
Generation of Failure Models through Automata Learning

Sebastian Kunze, Wojciech Mostowski, Mohammad Reza Mousavi, Mahsa Varshosaz
Centre for Research on Embedded Systems, Halmstad University, Sweden

Email: {sebastian.kunze,wojciech.mostowski,m.r.mousavi,mahsa.varshosaz}@hh.se

Abstract—In the context of the AUTO-CAAS project that
deals with model-based testing techniques applied in the auto-
motive domain, we present the preliminary ideas and results
of building generalised failure models for non-conformant soft-
ware components. These models are a necessary building block
for our upcoming efforts to detect and analyse failure causes
in automotive software built with AUTOSAR components.
Concretely, we discuss how to build these generalised failure
models using automata learning techniques applied to a guided
model-based testing procedure of a failing component. We
illustrate our preliminary findings and experiments on a simple
integer queue implemented in the C programming language.

Keywords-model-based testing; automatic test generation;
automata learning; failure model; AUTOSAR standard

I. INTRODUCTION

Establishing the severity of a failed test case and predict-
ing its possible consequences is a challenge in test processes.
Very often failed test cases are dismissed on the basis that
they concern only singular corner cases and will not lead to
any further catastrophic failures. This problem is intensified
in the context of model-based testing, where it is more diffi-
cult to relate the generated test-cases to the requirements. We
have observed this problem in the context of our industrial
collaboration in the AUTO-CAAS project [1], where our aim
is to provide effective consequence analysis methods in the
context of AUTOSAR software.

Our solution to the problem above is to come up with
generalised failure models. Such models start from a single
failing test case and produce a model which specifies under
what other circumstances (e.g., other interaction scenarios
with possibly different parameters), a similar failure can
be observed. To this end, we build a wrapper around the
model-based testing tool QuickCheck [2] that by using
automata-learning algorithms turns failing test cases into
generalised failure models. We currently have an prototype
implementation of our approach to experiment with different
methods to come up with succinct generalised failure models
that are accessible for automotive software engineers.

The rest of this paper is organised as follows. Sec-
tion II describes the main ideas behind model-based testing
as implemented in QuickCheck, Sect. III elaborates on
our method for failure model generation using automata
learning, Sect. IV discusses primary experiments with our
prototype wrapper around QuickCheck, and finally Sect. V
concludes the paper with a short discussion.

II. MODEL-BASED TESTING WITH QUICKCHECK

The scenario and particular set up that we focus in our
work is testing of the AUTOSAR components [3] using the
QuickCheck [2] model-based testing tool and AUTOSAR
models developed by QuviQ (http://www.quviq.com). For
the purpose of this paper we abstract from AUTOSAR, as we
have not yet performed any substantial experiments on the
actual AUTOSAR components; this is part of our upcoming
work. However, we do use the QuickCheck tool and its
model-based testing methodology, adapting it to our needs.

QuickCheck models are symbolic state-full specifications
of a behaviour of the underlying implementation expressed
in the functional language Erlang [4]. Typically, this specifi-
cation declares the model state of the underlying implemen-
tation and symbolic inputs, and describes the valid protocol
of calling implementation operations using preconditions
for every declared operation. A precondition establishes if
a given operation with its parameters is permitted under
the current model state of the system, i.e., preconditions
place operations in the call protocol sequence. Additionally,
each operation can be annotated with a postcondition, i.e.,
a property that should be satisfied after the corresponding
operation is completed. Hence the resulting testing method
is called property based testing.

The QuickCheck testing method works by walking the
model and randomly generating (a) sequences of opera-
tions to be called on the implementation under test and
selecting those that satisfy the requirements of the specified
call protocol, i.e., preconditions, and (b) concrete input
parameters to these operations following the data generators
specified in the model. The generated test sequence is
run against the implementation under test, and after each
completed operation the postcondition specified in the model
is checked. When it fails, a counter example comprising of
the sequence of operations and their parameters executed so
far and the failing property is reported to the user. Then
QuickCheck applies its flagship procedure of shrinking the
counter example to get a minimal failing test case. This
works by recursive application of the shrinking procedure
starting from the sequence of executed operations down to
single data values for each operation involved. Each inter-
mediate step applies the shrunk candidate test case to the
implementation to establish the persistence of the fault under
shrinking. The procedure stops when the discovered fault

http://www.quviq.com


−record(state, {ptr, size, elements}).
initial_state() −> #state{ elements=[] }.
. . .
put(Ptr, Val) −> q:put(Ptr, Val).
put_args(S) −> [S#state.ptr, int()].
put_pre(S, [_P, _E]) −>

S#state.ptr /= undefined andalso
length(S#state.elements) < S#state.size.

put_post(_S, [_P, E], R) −> R == E.
put_next(S, _R, [_P, E]) −>

S#state{ elements = S#state.elements ++ [E] }.
. . .
prop_q() −> ?FORALL(Cmds, commands(?MODULE),

begin {H, S, Res} = run_commands(?MODULE, Cmds),
collect(S, pretty_commands(?MODULE, Cmds,

{H, S, Res}, Res == ok)) end).

Figure 1. Specification of the queue of integers put operation.

stops manifesting itself under subsequent shrinking steps.
The suitable shrinking strategy is an inherent feature of each
data generator used in the model, and each such strategy and
can be modified to further guide the shrinking mechanism.

Example 1: Figure 1 shows a fragment of a QuickCheck
model of a FIFO queue of integers. The state of the model
keeps the pointer ptr to the underlying queue C structure, the
size of the queue, as well as the model contents of the queue
– a list of elements currently stored in the queue. The put
operation refers the model to the C implementation q:put of
the queue passing the pointer Ptr and value Val parameters.
The remaining put_* model functions define the intended
behaviour and constraints of the put operation. The argu-
ments function put_args defines the arguments to be used
with put – the pointer currently stored in the model state, and
a randomly generated integer. The latter is expressed with a
data generator int(), which provides random generation and
shrinking facilities for integer parameter types. The precon-
dition put_pre specifies that put can only be called on already
initialised queues (with a new operation not quoted here) that
are also not full. The postcondition put_post checks that the
return value of put is equal to its parameter, and finally, the
put_next function defines how the state of the model changes
after the operation. Other queue operations are declared in
the similar fashion, after which a test property prop_q is
defined that is responsible for generating model conforming
test cases and reporting the (possibly failing) test results.

III. FAILURE MODEL CONSTRUCTION

In earlier work, automata learning has been investigated
for the purpose of building correct QuickCheck models of
complex implementations, see e.g. [5]. Our practical goal
for this paper is to build a formal description of a failure
detected by QuickCheck in the implementation under test
in a form of a model, i.e., a specification rather than just
one counter example. This model consists of an automaton
formalising the execution paths leading to a failure, and the
property that failed to verify after the last operation on the
given execution path, essentially the failing postcondition of

the last operation. Given an implementation that is known
to have a failure from an earlier test run, the failure model
is built automatically by bridging automata learning to a
refined and guided test procedure applied by QuickCheck to
this failing implementation. More precisely, the original test
procedure of QuickCheck is adapted so that (a) the input
alphabet of the operations under test is suitably abstracted
to support the learning procedure, (b) the test cases used
in the learning process are similar to each other to reduce
learning noise and consequently keep the resulting model
small, and (c) test results reported by QuickCheck are
adapted so that the behaviour of one particular failure can be
determined. Our learning procedure requires a user supplied
configuration with implementation specific information to
guide the process, hence certain a priori knowledge about
the implementation under test is required.

A. Automata Learning with LearnLib

The automata learning framework we have chosen for our
work is the LearnLib platform (http://learnlib.de) [6] devel-
oped at TU Dortmund. The main reason for choosing this
platform is the fully functional and flexible implementation
in Java, as well as earlier very successful results of applying
LearnLib to non-trivial, realistic implementations [7], [8].
Additionally, an easy to use visualisation interface is avail-
able in LearnLib making it an ideal tool for experimentation.

LearnLib provides several different learning (inference)
algorithms for several different kinds of automata. For
our work we use Mealy machines, i.e., deterministic finite
state machines with input and output labelled transitions.
With its set of inputs, the generated machine characterises
the operation sequences leading to one distinguished state
representing the failure. The outputs of the machine are
essentially the status of conformance to the model, with the
failure status always leading to the failure state.

The basic learning setup consists of a learner – our the
failure model learning module, and the teacher – the adapted
system under test. The learner keeps invoking membership
queries on the teacher and builds a hypothesised state
machine H that reflects the behaviour of the teacher. Mem-
bership queries are simply operations and their parameters
to be invoked on the teacher, and responses to these queries
are the output results of the operations. We do not report the
actual operation results to the learner, but the state of the test
after the given operation, i.e., whether the given operation
is permitted according to the model, and if so whether it
caused any failures in the implementation. The inference
procedure stops when the hypothetical Mealy machine H
becomes stable and H becomes the resulting model of the
failure in the system under learning.

B. Input Data Abstraction

The automata inference algorithms work efficiently only
when the language alphabet is relatively small. This is

http://learnlib.de


clearly not the case for automotive software systems with
several operations that can take parameters from a large
domain. Hence, abstraction of the concrete input and output
data is required to keep the automata language small and the
learning process feasible. This abstraction is done by medi-
ating between the learner and the system under learning, i.e.,
the teacher. The learner uses a possibly small set of abstract
parameters that are made concrete by the mediator for each
abstract set. The mediator in our case is the adapted Quick-
Check testing procedure, which chooses suitable represen-
tatives for the abstract domains of operation parameters.

An additional aspect that we need to take into account
during input parameter mediation is to make the subsequent
test cases similar to each other, so that our hypothetical
model H does not diverge and stabilises quickly. This is
best explained with the following example.

Example 2: Consider the new operation of the queue that
takes an integer parameter size and initialises a new queue
accordingly. Two queues of different sizes will give rise to
two different Mealy machines, each one having essentially
the number of states equal to the size of the queue. If
we allow the queue to be initialised with random sizes in
each new operation trace during the inference procedure, the
process will either not terminate within reasonable time, or
it will produce a very complicated model that attempts to
formalise queues of different sizes in one Mealy machine.
Thus, it is better to use a fixed parameter for all new
operations in one learning process, either by fixing the
parameter value a priori, or by consistently reusing one that
has been chosen by the test generator for the first use of new.

This gives rise to the following two methods of parameter
mediation between the learner and system under test. The
first method is to simply allow the user to fix the parameters
of selected operations to constant values and bypass the
data generation mechanism of QuickCheck that would be
used otherwise. For our queue example, we would fix the
parameter to the new operation, e.g., to size 3, and allow the
test procedure to use randomly generated parameters for the
put operation. These would not influence the shape of the
resulting model which only reflects the number of elements
stored and not the value of elements in its state space.

The second method generalises the first one. Instead of
fixing the parameters we allow the test procedure to decide
which parameters should be fixed after the first use. This
is done by defining an oracle that traces the changes in the
model state of the implementation under test and decides
whether the state change incurred by the given operation
requires fixing the operation parameter for subsequent calls
to the same operation. In particular, on its first occurrence
the new operation would update the size field of the model
state of the queue. The oracle would detect this change in
the model state, by seeing that the size field is changed
from one value to another, and save the parameter used
with the operation that triggered this change. In other words,

our oracle divides operations and their parameters to ones
that cause meaningful and meaningless changes of the model
state for the purpose of learning a concise failure model.

Both methods of parameter mediation require a priori
knowledge about the system under test. This is inevitable to
facilitate efficient model inference and also the readability
of the result. On the practical side, the user has to prepare
a suitable configuration for the adapted QuickCheck test
generation procedure to guide the learning process. This test
configuration can include an association of fixed parameters
to particular operations, or an oracle function described
above to compare subsequent model states, or a mixture of
both. We show a brief example of this in Sect. IV.

C. Adapting Test Results for Learning

Similarly to the input parameters, the outputs of the tested
operations have to be abstracted too during inference. The
first obvious reason is to narrow down the language alphabet
of the model under construction. More importantly, however,
the outputs have to be adapted so that the constructed model
represents the fault in the system that we try to formalise.
To this end, we ignore the actual operation results (e.g.,
the concrete value that a get queue operation returns), and
concentrate on the current state of the model and the status
of the test suite executed on the implementation.

More precisely, we report the following outputs to the
learner. If an operation is not permitted by the model
according to a precondition, we report notrace result to
inform the learner that the given operation is not in the
scope of the model. Otherwise, operations permitted by the
model can result in two values. We report the value ok if
the operation does not cause any test failure, or we report
fail otherwise. Since we are interested in scenarios leading
to a failure, and not ones after the failure has occurred, all
subsequent operations after a failure return notrace to signal
no further need to probe the system. The resulting Mealy
machine has several states representing the behaviour of the
implementation up to the failure, and then one special failure
state F to which the failing operation from selected normal
state leads. To improve readability we project out all the
notrace transitions from the resulting failure model.

IV. EXPERIMENTS

We have implemented a prototype of our failure model
generator following what we presented in Sect. III. Our tool
is a wrapper around QuickCheck that adds facilities to define
test configurations (operation parameter fixing and state
change tracing oracles, see Sect. III-B), mediate operation
inputs and outputs, and communicate with LearnLib through
a socket. For experimentation we used the FIFO queue of
integers that is used as a standard QuickCheck tutoring
example. The queue implementation contains two subtle
bugs that cause the space function reporting available space
in the queue to return incorrect results.



tconf1() −> eqc_learn_fault:init_learn(q_eqc, [{new, [3]}]).

cmp_state(OS, NS) −> OS#state.size /= NS#state.size.
tconf2() −> eqc_learn_fault:init_learn(q_eqc, [],

fun(OS, NS) −> cmp_state(OS, NS) end).

Figure 2. Two configurations for learning the fault in the queue.

Example 3: Figure 2 shows a snapshot of two configura-
tion definitions for learning the faulty queue behaviour, the
first one fixes the size parameter of new to 3, the second
one uses an oracle function detecting a change of size in
the queue model to fix the parameter to be used with new.
Figure 3 shows the result of learning the fault in the queue
with these two configurations. In the second one, 2 has been
randomly chosen for the queue size and then subsequently
reused during the inference process.

Both models show that the space operation is not behav-
ing according to the specification. In the first failure model
space only gives a correct result on a full queue. In the
second model, however, despite a smaller queue size chosen
by the generator, the space operation shows seemingly
more unpredictable behaviour. Its correct behaviour depends
on the interleaving of earlier put and get operations. The
underlying problem in the implementation is actually due
to the input and output pointers to a circular array and size
working incorrectly when one pointer “overtakes” the other.
From both figures we can also conclude that the parity of
the queue size plays a role in the detected failure.

V. DISCUSSION AND CONCLUSIONS

We have presented preliminary ideas for using automata
learning to generate models of failing or non-conformant
behaviour of software components. In the AUTO-CAAS
project, we will use these models to match and find a
component contributing to a failure in a larger system.
So far we have concentrated only on mediating the inputs
and outputs between the learner and the system under
test to enable creation of concise and readable models. At
this stage our failure models are still quite limited. First,
they only show the failure for one particular configuration
of the underlying implementation (in our examples, a
queue of a fixed size). As our experiments show, different
configurations can show varying failure characteristics of
the same implementation defect. Second, our generated
model only shows which operation exhibits the failure, but
not exactly how. For our example, we know that the size
operation returns the wrong value, but not how this actual
value generally relates to the expected one.

More generally, our method does not yet indicate if the
generated models show the failure caused by one or several
defects in the implementation. If it is several defects, then
the question is how can we separate them in our method.
For now, our first approximation is that we associate a defect
with the failing operation, in our example the size function.

S 1 2 3 4

F

new/ok
put/ok

get/ok

put/ok

get/ok

put/ok

get/ok
size/oksize/fail

size/fail size/fail

S 1 2 3

4 5 6F

new/ok put/ok put/ok

put/ok put/ok

get/okget/ok get/okget/ok

size/ok size/ok

size/ok

size/fail

size/fail

size/fail

Figure 3. Failure models of the queue of size 3 and 2.

In the course of our upcoming work we will be addressing
all these issues, and also we will apply our methods on
more realistic examples in the automotive domain using the
AUTOSAR software components.

Acknowledgements
Our work is supported by the Swedish Knowledge Foun-

dation grant for the AUTO-CAAS project and by the
Swedish Research Council grant for the project on Effective
Model-Based Testing of Concurrent Systems (EFFEMBAC).

REFERENCES

[1] T. Arts and M. Mousavi, “Automatic consequence analysis of
automotive standards (AUTO-CAAS),” in First International
Workshop on Automotive Software Architectures (WASA 2015).
ACM Press, 2015.

[2] T. Arts, J. Hughes, J. Johansson, and U. Wiger, “Testing
telecoms software with QuviQ QuickCheck,” in Proceedings
of ERLANG’06. ACM, 2006.

[3] AUTOSAR BSW and RE Conformance Test Specification, Re-
lease 4.0, Revision 2, 2011.

[4] F. Cesarini and S. Thompson, Erlang Programming. O’Reilly,
2009.

[5] T. Arts, P. Seijas, and S. Thompson, “Extracting QuickCheck
specifications from EUnit test cases,” in Proceedings of the
10th ACM SIGPLAN workshop on Erlang. ACM, 2011.

[6] M. Merten, B. Steffen, F. Howar, and T. Margaria, “Next gen-
eration LearnLib,” in Proceedings of TACAS 2011. Springer,
2011.

[7] F. Aarts, J. Schmaltz, and F. Vaandrager, “Inference and
abstraction of the biometric passport,” in Proceedings of ISoLA
2010. Springer, 2010.

[8] F. Aarts, J. D. Ruiter, and E. Poll, “Formal models of bank
cards for free,” in Software Testing Verification and Validation
Workshop. IEEE Computer Society, 2013.


	Introduction
	Model-Based Testing with QuickCheck
	Failure Model Construction
	Automata Learning with LearnLib
	Input Data Abstraction
	Adapting Test Results for Learning

	Experiments
	Discussion and Conclusions
	References

