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Abstract

We present a formal semantics for a subset of Verilog,
commonly used to describe cell libraries, in terms of transi-
tion systems. Such transition systems can serve as input to
symbolic model checking, for example equivalence checking
with a transistor netlist description. We implement our for-
mal semantics as an encoding from the subset of Verilog to
the input language of the SMV model-checker. Experiments
show that this approach is able to verify complete cell
libraries.

1. Introduction

To create digital circuits, designers often use a collection
of standard cells to implement basic functionalities such as
combinational gates (e.g., a NAND or a MUX) and elements
that can store a value (e.g., a latch or a flip-flop). Such a
collection of standard cells is called a standard cell library.
Using standard cells allows to split and focus the design
effort of larger circuits into functional aspects on the one
hand, and facilitates a seamless implementation of the circuit
into silicon on the other hand.

In order to enable such a seamless implementation, one
wants to have certain guarantees about the functional de-
scription of the standard cells, such as for example equiva-
lence with the transistor netlist implementation. These func-
tional descriptions are often given in a subset of the Verilog
Hardware Definition Language [1]. Verilog is a standardized
language, however there is no standardized semantics for
it. Quite a few publications exist that try to fill this gap
(e.g., [8], [6], [9]), however these usually address higher
level constructs and not the elements that are commonly
found in cell libraries, such as built-in and User Defined
Primitives (UDPs). An approach covering some aspects of
UDPs is reported in [17]. This approach, however, is mainly
geared towards an encoding of the Verilog language into gate
level networks (via Ordered Ternary Decision Diagrams, OT-
DDs). To that end, [17] uses heuristics/pattern recognition to
detect more complex functions, such as MUXes and XORs
in the Verilog description. However, the encoding itself is not
formalized and hence, it does not cover many problematic

cases, such as multiple inputs to a cell changing at the same
time. Furthermore, the goal there was to extract gate level
descriptions that are correct-by-construction, whereas our
goal is to enable formal verification of Verilog standard cells.

Our research is motivated by a practical problem at Fenix
Design Automation. Namely, we want to verify propri-
etary implementations of cells as transistor netlists against
their specifications given in a subset of Verilog consisting
of primitives. Traditional equivalence-checking techniques,
e.g., based on [7], are not directly applicable to this problem,
as they rely on certain structures (e.g., a synchronous gate-
level model and a given set of flip-flops) to do matching and
to apply retiming. However, in our setting, no such generic
structures exist and the elements are custom-made.

In Section 2, we give a formal semantics of the subset of
Verilog, which we call VERICELL, that consists of built-
in and user defined primitives. Using this semantics, we
define an encoding of VERICELL into transition systems in
Section 3. A transition system resulting from the encoding
can be used as input for symbolic model checkers. In
Section 4 we briefly describe how to use these to do equiv-
alence checking. In our experiments, which are presented
in Section 5, we show that we could verify complete cell
libraries, such as the publicly available Open Cell Library of
Nangate [10], as well as proprietary cell libraries provided
by Fenix Design Automation. To our knowledge, this is
the first result applying formal verification to cell libraries
containing UDPs. We conclude the paper in Section 6.

2. Syntax and Semantics of VERICELL

The language VERICELL is a subset of the Verilog
Hardware Definition Language, which is defined in the IEEE
standard 1364-2005 [1]. This subset consists of the built-in
and the user defined primitives (UDPs), and of modules that
define the interconnection of these primitives. An example
VERICELL program is given in Listing 1, which defines a
flip-flop that can be reset.

In the example, we see one module called flip_flop

that defines the cell. It contains multiple so-called instan-
tiations of primitives, for example not(ckb, ck) and
latch(iq, d, ck, rb). In such an instantiation, the first



1 module flip_flop (q, d, ck, rb);
2 output q; input rb, d, ck;
3
4 not (ckb, ck);
5 latch (iq , d , ck , rb);
6 latch (qint, iq, ckb, rb);
7 buf (q, qint);
8 endmodule
9

10 primitive latch (Q, D, CK, RB);
11 output Q; reg Q; input D, CK, RB;
12 table
13 // D CK RB : Qt : Qt+1
14 0 (?1) ? : ? : 0;
15 1 (?1) 1 : ? : 1;
16 ? (?0) ? : ? : -;
17 ? * 0 : 0 : -;
18 ? ? (?0) : ? : 0;
19 ? 0 (?1) : ? : -;
20 0 1 (?1) : 0 : -;
21 1 1 (?1) : ? : 1;
22 * 0 ? : ? : -;
23 * ? 0 : 0 : -;
24 (?0) 1 ? : ? : 0;
25 (?1) 1 1 : ? : 1;
26 endtable
27 endprimitive

Listing 1. Verilog Source of a flip-flop

argument is always the output of the primitive, whereas
the remaining arguments are the inputs. The primitives buf
and not are built-in primitives, which copy the input and
its negation to the output, respectively. The two instances
of latch refer to the user defined primitive that is also
contained in the program. Such a user defined primitive is
defined by giving a truth table to compute the next output
value given its input values and the previous value of the
output. Other than level values (e.g., 0 or ?, which match
inputs that are 0 or any input, respectively), a table is
also allowed to contain transitions of input values, called
edges. An example of an edge specification is (?1), which
describes transitions of an input from an arbitrary value to
1. Another example of an edge specification is *, which
describes any transition of an input. An edge specification
is not allowed for the previous output value. Any row must
contain at most one edge specification. A row containing
an edge specification is called edge-sensitive; otherwise, it
is called level-sensitive. When some row is applicable to
the inputs and to the previous value of the output, then the
output value, contained in the last column of that row, is the
new output of the UDP. Besides the values 0, 1, and x this
column may also contain the special symbol -. This special
symbol denotes that the output remains unchanged, i.e., the
previous value of the output is also the new output.

The formal syntax of these Verilog elements can be found
in [1, Clauses 7, 8, and 12]. Due to space limitations, we

will only give a short description of the elements we want
to consider.

A VERICELL program contains a single module defini-
tion which defines the cell. It consists of a name, an interface
list, statements designating the output and input signals, and
a number of primitive instantiations.

An instantiation of a primitive can only occur inside the
only module of the input program. Such an instantiation con-
sists of the name of the primitive followed by a list of identi-
fiers or constants, for example latch (iq, d, ck, rb).
Here, the first element in that list is the output of that
primitive, in our example this is iq. An output identifier
may only be the output of one instantiation in the module.
After the output, the remaining identifiers or constants are
the inputs to the primitive; for our example these are d,
ck, and rb. Between the name and the parameters of the
instantiated primitive, one is allowed to optionally write
a delay specification which has the form #d for some
natural number d. Although we have defined our operational
semantics for the general case of primitives with delays, we
do not consider them here due to space restrictions. Also, in
many examples delay specifications are not present, e.g., in
the Open Cell Library that we analyzed as a case study these
elements do not occur at all. The built-in primitives we allow
are buf, not, and, nand, or, nor, xor, xnor. All of these
primitives could also be implemented as UDPs. However,
we follow the standard in distinguishing built-in and user
defined primitives, since built-in primitives support special
syntactic features (e.g., an arbitrary number of inputs) that
are not available for UDPs.

We only consider sequential UDPs, i.e., UDPs that may
contain edges and may match previous outputs. This is a
syntactic restriction, however this does not influence the
semantics: any combinational UDP can be converted into a
sequential UDP by ignoring the previous value of the output.
For sequential UDPs, we accept the full syntax given in the
standard, however we will not present the handling of initial
output values, which can easily be accommodated.

Given a VERICELL program, we let UDPs (UDPsn)
denote the set of UDPs in the program (that have exactly n
inputs). The set Prims denotes the set of all primitives that
are used in the program, comprising both UDPs and built-in
primitives.

2.1. Semantics of VERICELL

The semantics of VERICELL is defined in an operational
style by transforming configurations. In order to define the
semantics, we first have to introduce some notations used in
the remainder of the section.

All variables in Verilog can have one of the four values Z,
0, 1, or X. However, for the primitives allowed in our subset
of Verilog the values Z and X always have the same meaning,
representing an unknown value. Therefore, we only consider



the ternary values T = {0, 1,X}. Here, the values 0 and 1
correspond to the values false and true of the Booleans B,
respectively. For the unknown value X, the usual Boolean
operations are extended in a pessimistic way, i.e., ¬X = X,
0 ∧ X = 0, 1 ∧ X = X, and X ∧ X = X. All other functions
on ternary values can be derived from these definitions. A
single ternary value y ∈ T is also called a level, whereas a
pair of two ternary values (yp, y) ∈ T× T is also called an
edge.

We first consider the semantics of the primitives and how
to compute the output value of these given the values of
the inputs and the previous value of the output. This can
be expressed by a denotation function. Then we lift this
semantics to capture the instantiation of primitives and their
interconnections. The latter takes the form of deduction
rules.

Output Value of Primitives. For the semantics of built-
in primitives we formalize the straight-forward intuitive
semantics given in [1, Tables 7-3 and 7-4]. However, no
such definition exists for UDPs. Therefore, we first have to
define a semantics for these.

The idea of a UDP is to look up the corresponding
output value in the table that is given in its declaration. The
standard requires that level-sensitive rows take precedence
over edge-sensitive rows, i.e., if there are both a level-
sensitive and an edge-sensitive row applicable to the current
input values, then the output is determined by the level-
sensitive row. For example, consider a UDP containing the
two rows (0?) : 0 : 1 and 1 : ? : 0. If the previous
output value of this UDP is 0 and the input changes from
0 to 1 then both rows are applicable. But due to the above
requirement the output must always be 0, since this is the
output of the level-sensitive row.

However, the standard does not define how to handle
the case of multiple inputs changing at the same time.
To this end, we compared the outcome of several Verilog
simulators such as CVer [5], ModelSim [4], VeriWell [15]
and Icarus [16] (unfortunately, some simulators such as
Verilator [14] do no support UDPs). Our observation is
that the open source simulator CVer and the commercial
simulator ModelSim provide the outcome that is consistent
with what is specified in the standard and also closest to
the intuition of the designers. Hence, we formalize the
behavior demonstrated in CVer and ModelSim. (Unless
stated otherwise, we formalize the semantics implemented
in these two simulators in all other cases of ambiguity in
the standard, as well.)

The level specifications 0, 1, and x that may occur in a
truth table of a primitive directly correspond to the ternary
values 0, 1, and X, respectively. Therefore, we define for
l ∈ {0, 1, x} and y ∈ T the predicate match(l, y) to be true
if and only if l and y correspond. This is formally defined
in Table 1. The additional level specifications b and ? are

syntactic sugar, where the first one corresponds to both 0
and 1 and the latter one corresponds to all of the ternary
values. Thus, match(b, y) is true if and only if y is either 0
or 1, whereas match(?, y) is always true, regardless of the
value of y.

An edge specification in a UDP has the general form
(vw), where v and w are level specifications. For two
values yp, y ∈ T we define for such an edge specification
the predicate match((vw), (yp, y)) to be true if and only
if match(v, yp) and match(w, y) are true and yp 6= y.
This latter requirement is left ambiguous by the standard,
however it is enforced by all simulators of Verilog that we
tested. The remaining edge specifications r, f, p, n, and *
are expressed using the above and their definitions as given
in [1, Table 8-1], as can be seen in Table 1. For example,
for the rising specification r the predicate match(r, (yp, y))
is true if and only if match((01), (yp, y)) is true, which
in turn is true if and only if yp is 0 and y is 1, whereas
match(*, (yp, y)) = match((??), (yp, y)) is true if and
only if yp and y are different values.

We combine the above matching of single values into a
predicate matchRow that checks whether a row of a UDP
is applicable for a certain vector of inputs. This predicate,
whose formal definition is given in Table 1, has as first
argument a row of a UDP, in which at most one edge
specification may occur. As the second argument, it takes a
tuple that contains both levels and edges, where there must
be at most one edge. This tuple must have the same length
as the number of inputs of the UDP. The last argument of
matchRow is the previous output value, which must be a
level. It follows from the definition of match that a level
specification only matches a level and an edge specification
only matches an edge. Therefore, the row matches the inputs
if all level inputs have been matched by a level specification
and the edge specification, in case the row is edge-sensitive,
matches an edge at the same position in the vector of inputs.
Furthermore, there must be at most one edge in the inputs,
since there is at most one edge specification allowed in a row.
To illustrate this, we consider the UDP from Listing 1. For
the input values D = 1, CK = (1, 0), and RB = 1 and the pre-
vious output value Q = 0 we have for the row in line 16 that
matchRow(? (?0) ? : ? : -, (1, (1, 0), 1), 0) is true.
But if we change the input CK to be the level 0 and keep
the other values, then matchRow(? (?0) ? : ? : -,
(1, 0, 1), 0) is false since match((?0), 0) is false.

The output of a UDP row is given by the ternary value
that corresponds to the level specification in the last column.
However, also the special symbol “-” is allowed there. This
value indicates that no change happens, i.e., the output value
is the same as the previous output value. Thus, the row
? * 0 : 0 : - occurring in line 17 of the flip-flop exam-
ple in Listing 1 could also be written as ? * 0 : 0 : 0.

Using this and the matching of rows, we want to construct
a function that computes the output of a UDP given the



Table 1. Matching of UDP specifications to inputs

yp, y, op ∈ T, e ∈ T× T, i1, . . . , in ∈ T ∪ (T× T)
match(0, y) .= y = 0 match(1, y) .= y = 1

match(x, y) .= y = x match(b, y) .= match(0, y) ∨match(1, y)
match(?, y) .= true

match((vw), (yp, y)) .= yp 6= y ∧match(v, yp) ∧match(w, y)
match(r, e) .= match((01), e)
match(f, e) .= match((10), e)
match(*, e)

.= match((??), e)
match(p, e) .= match((01), e) ∨match((0x), e) ∨match((x1), e)
match(n, e) .= match((10), e) ∨match((1x), e) ∨match((x0), e)

matchRow(s1. . .sn:sn+1:o, (i1, . . . , in), op) .=
∧

1≤j≤n

match(sj , ij) ∧match(sn+1, o
p)

previous and current values of the inputs and the previous
value of the output. However, the standard is not precise
enough to allow this computation to be a function. If
multiple inputs of a UDP change at the same time, then
it is not clear how to handle this. In order for the semantics
to be as general as possible, we therefore assume that non-
deterministically an order is chosen and according to this
order the changed inputs are considered one change at a
time. Hence, we get a function that is parametrized by the
current UDP, the previous and current values of the inputs,
the previous output value, and some order. Such an order is
given by a permutation of the numbers from 1 to n, i.e., a
bijective function π : {1, . . . , n} → {1, . . . , n} that dictates
the order of checking the inputs whether their values have
changed. When we denote all such bijective functions by Πn,
then we can define a function J·K : UDPsn×(T×T)n×T×
Πn×{1, . . . , n+1} → T to determine the output value for a
UDP udp ∈ UDPsn given some previous and current input
values ip1, i1, . . . , i

p
n, in ∈ T, some previous output op ∈ T,

and a permutation π ∈ Πn for all 1 ≤ m ≤ n:

Judp, ((ip1, i1), . . . , (ipn, in)), op, π, n + 1K .= op

Judp, ((ip1, i1), . . . , (ipn, in)), op, π, mK .=
Judp, ((ip1, i1), . . . , (iπ(m), iπ(m)), . . . , (ipn, in)), o′,π,m+1K

Here, the next output value o′ is defined as fol-
lows. If ipπ(m) = iπ(m), then o′ = op, i.e.,
the value remains unchanged. Otherwise, we define
o′ to be the corresponding output value of either
a level-sensitive row r of the UDP udp for which
matchRow(r, (ip1, . . . , iπ(m), . . . , i

p
n), op) is true or o′ is the

corresponding output value of an edge-sensitive row r of the
UDP for which matchRow(r, (ip1, . . . , (i

p
π(m), iπ(m)), . . . ,

ipn), op) is true and for all level-sensitive rows r′ of the UDP
the property matchRow(r′, (ip1, . . . , iπ(m), . . . , i

p
n), op) is

false. If no such row exists, then the next output value o′ is
defined to be X.

As an example, we consider the primitive latch given
in Listing 1. We want to determine its output value,
when the inputs are D = (1,X), CK = (1, 0), and
RB = (1, 1) and the previous output value is Q =
0. If we consider the order π = (2, 1, 3), then the
first intermediate output value is 0, since line 16 sat-
isfies matchRow(? (?0) ? : ? : -, (1, (1, 0), 1), 0), as
we have seen before. Now the previous value of CK is
updated and the change of input D is considered. Here,
we see that line 22 matches, giving a next output value
Q = 0. Finally, since the input RB did not change, this is also
the output of this instance given these inputs, the previous
output, and the considered order.

However, when we change the order to π′ = id =
(1, 2, 3), then we have the following computation which
gives the new output value X, showing that the order
can change the result of a computation (where latch is
abbreviated to l):

Jl, ((1,X), (1, 0), (1, 1)), 0, id , 1K
= Jl, ((X,X), (1, 0), (1, 1)),X, id , 2K (no match, default)
= Jl, ((X,X), (1, 1), (1, 1)),X, id , 3K (line 16 matches)
= Jl, ((X,X), (1, 1), (1, 1)),X, id , 4K (3rd inp. unchanged)
=X

Finally, we extend the function J·K to incorporate the
semantics of built-in primitives. In this way, we get the
function J·K : Prims × (T × T)n × T × Πn × N → T,
that uses the informal semantics of the built-in primitives as
given in [1, Table 7-3 and Table 7-4]. Note that all built-
in primitives are combinational, therefore the order and the
previous input values are ignored for them.

Simulation Semantics. Now that we have defined how to
evaluate a single primitive, we want to give the semantics



of a complete VERICELL program that usually contains
a number of instantiations of these primitives. As already
noted above, the possible values of variables are considered
to be the ternary values T. To keep track of such values in a
current configuration, we define a variable valuation. A vari-
able valuation val is a partial function mapping identifiers to
values from T. If for some identifier x the value val(x) is not
defined, then we default to X. We denote a variable valuation
as a set of pairs of identifiers and values, e.g., {(x, 0)}
represents the variable valuation that maps the identifier x to
0. To update variable valuations, we use the operation juxta-
position. Given two variable valuations val1 and val2, this
operation is defined as val1 val2(x) = val2(x) if val2(x)
is defined, otherwise val1 val2(x) = val1(x). In this way,
we have for example {(d, 0), (ck, 1)} {(ck, 0), (rb, X)} =
{(d, 0), (ck, 0), (rb, X)}.

The simulation semantics of Verilog is sketched in [1,
Clause 11], however it does not deal with the details of
when and how to update values. For example, it is not
defined when a transition of a variable can be observed
by primitives that have this variable as an input. Therefore,
when the simulation semantics sketched in [1, Clause 11]
is ambiguous, we base our formal semantics on the ob-
servations from simulators. As stated before, our choices
regarding ambiguities match the interpretation used by CVer
and ModelSim.

We split the execution into three different phases, namely,
execute, update and time-advance. Execute and update
phases are performed iteratively until the current state is
stabilized. Only then, the time-advance phase advances the
global simulation clock. In the execute phase, all active
primitives, i.e., primitives for which an input has changed its
value, compute their new output values. The output values
are stored in a separate location and are not directly used
for the evaluation of other primitives, thereby modeling a
parallel execution of the primitives. In the update phase,
which follows the execute phase, all these values are stored
as the new values of the variables. This can again make
primitives active, in this case another execute phase is
performed.

For example, in the module flip_flop shown in List-
ing 1 a change of the variable d might result in a change
of the variable iq. Since this variable is used as an input
to another primitive instantiation with the output variable
qint, this primitive will be activated and executed. The
computation is repeated until no more updates are pending
and no primitives are active anymore. Then, the third phase,
called time advance phase, is entered in which the global
simulation time advances and new inputs are applied. These
can again activate primitives in the program, since for
example the input d might be assigned a different value,
so that the execute phase is entered again.

Configurations, i.e., operational states, of our simulation
semantics comprise a natural number t, denoting the current

Table 2. Deduction Rules for the Semantics of
VERICELL Programs

(ex)
〈t, prev , cur , act ] {p(o, i1, . . . , in)}, up〉E →
〈t, prev, cur, act, up {(o, Jp, ((prev(i1), cur(i1)),

. . . , (prev(in), cur(in))), cur(o), π, 1K)}〉E

(ex-up)
〈t, prev , cur , ∅, up〉E → 〈t, cur , cur , ∅, up〉U

(up)
up 6= ∅

〈t, prev , cur , ∅, up〉U →
〈t, prev , cur up, sens(cur , cur up), ∅〉U

(up-ex)
act 6= ∅

〈t, prev , cur , act , ∅〉U → 〈t, prev , cur , act , ∅〉E

(time)
〈t, prev , cur , ∅, ∅〉U →

〈t + 1, cur , cur
−−−→
int+1, sens(

−→
int,

−−−→
int+1), ∅〉E

simulation time, the previous and the current valuations
of variables in the module, denoted by prev and cur ,
respectively. Another component of a configuration is a set
act of primitive instantiations that have to be evaluated due
to the change of some input. Furthermore, it contains a
third variable valuation up that collects the updates to be
performed. In order to distinguish the current phase, we
introduce a flag called phase that is either E for Execute or
U for Update. We do not mention the time-advance phase in
phase , since it is modelled as a transition relation from an
update to an execute phase. Such a configuration is written
as 〈t, prev , cur , act , up〉phase .

Initially, a Verilog program starts in a configuration where
the time is 0, all variables have the value X, no primitives
are active, and no updates have to be executed, which in
our representation is denoted by 〈0, ∅, ∅, ∅, ∅〉U . Starting
in this initial configuration, the deduction rules presented
in the remainder of this section are used to transform a
current configuration into a next configuration until this is
not possible anymore.

We assume that we are given a sequence
−→
in1, . . . ,

−−→
inm

of variable valuations called input vectors. These variable
valuations only assign values to the external inputs declared
in the module of the VERICELL program. They are applied
whenever the simulation time is allowed to advance.

The operational semantics of a VERICELL program is
defined by the deduction rules given in Table 2.

In the execution phase, an active primitive is non-
deterministically chosen, executed and removed from the set
of active primitives. This is expressed by rule (ex) in Table 2.
There, π is an arbitrarily chosen order for the evaluation of



inputs. Note that this order may differ for each evaluation
of a primitive. The constant 1 denotes that we start with the
first value of the permutation π.

When no more active primitives exist then the simulation
changes into the update phase. During this change the cur-
rent transitions of variables are cleared, since all primitives
having a changed variable as input have been executed.
The new previous values are contained in the cur variable
valuation, hence this variable valuation will be used as the
new previous variable valuation, as can be seen in rule (ex-
up) in Table 2.

In the update phase, the new output values are written
back into the current variable values. Furthermore, all prim-
itives are activated that have a changed variable as one
of their inputs. This is accomplished by the rule (up) in
Table 2, where we require up 6= ∅. The function sens
computes for two variable valuations the set of primitives
that have a changed variable as an input. Formally, this
function is defined as sens(val1, val2) = {p(o, i1, . . . , in) ∈
Prims | ∃1 ≤ j ≤ n : val1(ij) 6= val2(ij)}.

When all updates have been performed, then the execute
phase is entered again if there are active primitives. This
is expressed in the rule (up-ex) in Table 2, which is only
applicable if act 6= ∅. Otherwise, if there are no active
primitives, then time advances and the new input values are
applied. Furthermore, the new previous values are the current
values, because the current state is stable and any present
changes can be disregarded. Due to the changed inputs, we
determine the primitives that have been activated. For this
purpose, the function sens is used again in the rule (time)
in Table 2.

If no input vector
−−−→
int+1 is available anymore, then the

simulation terminates. To determine the trace of output
values generated by a certain trace of input vectors, we
only consider stable states, i.e., states in which the time can
advance or simulation terminates.

To illustrate this semantics, we consider the example given
in Listing 1. Let

−→
in1 = {(d, 0), (ck, 1)},−→in2 = {(d, 1)}

be the external inputs for time steps 1 and 2. Then we get
the following simulation, starting in the initial configuration,
where we abbreviate latch to l:

〈0, ∅, ∅, ∅, ∅〉U
Time Advance, applying inputs

−→
in1, and activating instantiations

→〈1, ∅, {(d, 0), (ck, 1)},
{l(iq, d, ck, rb), not(ckb, ck)}, ∅〉E

Execution of l(iq, d, ck, rb)

→〈1, ∅, {(d, 0), (ck, 1)}, {not(ckb,ck)}, {(iq, 0)}〉E
Execution of not(ckb,ck)

→〈1, ∅, {(d, 0), (ck, 1)}, ∅, {(iq, 0), (ckb, 0)}〉E
Execute → Update with clearing of edges

→〈1, {(d, 0), (ck, 1)}, {(d, 0), (ck, 1)},
∅, {(iq, 0), (ckb, 0)}〉U

Updating values of iq and ckb,

activating l(qint, iq, ckb, rb)

→〈1, {(d, 0), (ck, 1)}, {(d, 0), (ck, 1), (iq, 0), (ckb, 0)},
{l(qint, iq, ckb, rb)}, ∅〉U

Update → Execute

→〈1, {(d, 0), (ck, 1)}, {(d, 0), (ck, 1), (iq, 0), (ckb, 0)},
{l(qint, iq, ckb, rb)}, ∅〉E

Execution of l(qint, iq, ckb, rb)

→〈1, {(d, 0), (ck, 1)}, {(d, 0), (ck, 1), (iq, 0), (ckb, 0)},
∅, {(qint,X)}〉E

Execute → Update, clearing edges

→〈1, {(d, 0), (ck, 1), (iq, 0), (ckb, 0)},
{(d, 0), (ck, 1), (iq, 0), (ckb, 0)}, ∅, {(qint,X)}〉U
Updating value of qint which activates no instantiations

→〈1, {(d, 0), (ck, 1), (iq, 0), (ckb, 0)},
{(d, 0), (ck, 1), (iq, 0), (ckb, 0), (qint,X)}, ∅, ∅〉U
Time Advance, applying inputs

−→
in2, and activating instantiations

→〈2, {(d, 0), (ck, 1), (iq, 0), (ckb, 0), (qint,X)},
{(d, 1), (ck, 1), (iq, 0), (ckb, 0), (qint,X)},
{l(iq, d, ck, rb)}, ∅〉E

→ . . .

→〈2, {(d, 1), (ck, 1), (iq,X), (ckb, 0), (qint,X)},
{(d, 1), (ck, 1), (iq,X), (ckb, 0), (qint,X)}, ∅, ∅〉U

This simulation terminates in the last configuration,
since we did not supply more inputs. The trace of
values that we can observe is given by variable
valuations representing the current values in the
two stable configurations that were reached, these
are {(d, 0), (ck, 1), (iq, 0), (ckb, 0), (qint,X)} and
{(d, 1), (ck, 1), (iq,X), (ckb, 0), (qint,X)}.

3. Encoding VERICELL into Transition Systems

To convert a VERICELL program into a Boolean Tran-
sition System (BTS), i.e., a transition system with vectors
of Booleans as configuration, we first have to take care of
the ternary values. We use a dual-rail encoding for these
values, where we interpret each variable v as a pair of
Boolean variables (vL, vH). The first variable vL represents
whether the variable v might be 0, the second variable vH

represents whether v might be 1. Then, we have for the
constants in T that 0 = (true, false), 1 = (false, true),
and X = (true, true). The fourth value Z = (false, false)
is considered to be illegal and will never arise as a result of
our encodings. For every variable v occurring in the module



of the VERICELL program we also introduce another pair
of variables vp = (vp

L, vp
H) representing the previous value

of the variable.
To combine Boolean and ternary values, we define the

implication operation →: B × T → T for a ternary value
y ∈ T as false → y = X and true → y = y.
Furthermore, we define a meet operator u : T × T → T as
(uL, uH)u (vL, vH) = (uL ∧ vL, uH ∧ vH) and (in)equality
of ternary values as (uL, uH) 6= (vL, vH) = ¬

(
(uL, uH) =

(vL, vH)
)

= (uL ⊕ vL) ∨ (uH ⊕ vH) for all ternary values
(uL, uH), (vL, vH) ∈ T. Note that by this definition the
value X is a neutral element for u, i.e., X u y = y for
all ternary values y.

3.1. Encoding of UDPs

To encode the UDPs of a VERICELL program, we first
have to encode the matching of row patterns. This can be
done in a straightforward way. For level specifications, we
define an encoding to match a ternary variable v = (vL, vH)
as follows:

L(0, v) .= vL ∧ ¬vH L(b, v) .= vL ⊕ vH

L(1, v) .= ¬vL ∧ vH L(?, v) .= true
L(x, v) .= vL ∧ vH

For edges, we only have to consider the case of an edge
specification of the form (ab), where a and b are level
specifications, since all other edge specifications can be
expressed as disjunctions of edge specifications having this
shape. The encoding works by simply matching the two
level specifications against the previous and the current value
of the input. Furthermore, we have to express that really
a change has occurred, i.e., the previous and the current
value have to be different. This is formalized in the below
encoding of an edge specification for pairs vp, v of ternary
variables representing the previous and the current values,
respectively:

E((ab), vp, v) .= (vp 6= v) ∧ L(a, vp) ∧ L(b, v)

These encodings are now used to encode the evaluation
of rows contained in a UDP. If r = s1 . . . sn : sn+1 : sn+2

is a row from a UDP with n inputs, we let r|j denote the
j-th column of this row, i.e., r|j = sj for all 1 ≤ j ≤
n + 2. For such a row r we define an encoding P that is
true if the row matches when considering a changed input
value at some position 1 ≤ j ≤ n. In case r is a level
sensitive row, then we define this encoding as follows, where
o is the previous output value, and where

−→
ip = (ip1, . . . , i

p
n)

and
−→
i = (i1, . . . , in) are the previous and current inputs,

respectively:

P (r, o,
−→
ip ,

−→
i , j) .=

∧
1≤m≤n

m6=j

L(r|m, ipm)∧L(r|j , ij)∧L(r|n+1, o)

For an edge-sensitive row r, the encoding P (r, o,
−→
ip ,

−→
i , j)

is defined similarly, only there we replace L(r|j , ij) by
E(r|j , ipj , ij).

Using this encoding that expresses whether the current
row is applicable, we can define the encoding Row that de-
termines an output value w.r.t. some row given the previous
and current inputs and the previous output. Here, we have
the property that the output of this encoding is X in case the
row is not applicable. Again, the number 1 ≤ j ≤ n denotes
the position where we consider a change in input values.

Row(r, o,
−→
ip ,

−→
i , j) .= P (r, o,

−→
ip ,

−→
i , j) → O(r, o)

Here, the value O(r, o) is the corresponding ternary value
to the level specification in the last column of the row, or it
is o if the last column of the row contains the symbol “-”.
As an example, we apply this encoding to the first row of
the UDP latch in line 14 of Listing 1, where we consider
the input ck as changed:

Row(0 (?1) ? : ? : 0, iq, (dp, ckp, rbp),
(d, ck, rb), 2) =

d
p
L ∧ ¬dp

H ∧ ((ckp
L ⊕ ckL) ∨ (ckp

H ⊕ ckH))∧
¬ckL ∧ ckH → (1, 0)

In Section 2.1 it was noted that the order of evaluating
multiple changed inputs is not fixed by the standard. Hence,
there the order was a parameter of the semantics. In our
experience, a naive enumeration of all possible orders imme-
diately results in an intractable state-space. In this paper, we
fix the order to be the reverse order of inputs as given in the
definition of a UDP. This corresponds to our observations of
simulators. We are currently working on analysis techniques
circumventing this restriction and thus, including all possible
orders of execution.

The idea of the encoding is to check recursively for a
changed input at the current position of the input. If the
currently considered input has changed then the previous
output is updated to the new output and the recursion
continues for the next position. Otherwise, when the current
input is unchanged, then also the output value remains
unchanged and the recursion directly advances to the next
position.

Formally, we define for a UDP udp ∈ UDPsn with
the output variable o, previous inputs

−→
ip = (ip1, . . . , i

p
n),

and current inputs
−→
i = (i1, . . . , in) the encoding

Judp, o,
−→
ip ,

−→
i KB×B = Judp, o,

−→
ip ,

−→
i , nKB×B, which is de-

fined as follows for 1 ≤ j ≤ n:

Judp, o,
−→
ip ,

−→
i , 0KB×B

.= o

Judp, o,
−→
ip ,

−→
i , jKB×B

.=(
(ipj = ij) → Judp, o,

−→
ip ,

−→
i , j − 1KB×B

)
u

(
(ipj 6= ij) → Judp, o′,

−→
ip ′,

−→
i , j − 1KB×B

)



In the previous values
−→
ip ′ the changed value ij replaces the

previous value ipj , i.e.,
−→
ip ′ = (ip1, . . . , ij , . . . , i

p
n). Further-

more, the value of o′ is the corresponding value that results
from the UDP when considering the change in input j. For
this purpose, let rl1, . . . , rlkl

be all level-sensitive rows of
the UDP and let re1,j , . . . , reke,j be all edge-sensitive rows
of the UDP that have an edge specification in column j.
Then, the value of o′ is defined to be the following:

o′
.=

d

1≤jl≤kl

Row(rljl
, o,

−→
ip ,

−→
i , j)

u

[(
¬

∨
1≤jl≤kl

P (p(rljl
), o,

−→
ip ,

−→
i , j)

)
→

d

1≤je≤ke

Row(reje,j , o,
−→
ip ,

−→
i , j)

]
Since this definition consists of meets of implications, the
output will be X, i.e., (true, true), if none of the rows is
applicable. This is as required in the standard.

3.2. Encoding of Cells

To encode the behavior of a module representing a cell,
one could encode the simulation rules given in Section 2.1.
However, one can devise a much simpler encoding when
restricting to VERICELL programs that do not contain de-
lays. Under this assumption, the new values can directly be
written back into the current variables, when we consider the
equations that result from the encoding as being evaluated in
parallel. This leads to an encoding which only needs the two
dual-rail pairs prev j and cur j for all of the n+m variables
of the module (which is assumed to contain n primitive
instantiations and m external inputs) and furthermore m
dual-rail pairs inpj for n < j ≤ n + m that represent the
external inputs to the module.

The next value for a variable prev j simply has to copy
the current value of the variable, so that it represent the
previous value in the next iteration. So we define for all
1 ≤ j ≤ n + m the new value of prev j as follows:

prev j
.= cur j

For the current variables, we have to distinguish whether
they represent the output of a primitive instantiation (which
we assume to be the first n variables) or an input. For an
output of an instantiation pj , i.e., for 1 ≤ j ≤ n, we define:

cur j
.= Jpj , cur j , prev(in(pj)), cur(in(pj))KB×B

In this definition, we assume that prev(in(pj)) and
cur(in(pj)) are vectors of ternary variables and constants
that represent the previous and current values of the inputs
to pj , respectively.

We only want to apply new inputs when the current state
is stable and time is allowed to advance. Thus, we define
a formula time may advance that is true if the current

state is stable. This is the case if there are no more active
primitives and no more updates that have to be executed. In
our encoding, the updates directly take place in the current
variables. Therefore, we only have to detect whether there
are no active primitive instantiations. There are no more
active instantiations if there are no changed values, i.e., the
previous and the current values are the same.

time may advance .=
∧

1≤j≤n+m

prev j = cur j

Using this formula, we can now encode the update of the
inputs. The inputs may only be updated if the current state
is stable, otherwise the old value has to be kept. This is
formalized in the definition below, where n < j ≤ n + m:

cur j
.= ¬time may advance → curj

u time may advance → [inpj ]T

In the above definition, [inpj ]T maps the illegal pair
(false, false) to the pair (true, true), representing that the
value Z behaves like the value X in our subset of Verilog.
Formally, we define [v]T = (vL ∨¬(vL ∧ vH), vH ∨¬(vL ∧
vH)) for every dual-rail pair v = (vL, vH). In this way,
[(false, false)]T = (true, true) = X and [y]T = y for every
y ∈ T.

4. Equivalence Checking using LTL Model
Checking

The encoding presented in the previous section is used
to translate Verilog descriptions into the input language
of a symbolic model checker. As an example, we veri-
fied equivalence between the Verilog descriptions and the
transistor netlist descriptions contained in a cell library. To
automatically create a transition system from a transistor
netlist, standard techniques exist [2], [12]. These will result
directly in a next state function, i.e., when applying such
a transition function then the next stable state will be the
result of this application.

This is different for the BTSs we create from the Verilog
description: Here, we only have a stable state if the time
may advance. The property we therefore want to verify is
that for all stable states the outputs are equal. Furthermore,
we want to restrict the comparison of the outputs to only
those where the output is not X, since we regard this as a
“dont-care”. Finally, we want to make the usual assumption
that we have at most one external input changing in every
step of the global simulation time. Since not changing the
inputs will not trigger any change in a current stable state,
we can assume that exactly one input is changing every
time the simulation time advances. Note that even with this
restriction, there can be multiple inputs of a primitive that
can change, due to the parallel execution.

The LTL formula asserting that netlist and Verilog de-
scriptions are equivalent is then expressed as follows, where



outputs is a set of corresponding pairs of outputs in the
Verilog description and the transistor netlist:

(
G one input changes

)
→(

G time may advance →( ∧
(ov,ot)∈outputs

ov 6= X ∧ ot 6= X → ov = ot

))
The formula expressing that exactly one input changes per

timestep, called one input changes above, is expressed as
shown below:

one input changes .=∨
n<j≤n+m

(
([inpj ]T 6= cur j) ∧

∧
n<i≤n+m

i 6=j

([inpi]T = cur i)
)

Finally, we also want to add a property stating that
always a stable state will eventually be reached. This can
be expressed as an LTL formula in the following way, again
using the formula time may advance to indicate whether
a current state is stable:(

G one input changes
)
→

(
G F time may advance

)
In case we do not want the restriction to input traces where

only one input is allowed to change per time step, then we
can drop the requirement (G one input changes) from the
above formulas.

5. Experiments

As an example set we chose the Nangate Open Cell
Library [10] due to its public availability and checked the
contained cells for equivalence. We applied an optimized
version of the encoding given in Section 3.2 to create BTSs
from the Verilog description, and we used an implementation
of [2] to extract a transition system from the transistor
netlist descriptions. These automatically generated transi-
tion systems were then used as input, together with the
LTL formulas as described in the previous section, for the
symbolic model checkers NuSMV [3] version 2.4.3 and
Cadence SMV [11] version 10-11-02p46. NuSMV was run
with cone-of-influence reduction and dynamic reordering,
whereas we used Cadence SMV in its default settings. All
of our experiments were performed on a Pentium 4 with
3 GHz having 1 GB of RAM and running under Linux 2.6.

Almost all cells of the Open Cell Library are described in
the VERICELL language, except for the cells TBUF, TINV,
and TLAT which use the primitive bufif0. This primitive
is currently not supported, since it distinguishes between
X and Z and has non-deterministic behavior for certain
input combinations. We also omitted the cells ANTENNA
and FILLCELL which do not implement any functionality.
Finally, we did not consider the cells LOGIC0 and LOGIC1
which are supposed to provide constant values, however

we could not extract a transition system from the transistor
netlists given in the cell library.

All considered cells in the Nangate Open Cell Library can
be shown equivalent when only changing one input in every
time step. Of these 41 cells in the library that we considered,
40 were shown equivalent using Cadence SMV in less than
one second. For the last cell, namely the cell called SDFFRS,
it took about 2.0 seconds to prove equivalence. When using
NuSMV, the results are slightly worse, only 36 of the cells
were shown equivalent within one second and the proofs
of another 4 cells took between 2 and 4 seconds. Again,
the cell SDFFRS took the most time with 7.8 seconds. If
we use optimizations specific to NuSMV for the desired
properties, then 38 cells were shown equivalent within one
second and 2 of the remaining 3 cells were shown equivalent
within 2 seconds. However, the cell SDFFRS still required
approximately 4.1 seconds.

We also compared the flip-flop example given in Section 2
with the cell DFFR from the Nangate Open Cell Library,
which also is a flip-flop with reset. However, using our
encoding an error trace could be found by both considered
model checkers. Such a trace can easily be mapped back to a
counterexample in the two cells. This counterexample shows
that for the Nangate cell the input already becomes visible
at the output at the positive edge of the clock, whereas our
flip-flop requires another negative edge. Hence, these two
flip-flops are not equivalent and must not be exchanged for
one another.

Finally, we ran experiments with a subset of sequential
cells taken from a cell-library provided by Fenix Design
Automation. For all of these 26 cells we were also able
to prove equivalence when considering only one input to
change in every time step. Using Cadence SMV, 12 of these
cells could be shown equivalent in less than one second.
Of the remaining 14 cells, 9 took less than 2 seconds
and the remaining 5 cells took between 3 and 15 seconds.
For NuSMV the results are comparable when using the
optimized encoding of the properties: 12 cells took less
than one second, 7 of the remaining 14 cells took less than
2 seconds, and the remaining 7 cells took between 2 and
15.5 seconds.

6. Conclusion

We presented a semantics for the VERICELL subset of
Verilog that is commonly used in cell libraries. Using this
semantics, we were able to convert VERICELL descriptions
automatically into transition systems. These transition sys-
tems can be used for model checking, of which we presented
an application in the equivalence checking between Verilog
descriptions and corresponding transistor netlists contained
in a cell library. This check runs fully automatically and
requires no expert knowledge. Thereby, one can ensure that



the Verilog description exhibits the same behavior as the
implementation in silicon.

In the VERICELL subset of Verilog, the values X and Z
have the same behavior, as required by the standard. In the
future, we would like to extend this subset to also include
built-in primitives such as bufif0. For this purpose we will
have to treat the fourth value Z in the logic of Verilog to
be different from X for these primitives. However, including
these primitives introduces the problem of dealing with non-
determinism, since the standard requires for certain input
combinations that the output of bufif0 can be either 0 or Z,
for example. Also, we want to extend our encoding to be able
to deal with delays. As noted previously, delays are already
included in our formal semantics for the general case. These
rules have to be encoded in the transition systems. Another
field we want to investigate further is where the difference
in the outputs is only restricted to the “power-up” phase,
i.e., in states that will never be reached again. This was
already considered by Pixley [13], leading to a different
notion of equivalence of transition systems. However, we did
not observe these types of counterexamples in the examples
we considered. Finally, we have seen that the order of
considering changed inputs of UDPs can influence the output
of a UDP, thus it can prevent finding counterexamples. This
is especially interesting since bugs that stem from such an
order dependence may not be found using simulators that
use a fixed order. This is part of our current line of research,
which includes analyzing non-determinism that can lead to
hazards.
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