCS terms. Our presentation and the proof of this theorem
improves on that of [5] in two ways; first, our version of the gap theorem holds
even in the presence of a single action while the gap theorem of [5] requires
the presence of countably many different actions. Secondly, our proof is purely
process algebraic in nature while the proof of [5] goes through a translation of
TCCS to timed automata [2] and the argument is based on the number of clocks
in the translated timed automata.

Theorem 8 Define p as a(d0) ||
∏

i∈{1,...,n} a.a(di), for some action a ∈ A, pos-
itive integer n and delays d0, d1, . . . , dn ∈ D. There exists no q such that p↔ q
and q =

∑
j∈J

∏
i∈{1,...,nj} qij where nj ≤ n and qij does not contain parallel

composition.

Informally, the above theorem states that for all n > 0, there are TCCS processes
with n+1 parallel components which do not have any bisimilar counterpart with
(summands comprising) n or fewer parallel components. Proof. Assume, towards
a contradiction, that p↔ q and q ≡

∑
j∈J

∏
i∈{1,...,nj} qij . By the definition of

p, we have that p
an

→ p′ ≡
∏

i∈{0,...,n} a(di). Hence there should exist a j ∈ J

such that qj ≡
∏

i∈{1,...,nj} qij
an

→ q′ for some q′ such that q′ ↔
∏

i∈{0,...,n} a(di).
Then, either all parallel components of qj contribute exactly one action to the
trace an or there exists a component in qj that contributes more than one action
to an. Next, we analyze these two possibilities and show that both lead to a
contradiction.

1. Assume that all parallel components of qj contribute exactly one action to
the trace an, i.e., nj = n, q′ =

∏
i∈{1,...n} q′ij , for some q′ij such that for all

i ≤ n, qij
a→ q′ij , and

∏
i∈{0,...n} a(di)↔

∏
i∈{1,...,n} q′ij .

Since D has 0 as a cluster point, there is a d′ ∈ D such that 0 < d′ < d0.

It follows from Lemma 1.(2) that qij
ε(d′)→ q′′ij

a→ q′ij ; thus, q
ε(d′)→ q′′

an

→ q′. Fur-

thermore, p
ε(d′)→ p′′ ≡ a(d0 − d′) ||

∏
i∈{1,...n} a.a(di) and it should hold that

p′′↔ q′′. However, p′′
an

→ a(d0 − d′) ||
∏

i∈{1,...n} a(di) (as d′ < d0, this is the
only an-derivative of p′′), which is clearly not bisimilar to

∏
i∈{0,...n} a(di),

and hence, not bisimilar to q′.
2. Assume that there is a component in qj that contributes more than one

action to an, i.e., there exists an l ∈ {1, . . . , nj} such that qlj
ak−2

→ qak−2lj
a→ qak−1lj

a→ qaklj for some k > 1 and for some qak−2lj , qak−1lj and qaklj . For
notational convenience, we assume that k = 2 but the proof technique can

7

easily be adapted for k > 2. Note that by Lemma 1.(2) qlj
a→ qalj

ε(d′)→ qad′lj
a→ qad′alj ≡ qa2lj for an arbitrary d′.
It follows from the semantics of parallel composition and nondeterminis-

tic choice that q
an−1

→ qan−1 ≡ qalj ||
∏

i∈{1,...,nj}\{l} q′ij and qan−1↔ a.a(dm)
||

∏
i∈{0,...,n}\{m} a(di) for some 0 < m ≤ n. From the above bisim-

ilarity, we have that, for any d′ such that d′ > di, for each i ≤ n,

qan−1
ε(d′)→ qan−1d′ for some qan−1d′ ≡ qad′lj ||

∏
i∈{1,...,nj}\{l} q′d′ij such that

qan−1d′ ↔ a.a(dm) ||
∏

i∈{0,...,n−1} a. Furthermore, qan−1d′ can make one fur-
ther a-transition, due to qad′lj resulting in some qand′ such that qand′ ↔
a(dm) ||

∏
i∈{0,...,n−1} a or qand′ ↔ a.a(dm) ||

∏
i∈{0,...,n−2} a. It follows from

the aforementioned bisimilarities that qand′
an

→ q′↔ a(dm).
Either all a-transitions in the latter an-trace are due to qd′ij with i 6= l, or
some of them are performed by qad′alj ≡ qa2lj .

In the former case, then qan−2 ≡ qlj ||
∏

i∈{1,...,nj}\{l} q′ij
ε(d′)→ an+2

→ q for
some q ↔ a(dm) since, first,

∏
i∈{1,...,nj}\{l} q′d′ij can make n consecutive a-

transitions, and qd′lj can make two a-transition afterwards. However, p can-

not mimic this behavior, i.e., an−1

→ ε(d′)→ an+2

→ , for it has only n+1 a-transitions
enabled after an initial an−2 trace and a time delay of d′, which results in
some process bisimilar to a(dm) || a(d′m), for some m′ 6= m ∈ {1, . . . n}.
In the latter case, i.e., qad′alj ≡ qa2lj contributes to some of the a-transitions,

in an, say some u a-transitions such that u > 0, then qlj
a2

→ qa2lj
au

→ q′ for

some q′ and hence q
an+u

→ q′′ for some q′′. But p can initially make at most n
consecutive a-transitions, hence a contradiction follows. �

As a corollary to the above theorem, one can conclude that TCCS affords no
expansion theorem, i.e., parallel composition cannot be resolved in TCCS.

Corollary 9 Two-sorted dense-time TCCS has no expansion theorem.

4.2 Axiomatizability

Our next milestone in this section is to prove a theorem witnessing that TCCS,
does not have a finite basis modulo timed bisimilarity. The problem underscored
by the proof of this result is the inability of any finite and sound axiom system
E to “expand” the initial behavior of terms of the form p || q when either p or
q have sufficiently many summands (namely, larger than the size of terms in
the equations in E). All of the impossibility results presented henceforth also
hold for conditional equations of the form P ⇒ t = u where P is an arbitrary
predicate over the time domain.

Theorem 10 Timed bisimilarity over two-sorted dense-time TCCS has no finite
basis.

8

The above result dates back to [11] (for the case of CCS without time) and
our proof follows the same structure as that of [11]; namely, we prove that for
each finite and sound set of axioms E for TCCS modulo bisimilarity and for
sufficiently large n, with respect to the size of the largest term appearing in E,
the following sound equation is not provable

E ` a ||Φn = a.Φn +
∑

i∈{1,...,n}

a.(a ||φi) ,

where Φn =
∑

i∈{1,...,n} a.φi and φn =
∑

i∈{1,...,n} ai.
As we show in the next section, unlike in the setting of Milner’s CCS, even

adding two variations on the left-merge operator does not improve the situation
with respect to axiomatizability.

5 Two-Sorted TCCS with Left-Merge

Classical Left-Merge Bergstra and Klop suggested to add an auxiliary left-
merge operator, denoted by ‖ , which would allow for a finite axiomatization
of parallel composition in CCS. The semantics of the left-merge operator is
captured by the following deduction rule.

x0
a→ y0

x0‖ x1
a→ y0 ||x1

However, adding the left-merge operator with the above semantics does not
result in a finitely axiomatizable theory.

Theorem 11 Timed bisimilarity over two-sorted dense-time TCCS extended
with the untimed left-merge operator has no finite basis.

Timed Left-Merge Following the tradition of Bergstra and Klop, the left-
merge operator was given a timed semantics as follows [4].

x0
a→ y0

x0‖ x1
a→ y0 ||x1

x0
ε(d)→ y0 x1

ε(d)→ y1

x0‖ x1
ε(d)→ y0‖ y1

This operator enjoys most of the axioms for the classic left-merge operator that
lead to a finite axiomatization of bisimilarity [3]. The following lemma lists the
most important properties that this timed left-merge operator possesses. Note
that Lemma 1 also remains valid over TCCS extended with the above left-merge
operator.

Lemma 12 For the left-merge operator with the semantics given above, the fol-
lowing axioms are sound:

x || y = (x‖ y) + (y‖ x) 0‖ x = 0
(x + y)‖ z = (x‖ z) + (y‖ z) x‖ 0 = x.

9

Thanks to axioms and , one can show that terms bisimilar to 0 can be removed
as arguments of the left-merge. Henceforth, when we write p does not contain
0-factors, we mean that it does not contain a parallel composition or a left-merge
with an argument bisimilar to 0.

However, the new left-merge operator does not help in giving TCCS a finite
basis either, as we prove in the remainder of this section. The reason is that the
axiom (a.x)‖ y = a.(x || y), which is a sound axiom in the untimed setting, is in
general unsound over TCCS. For example, consider the process a‖ ε(d).a; after
making a time delay of length d, it results in a‖ a, which is capable of perform-
ing two consecutive a-transitions. However, a.(0 || ε(d).a) after a time delay of
length d remains the same process and can only perform one a-transition since
the second a-transition still has to wait for some time, i.e., d, before becoming
enabled.

However, axiom is sound for the class of TCCS processes that are initially

time insensitive; see Definition 3. Indeed if q is a process such that q
ε(d)→ qd

implies q ↔ qd for each delay d, then it holds that (a.p) ‖ q ↔ a.(p || q). For
instance, a‖ Φn↔ a.Φn for each n ≥ 0, where the process Φn is defined as in
Section 4.2. Unfortunately, the class of initially time insensitive processes cannot
be characterized by a finite (head-)normal form and this constitutes the key idea
in our non-finite axiomatizability proof, given below.

Theorem 13 Two-sorted TCCS extended with the timed left-merge operator
affords no finite axiomatization modulo timed bisimilarity.

Proof. Towards a contradiction, we assume that TCCS with left-merge does
have a finite axiomatization E. We prove the theorem by showing that the fol-
lowing lemma holds. (In the remainder of this proof, we assume that all terms
appearing in equations do not contain parallel composition since, by axiom ,
parallel composition is a derived operator.)

Lemma 14 Consider the equality a ‖ Φn = a.Φn. Let n0 be the size of the
biggest term t or u, appearing in equations (t = u) ∈ E. The above equation is
not derivable from E for n > max(n0, 2).

Once the above lemma is proven the theorem follows since the above equality is
sound yet not derivable from E for n > max(n0, 2). Lemma 14 is a consequence
of the following result that establishes a property of equations that are derivable
from E but that is not afforded by the equation a‖ Φn = a.Φn for suitably large
values of n.

Lemma 15 If E ` p = q,

1. p and q do not contain 0 summands or factors,
2. p↔ a‖ Φn for n > max(n0, 2), and
3. p has a summand of the form p0‖ p1 where p0 ↔ a and p1 ↔ Φn,

then q has a summand of the form q0‖ q1 where q0 ↔ a and q1 ↔ Φn.

10

If we prove the above lemma then it follows that a‖ Φn = a.Φn for n >
max(2, n0) is not provable from E because the left-hand side satisfies the require-
ments of the statement but the right-hand side does not contain any summand
of the form q0‖ q1.

In the proof of Lemma 15, we shall have some use for the following definition
and the subsequent lemma [8, 11].

Definition 16 Process p is irreducible when for all p0 and p1, if p ↔ p0 || p1

then p0 ↔ 0 or p1 ↔ 0. We say that p is prime when it is irreducible and is not
bisimilar to 0.

Lemma 17 The following processes are prime:

1. φi, for an arbitrary i ≥ 1;
2. Φi, for all i > 1;
3. a.Φi, for all i > 1.

The proof of the above lemma is standard and is omitted for brevity. Note that
neither item 2 nor item 3 in the above lemma hold for i = 1 since Φ1 ≡ a.φ1 ≡
a.a ↔ a || a.

To prove Lemma 15, we use an induction on the derivation structure for p = q
and distinguish the following cases based on the last deduction rule applied in
the derivation. (Since p and q have neither 0 summands nor factors, reasoning
as in [9], we may assume that none of the terms mentioned in the proof of p = q
has 0 summands or factors.) The statement is trivial if E ` p = q is due to .
If E ` p = q is due to , then there exists a term r such that E ` p = r and
E ` r = q and the lemma follows by applying the induction hypothesis first on
E ` p = r and then on E ` r = q. If the last applied deduction rule is , then we
distinguish the following cases based on the head operator of p and q.

1. p ≡ a.p′ and q ≡ a.q′; this case is vacuous since p should contain at least one
summand which is of the form p1‖ p2;

2. p ≡ ε(d).p′ and q ≡ ε(d).q′; impossible, see above.
3. p ≡ p0 + p1, q ≡ q0 + q1, E ` p0 = q0 and E ` p1 = q1; without loss of

generality, we assume that p0 contains a summand of the form p′0‖ p′1 where
p′0↔a and p′1↔Φn. It is not hard to see that p0↔a‖ Φn because p↔a‖ Φn.
It follows from the induction hypothesis that q0 contains a summand that is
of the form q′0‖ q′1 such that q′0 ↔ a, q′1 ↔ Φn and hence, so does q.

4. p ≡ p0 ‖ p1, q ≡ q0 ‖ q1, E ` p0 = q0 and E ` p1 = q1; it follows from the
hypothesis of the lemma that p0 ↔ a and p1 ↔ Φn. By the soundness of E,
we have that p0 ↔ q0 ↔ a and p1 ↔ q1 ↔ Φn and thus the lemma follows.

It remains to consider the case where the last deduction rule applied is a closed
instantiation of an axiom (t = u) ∈ E. In this case, there exists a substitution
σ such that σ(t) = p and σ(u) = q. Assume that t ≡

∑
i∈I ti and u ≡

∑
j∈J uj

such that the ti’s and uj ’s are not bisimilar to 0 and do not have + as their head
operator. Let ti be a summand of t such that σ(ti) has a summand of the form
p0 ‖ p1 and p0 ↔ a and p1 ↔ Φn. We analyze the following cases based on the
structure of ti.

11

ti ≡ x It is not difficult to prove that, since t = u is sound modulo bisimilarity,
there exists j ∈ J such that uj ≡ x. Then the lemma follows since σ(x), and
hence σ(u), contains a summand of the form p0‖ p1 and p0↔a and p1↔Φn.

ti ≡ a.t′i Impossible since σ(ti) must have a summand of the form p0‖ p1.
ti ≡ ε(d).t′i Impossible since σ(ti) must have a summand of the form p0‖ p1.
ti ≡ t′i‖ t′′i Then, it is not hard to see that σ(t′i)↔a and σ(t′′i)↔Φn. Write t′′i =

∑
k∈K vk

where no vk is bisimilar to 0 or has + as head operator. Since Φn
a→φi, for

each 0 < i ≤ n, the term σ(t′′i) should mimic these transitions, and because
2|K| < n, there exists a k ∈ K such that σ(vk) a→ p′i ↔ φi for at least three
different i’s. By a case distinction on the structure of vk, we argue that vk

can only be a variable:
(a) vk ≡ a.v′k: This leads to a contradiction. Indeed, then σ(v′k) ↔ φi ↔ φj

for different i and j.
(b) vk ≡ ε(d).v′k: Then σ(vk) cannot make an a-transition, which is a con-

tradiction.
(c) vk ≡ v′k ‖ v′′k : Recall that σ(vk) can make an a-transition to φi and

φj for some i 6= j. Hence σ(vk) ≡ σ(v′k)‖ σ(v′′k) a→ pi ||σ(v′′k) ↔ φi for
some pi. Since φi is prime (Lemma 17) pi↔ 0 and σ(v′′k)↔φi. Similarly,
σ(vk) ≡ σ(v′k)‖ σ(v′′k) a→ pj ||σ(v′′k)↔ φj for some pj and thus, σ(v′′k)↔φj .
Concluding, φi ↔ σ(v′′k)↔ φj for i 6= j, which is a contradiction.

Therefore vk ≡ x for some variable x and σ(x) can make a-transitions to φi,
φj and φk for different i, j and k. Then, x is not a summand of t, for this
would contradict our assumption that p↔ a‖ Φn. Indeed, the action depth
of σ(x) after an a-transition is at most n (the action depth of φn) while the
action depth of a‖ Φn after an a-transition is n+1 (the action depth of Φn).
Furthermore, x /∈ vars(t′i) or otherwise it would not hold that σ(t′i)↔a since
σ(t′i) would have an action depth larger than 1. Also, x can only appear in
the summands of t′′i that are of the form x or ε(d).x. Indeed, if x occurred in
summands that have any form other than x or ε(d).x, then σ(t′′i)↔Φn would
not be sound since σ(t′′i) could then make two or more a-transitions (possibly
interleaved with time delays) resulting in φi for some i > 1, which cannot
be mimicked by Φn. Hence, we conclude that t′′i = x + t′′ +

∑
i′∈I′ ε(di′).x

for some term t′′ such that x /∈ vars(t′′).
Consider the new substitution σ′ defined to map x to ε(d).a.Φn, where d is
smaller than each delay occurring in p or q, and to agree with σ on all other
variables. (Such d exists since D has 0 as a cluster point.)

We have that σ′(ti)
ε(d)→ p′d ≡ σ(t′i)d‖ (a.Φn +σ(t′′)d +

∑
i′∈I′ ε(di′ − d).σ′(x))

where σ(t′i)
ε(d)→ σ(t′i)d and σ(t′′)

ε(d)→ σ(t′′)d. Furthermore, as σ(t′i) ↔ a and
axiom P is sound, p′d

a→ p′da ↔ a.Φn + σ(t′′)d. Observe that the action depth
of σ(t′′)d can at most be n+1. It follows from (t = u) ∈ E and the soundness

of E that σ′(t)↔ σ′(u) and hence σ′(u)
ε(d)→ σ′(u)d

a→ q′da ↔ p′da for some
q′da. Thus, there exists a summand uj of u (for some j ∈ J) such that σ′(uj)
ε(d)→ q′d

a→ q′da. It holds that x ∈ vars(u′j) since otherwise, σ(uj) ≡ σ′(uj)

12

and q′da would have action depth of at most n + 1 (since σ(u)↔ a‖ Φn). We
distinguish the following cases based on the structure of uj .

uj ≡ x Impossible since then q′da ≡ Φn which is not bisimilar to a.Φn + σ(t′′)d

↔ p′da.
uj ≡ ε(e).u′j Impossible since d is smaller than each delay in p and q, which means

that d < e and thus, σ(uj) cannot perform an action after a time delay
of length d.

uj ≡ a.u′j We argue that this case leads to a contradiction. To this end, observe
that, first of all, variable x can appear only in summands of u′j which
are of the form x or ε(d′).x. Otherwise, if u′j has an action prefixing or
left-merge operator with an argument containing x among its variables,
the action depth of σ′(u′j) would be at least n + 3, which is larger than
the action depth of p′da↔ a.Φn + σ(t′′)d.
Hence, u′j ↔ x + u′′ +

∑
j′∈J′ ε(dj′).x for some term u′′ such that x /∈

vars(u′′). Thus, q′d↔a. (ε(d).a.Φn + σ′(u′′) +
∑

j′∈J′ ε((dj′ +d)).σ′(x))
and q′ad ≡ ε(d).a.Φn + σ′(u′′) +

∑
j′∈J′ ε(dj′ + d).σ′(x). It should hold

that q′ad ↔ a.Φn + σ(t′′)d; but a.Φn + σ(t′′)d
a→ Φn and a matching a-

transition of q′ad can only be due to σ′(u′′), which does not contain x and
thus is the same as σ(u′′). It holds that adepth(σ(u′′)) < adepth(σ(uj))
≤ adepth(σ(u)) ≤ n + 2 = adepth(a.Φn + σ(t′′)d). Therefore, any a-
derivative of q′da will have action depth of at most n. Hence, it cannot
hold that q′da ↔ a.Φn + σ(t′′)d, contradicting our assumption.

uj ≡ u′j ‖ u′′j By one of our assumptions σ(u′j) and σ(u′′j) are not bisimilar to 0.
Therefore, σ′(u′j) and σ′(u′′j) are not bisimilar to 0, either. By our as-

sumption, σ′(u′j)‖ σ′(u′′j)
ε(d)→ a→ σ′(u′j)da ||σ′(u′′j)d ↔ p′da. Recall that

p′da ↔ a.Φn + σ(t′′)d where σ(t′′) d→σ(t′′)d and σ(t′′) + Φn ↔ Φn. It fol-
lows from the latter bisimilarity that σ(t′′)d + Φn ↔ Φn. We claim that
a.Φn + σ(t′′)d is prime and hence, σ′(u′j)da ↔ 0 and σ′(u′′j)↔ p′da.
To prove the above claim assume towards a contradiction that r || s ↔
a.Φn +σ(t′′)d for r and s not bisimilar to 0. We distinguish the following
cases based on the behavior of σ(t′′)d.
i. Assume that σ(t′′)d ↔ 0. It follows that r || s↔ a.Φn. However, this

is impossible since a.Φn is prime (Lemma 17, item 3).

ii. Assume that σ(t′′)d
ε(e)→ σ(t′′)d+e

a→σ(t′′)(d+e)a ↔ φi for some i ≤

n. Then, without loss of generality, r || s ε(e)→ re || se
a→ r′ || se ↔ φi

for some r′ such that r
ε(e)→ re

a→ r′. It follows from primality of φi

that r′ ↔ 0 and se ↔ φi. It also holds that a.Φn + σ(t′′)d
a→Φn.

Thus, r || s should be able to mimic this transition; the transition
cannot be due to r because then s ↔ Φn (since Φn is also prime),
which contradicts se↔φi. Hence, r || s a→ r || s′↔Φn. It follows from
primality of Φn that r↔Φn and re↔Φn. Thus, using congruence of
↔ with respect to ||, we have that re || se↔Φn ||φi. Since the action
depth of a.Φn + σ(t′′)d+e is n + 2, we infer that φi ↔ a and i = 1.

13

But even then, re || se
a→ v ↔ φn || a, which cannot be mimicked by

a.Φn + σ(t′′)d+e (since σ(t′′)d+e does not have the sufficient action
depth and the only a-transition afforded by a.Φn results in Φn).

Thus, we conclude that a.Φn+σ(t′′)d is prime and hence, σ′(u′j)da↔0 and
σ′(u′′j)↔ a.Φn + σ(t′′)d. We claim that since d is smaller than all delays

mentioned in p and q and σ′(u′j)
ε(d)→ a→σ′(u′j)da ↔0, then σ(u′j)

a→σ(u′j)a

for some σ(u′j)↔0. From this claim (whose proof is given next), it follows
that σ(uj) ≡ σ(u′j) ‖ σ(u′′j) a→ σ(u′j)a || σ(u′′j) ↔ σ(u′′j). On the other
hand, q ≡ σ(u) ↔ a‖ Φn and thus, σ(u′′j)↔Φn. Hence, the action depth
of σ(u′j) is 1 and therefore σ(u′j) ↔ a. To summarize, we have proved
then that σ(uj) ≡ σ(u′j)‖ σ(u′′j), σ(u′j)↔ a and σ(u′′j)↔ Φn, which was
to be shown. Thus, it only remains to prove the following lemma.

Lemma 18 Assume that d is smaller than each delay in σ(u) and let r
be a process that is not bisimilar to 0. Define σ′ to map x to ε(d).a.r and

all other variables y to σ(y). Assume that σ′(u)
ε(d)→ σ′(u)d

a→σ′(u)da ↔
0. Then, σ(u) a→σ(u)a for some σ(u)a ↔ 0.

Proof. By an induction on the structure of u. For brevity, we only give
the proof for the case u ≡ y; the proofs for other cases are similar.
Assume that u ≡ y. First of all observe that y cannot be the same as x.

Indeed σ(x) ≡ ε(d).a.r
ε(d)→ a.r

a→ r and it does not hold that r↔0 by one

of the provisos in the lemma. Thus, σ′(y) ≡ σ(y)
ε(d)→ a→ q′ and q′ ↔ 0.

We proceed with an induction on the structure of σ′(y) ≡ σ(y).
σ(y) ≡ a.q′ Then the lemma follows since σ(y) a→ q′.

σ(y) ≡ ε(e).q′ Impossible since then σ(y) would not afford an a-transition after a
time delay of length d because d < e.

σ(y) ≡ q0 + q1 Assume without loss of generality that q0
ε(d)→ a→ q′. Time delay d

is smaller than the delays mentioned in σ(y) and, hence, in q0. It
follows from the induction hypothesis that q0

a→ q′′ for some q′′ ↔ 0
and therefore σ(y) ≡ q0 + q1

a→ q′′↔ 0.

σ(y) ≡ q0‖ q1 Then, q0
ε(d)→ a→ q′0 ↔ 0 and q′ ≡ q′0 || q1d ↔ 0 where q1

ε(d)→ q1d; hence,
q1d ↔ q1 ↔ 0. It follows from the induction hypothesis that q0

a→ q′′0
for some q′′0 ↔ 0 and thus, σ(y) ≡ q0‖ q1

a→ q′′0 || q1 ↔ 0.

6 Conclusions

In this paper, we studied the equational theory of TCCS as proposed by Wang
Yi in [12]. We improved upon the Gap Theorem of [5] and proved that, even
in the presence of a single basic action, parallelism in TCCS cannot be resolved
in general. Furthermore we showed that TCCS, in its single- and two-sorted
presentations, as well as its extensions with the untimed or the timed left-merge
operator, does not afford a finite axiomatization.

14

It is an open question whether there exists a binary operator that, when
added to TCCS, can give timed bisimilarity a finite basis. (A similar question
is still open for untimed process algebras, i.e., whether there exists a single
binary operator that can axiomatize communication and concurrency; the answer
in both cases is expected to be negative.) Towards achieving this goal, in the
extended version of this paper, we prove that adding two different variants of
the timed left-merge operator ‖ 0 and ‖ 1 with the following semantics does not
lead to a finite axiomatization for bisimilarity. (The leftmost rule below applies
to both ‖ 0 and ‖ 1.)

x0
a→ y0

x0‖ 0,1 x1
a→ y0 ||x1

x0
ε(d)→ y0

x0‖ 0 x1
ε(d)→ y0 ||x1

x0
ε(d)→ y0 x1

ε(d)→ y1

x0‖ 1 x1
ε(d)→ y0 || y1

In the case of two-sorted TCCS, our proofs make use of the fact that the time
domain has 0 as a cluster point. It remains open whether discrete-time TCCS
(or its extension with (timed) left-merge) is finitely axiomatizable modulo bisim-
ilarity.

References

1. L. Aceto and A. Jeffrey. A complete axiomatization of timed bisimulation for a
class of timed regular behaviours. TCS, 152(2):251–268, 1995.

2. R. Alur and D.L. Dill. Automata for modeling real-time systems. In Proceedings
of ICALP’90, volume 443 of LNCS, pages 322–335. Springer, 1990.

3. J.A. Bergstra and J.W. Klop. Process algebra for synchronous communication.
I&C, 60(1-3):109–137, 1984.

4. J.C.M. Baeten and C.A. Middelburg. Process algebra with timing. Springer, 2002.
5. J.C. Godskesen and K.G. Larsen. Real-time calculi and expansion theorems. In

Proceedings of FSTTCS’92, volume 652 of LNCS, pages 302–315. Springer, 1992.
6. A. Jeffrey, S. Schneider, and F.W. Vaandrager. A comparison of additivity axioms

in timed transition systems. Report CS-R9366, CWI, Amsterdam, 1993.
7. R. Milner. Communication and Concurrency. Prentice Hall, 1989.
8. R. Milner and F. Moller. Unique decomposition of processes. TCS 107(2):357–363,

1993.
9. F. Moller. Axioms for Concurrency. Ph.D. Thesis, University of Edinburgh, 1989.

10. F. Moller and C.M.N. Tofts. A temporal calculus of communicating systems. In
Proceedings of CONCUR’90, volume 458 of LNCS, pages 401–415. Springer, 1990.

11. F. Moller. The importance of the left merge operator in process algebras. In
Proceedings of ICALP’90, volume 443 of LNCS, pages 752–764. Springer, 1990.

12. W. Yi. Real-time behaviour of asynchronous agents. In Proceedings of CON-
CUR’90, volume 458 of LNCS, pages 502–520. Springer, 1990.

13. W. Yi. CCS + time = an interleaving model for real time systems. In Proceedings
of ICALP’91, volume 510 of LNCS, pages 217–228. Springer, 1991.

14. W. Yi. A calculus of real time systems. PhD thesis, Chalmers University of Tech-
nology, 1991.

15

