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1

Automatic generation of random test inputs is an approach that can alleviate the challenges of manual test case2

design. However, random test cases may be ineffective in fault detection and increase testing cost, especially3

in systems where test execution is resource- and time-consuming. To remedy this, the domain knowledge of4

test engineers can be exploited to select potentially effective test cases. To this end, test selection constraints5

suggested by domain experts can be utilized either for filtering randomly generated test inputs or for direct6

generation of inputs using constraint solvers. In this paper, we propose a domain specific language (DSL)7

for formalizing locality-based test selection constraints of autonomous agents and discuss the impact of8

test selection filters, specified in our DSL, on randomly generated test cases. We study and compare the9

performance of filtering and constraint solving approaches in generating selective test cases for different test10

scenario parameters and discuss the role of these parameters in test generation performance. Through our11

study, we provide criteria for suitability of the random data filtering approach versus the constraint solving12

one under the varying size and complexity of our testing problem. We formulate the corresponding research13

questions and answer them by designing and conducting experiments using QuickCheck for random test data14

generation with filtering and Z3 for constraint solving. Our observations and statistical analysis indicate that15

applying filters can significantly improve test efficiency of randomly generated test cases. Furthermore, we16

observe that test scenario parameters affect the performance of the filtering and constraint solving approaches17

differently. In particular, our results indicate that the two approaches have complementary strengths: random18

generation and filtering works best for large agent numbers and long paths, while its performance degrades in19

the larger grid sizes and more strict constraints. On the contrary, constraint solving has a robust performance20

for large grid sizes and strict constraints, while its performance degrades with more agents and long paths.21
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1 INTRODUCTION29

Testing typically accounts for more than half of the software development costs [35]. Test automa-30

tion, e.g., usingModel-Based Testing (MBT) [27] or Property-Based Testing (PBT) [10], mitigates this31
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problem by generating tests at low additional cost once a model or a suitable property specification1

is in place. However, for complex systems and specific application areas, several problems remain.2

In particular, in autonomous and AI-enabled systems, the input domain is a huge multi-dimensional3

data space and it is not always clear how an effective sampling can be made. Second, test execution4

can be very time- and resource-intensive, even if it is limited to a simulation environment, let alone5

in the hardware- and vehicle-in-the-loop settings. Finally, for autonomous systems it is challenging6

to find effective test-cases that can test their robustness in critical cases, where improvements to7

the system are still needed.8

1.1 Context and Approach9

In our earlier work [14], we proposed a domain specific language (DSL) for grid-based multiagent10

systems that enables the testing engineer to narrow down the test case context to cases that are11

more likely to uncover faults. Using an experiment, we have shown that such guided test generation12

can lead to significant improvements in terms of the time required to reach a fault in a system. In13

the current work, we extend our conference publication by studying and comparing two alternative14

test input generation approaches: one that uses random data selection followed by filtering, and15

one based on constraint solving using an SMT solver.16

The general context of our work is to provide some criteria for choosing between the two17

aforementioned automated test input generation techniques, i.e., random generation with filtering18

versus constraint solving. To this end, we also show the dependency of efficiency on the parameters19

of the testing scenario and on the complexity of test selection constraints specified by our DSL.20

These provide the test engineer with criteria to choose a suitable method for generating test data21

and also opens the possibility for further investigation on how to optimize the testing process22

by combining the two above-mentioned approaches. The concrete context and the particular23

contribution towards this goal are detailed in the following.24

1.2 SafeSmart Project25

The specific context of our work is the SafeSmart project [47], which investigates the Safety of26

Connected Intelligent Vehicles in Smart Cities from different perspectives. These perspectives include27

vehicle-to-X (V2X) communication, localization of objects on the road, and the control of vehicles.28

The context of the project is dense urban traffic, and the primary technique to validate the devel-29

opments is simulation. Our particular objective is the application of model-based techniques [27]30

for simulation-based testing in this domain. We started off by using Property-Based Testing (PBT)31

with automatic random test data generation [14], and we now move to other test data generation32

methods.33

1.3 Contributions34

This work is an extension and continuation of an earlier paper published at ICTSS 2021 [14]. In our35

previous work [14], we devised and formalized a locality-based test selection DSL for grid-based36

multiagent systems and proposed a methodology for its application to filtering randomly generated37

test cases. To show the impact of this approach, we had partially implemented the DSL in Erlang;38

the implementation was sufficient to conduct our intended experiments, and statistically analyzed39

their results. In particular, we pursued the following research questions in that work:40

RQ1: Can random generation and filtering test cases make fault detection more efficient in grid-41

based multiagent systems?42

RQ2: Can random generation and filtering test cases lead to a more efficient process for finding43

the most concise failing test case in grid-based multiagent systems?44
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In this paper, we consider one of the threats to the validity of the previous work and conduct1

additional experiments for different problem sizes and analyze the results in each case. We also2

consider analyzing the efficiency in terms of time, along with the number of SUT executions, which3

is the most time-consuming part of testing in our domain. Furthermore, we introduce constraint4

solving as an alternative method for generating test cases with the proposed DSL. We improve5

upon the experiment design and analysis for answering new research questions, namely:6

RQ3: How does test case generation efficiency by random generation and filtering compare with7

test case generation by constraint solving in grid-based multiagent systems?8

RQ4: How do problem domain and constraint complexity influence test case generation time with9

either of the two methods in grid-based multiagent systems?10

The main goal of this paper is to define the criteria for suitability of random test data filtering11

versus data generation by constraint solving given the complexity of the planning problem (i.e.,12

the number of agents, the grid size, and the agents’ path length) and that of the constraint (i.e., its13

strictness). We methodically compare the efficiency of filtering random test data and constraint14

solving approach in generating efficient test cases considering domain constraints. We observe15

that, while both approaches have a general promise of making testing more effective (we provide16

an experiment setup and results to show this for the filtering of the random test data), they do17

indeed show distinct characteristics with respect to the particular testing parameters. For example,18

just increasing the grid size considerably affects the performance of random test data generation19

with filtering approach, while it does not affect the constraint solving approach in a significant20

way. The overall goal is to improve the testing efficiency by choosing the most efficient test21

data generation method, depending on the test scenario context. In addition, we fix some small22

inaccuracies in defining the semantics of the DSL in [14]. Moreover, for the PBT tool QuickCheck23

we provide a complete implementation of our proposed DSL for filtering random test cases, which24

in [14] was implemented only partially, and for direct generation of test cases, we provide a25

stand-alone implementation in Python by Z3 [34] in this work. The repository containing the26

code and experiment data is available at [13]. As admitted above, for constraint solving, for now,27

we have concentrated only on the test data generation performance and not yet on the overall28

performance of the test execution efficiency in terms of time to reach the fault. Incorporating Z329

into QuickCheck is not a trivial task, and we feel that devising a way to combine the filtering of30

random data approach with constraint solving is an effort better spent before the complete method31

is implemented properly in a tool.32

1.4 Paper Structure33

The rest of this paper is structured as follows: we start with giving some technical background34

of this work in Section 2 and discussing the related work in Section 3. We explain our testing35

methodology in Section 4 and propose our DSL for formalizing test selection constraints in Section 5.36

In Section 6, we represent two approaches for generating selective test input data. To answer the37

introduced research questions, we design two sets of experiments in Section 7 and present the38

results along with analytical discussion in Section 8. The threats to the validity of our work are39

discussed in Section 9, and the paper is concluded with a short summary of the results and our40

ideas for future work in Section 10.41

2 BACKGROUND42

QuickCheck and Z3 are the tools that we use in this work for implementing our approach and43

conducting the required experiments. They are briefly introduced in this section.44
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2.1 QuickCheck1

In the context of the SafeSmart project, we use an advanced Property-Based Testing (PBT) tool2

QuickCheck1 [3]. Automatic input data generation in QuickCheck is supported by dedicated3

random data generators for different data types (numbers, lists, vectors) and the ability to compose4

generators to build more complex data structures. Reaching more selective test cases is also possible5

in QuickCheck by filtering the automatically generated test inputs with a defined predicate. The6

implementation and specification language of QuickCheck is Erlang [6], which is a functional,7

weakly typed, inherently distributed, and platform-independent programming language.8

In QuickCheck, when a generated test fails, to ease debugging, the tool will attempt to find a9

more concise failing test input. This process is called shrinking. Module 1 presents the pseudo-code10

of the shrinking process for a failed test input, its corresponding data generator, an SUT, and a11

test selection filter. If shrinking is possible, QuickCheck repetitively tries to find a “smaller” input12

than the previous candidate (line 4). This smaller input is achieved by modifying the previously13

determined candidate based on its corresponding data generator. This modification follows data14

type specific QuickCheck heuristics, e.g., positive numbers are made smaller, while lists are made15

shorter. After obtaining a smaller input, QuickCheck retries the test with that input (line 6). If the16

test failed for that input, QuickCheck has gotten one step closer to the most concise failing input;17

this is called a successful shrinking attempt (line 7). Otherwise, if a smaller input data did not lead18

to a failed test, the process would backtrack and try other ways of reducing the test input. This is19

called a failed shrinking attempt (line 9). This process continues until no more successful shrinking20

attempt is possible, and the last input is reported as the most concise failing test.21

In the case of choosing a test selection filter, the same filter is also used in the shrinking process22

(line 5). By default, QuickCheck assumes that inputs not satisfying the filtering criterion would23

not make the test fail (or at least not produce the same failure as the original one). Therefore, if a24

modified input violates the filtering constraint, it will be just discarded (line 11). In case of having25

no filter, all modified inputs are considered for shrinking.26

Module 1. QuickCheck shrinking process

1 shrink(input , generator , SUT , filter ):
2 candidate = input
3 while ( shrinkMorePossible(candidate , generator) ):
4 temp = shrinkInput( candidate , generator)
5 if ( filter(temp) ):
6 if( test(SUT , temp) is failed ):
7 candidate = temp // successful shrinking attempt
8 else
9 skip // failed shrinking attempt
10 else
11 skip // discarded shrinking attempt
12 return candidate

27

2.2 Z3 SMT solver28

Z3 is a state-of-the-art constraint solving technology from Microsoft Research [34]. It comes29

from a family of Satisfiability Modulo Theory (SMT) solvers, which allow for extending Boolean30

satisfiability checking with predicates from other theories (than just Booleans, such as integers31

or sequences/arrays or more advanced data types). It is implemented in C++, but it has APIs for32

1http://www.quviq.com/products
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several programming languages, such as Java and Python. Similar to other constraint solvers, Z31

takes intended variables, their domains, and the constraints among them as input. Then, it searches2

for a set of assignments to all of the given variables from their domain that satisfy all constraints3

and reports that as a solution. One of the features of Z3, elaborated on later in the paper, that4

proved useful in our application is the possibility of diversifying the produced solutions by using a5

random seed.6

3 RELATEDWORK7

In designing test suites, scenario-based testing is commonly used for testing autonomous agents.8

Organizations such as ASAM [17], EuroNcap,2 and DOT [36] have designed scenarios and specifica-9

tion languages for this purpose. Test scenarios can also be extracted by analyzing crash data [5, 37]10

or naturalistic driving data [20, 30, 42]. Usually, each test scenario targets a particular corner or11

critical case of the system. To gain more confidence, one might be interested in testing different12

configurations of a critical situation. However, running and evaluating autonomous agents in a real13

environment for a large number of such cases may not be practically feasible. The limitations and14

dangers of executing such systems in a real environment hinder testing many of the interesting test15

cases. Simulation environments such as SUMO [32], CARLA [11], Gazebo [29], OpenDS [33], and16

SVL3 are proposed as safer and more efficient environments for executing tests for such systems.17

Testing by simulation has its challenges and disadvantages [4], but overall, it is an unavoidable18

prerequisite for physical and operational field tests. Considering simulation environments, in our19

work, we attempt to automatically generate and test different situations that are potentially critical.20

To this end, we take the test scenarios that are specified in an abstract way instead of concrete test21

scenarios. Our meaning of an abstract scenario is the scenario that can define different configura-22

tions of one general scenario. Such scenarios are used in our work to randomly generate different23

concrete critical case scenarios for testing. Currently, the considered feature of autonomous agents24

to test is narrowed down to the collision avoidance mechanism. Test generation for other features of25

autonomous agents is also discussed in the literature, like AsFault [21] that targets the lane-keeping26

feature of self-driving cars. Generating test suites for autonomous systems is considered extensively27

in the literature; below, we provide a survey of some of the closely related work.28

For specifying high-level scenarios, we propose a DSL with formal semantics which considers29

the locality of autonomous agents. There are other DSLs in the literature for specifying scenarios30

for cyber-physical systems such as Scenic [19], OpenScenario [17], MDSL4, and GeoScenario [41].31

Compared to other DSLs, we opted for our formally-defined and minimalistic DSL focusing on32

the locality constraints for multiagent grid-based systems. Our design principle was to provide a33

confined DSL in order to be able to carefully investigate the effect of the parameters in the efficiency34

of test-case selection mechanisms. We expect future studies will be needed to replicate our results35

for more complex DSLs, but our results will provide a guideline for how such future studies should36

be organized. In fact, we are carefully extending our DSL in our ongoing research with features37

using the basic idea of separation of concerns and limiting interaction.38

Two main methods exist at the opposite ends for generating test cases based on their required39

amount of computation: random testing [25] and constraint solving [34, 38]. On the one end, random40

testing spends negligible computational effort in generating test inputs but has high uncertainty41

in providing a desirable result and hence, poor productivity in test selection; on the other hand,42

constraint solving involves considerable computational effort but provides a guarantee for capturing43

2https://www.euroncap.com/en
3https://www.svlsimulator.com
4https://www.foretellix.com/open-language
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domain constraints, if at all possible. Search-based approaches [22] are placed between these two1

ends. They require more computation effort than the random input filtering approach and less2

computation effort than the full constraint solving approach (notwithstanding the fact that SMT3

solvers use many meta-heuristic search approaches under the hood). In this work, we compare4

the efficiency of the two extremes of this spectrum. Identifying the performance characteristics5

of these two approaches give us a clear idea of the type of parameter characteristics one needs to6

consider in order to choose a suitable approach. Such characteristics can also be utilized in devising7

efficient search-based algorithms, for example, by integrating these approaches. Such an integrated8

approach may be applicable when neither random filtering nor constraint solving has satisfactory9

performance (for example, when path lengths and arena size of the required test cases are large, see10

Table 10) later on. As mentioned before, search-based approaches are not entirely different from the11

constraint solving approach because optimization engines in contemporary SMT solvers are used12

to support the solving process. The optimization engine, like in Z3, can also be accessed directly13

and can be used for generating test cases when the required test specification is formulated as an14

optimization problem. In addition to search-based testing, there are other approaches that build15

upon random testing and constraint-based testing and improve their performance and effectiveness.16

Our study has targeted the baseline approaches, and these enhancements, briefly surveyed below,17

may be used in future empirical studies.18

Due to effectiveness issues in random testing [35], several approaches are proposed to enhance it.19

Adaptive Random Testing (ART) is one such approach [25], which uses diversity to improve fault20

detection. Our method for generating random paths is based on earlier experiment to ensure some21

level of diversity in the generated paths [14] and is hence aligned with the goals of ART. Using a22

formal measure of diversity is likely to improve the results of random testing in our experiments23

and warrants further investigation.24

Constraint solvers directly provide solutions for constraints, but using them for testing and25

verification has a few drawbacks and challenges. First, constraint solvers are not very scalable,26

and finding a solution for a large problem with complex constraints can be prohibitively time-27

and resource-consuming. Second, when generating a diverse set of test cases is preferred, it28

is commonly required to find varying solutions to one constraint. Sampling SAT solutions is29

referred to as Constraint Random Verification (CRV) [38] in the domain of hardware design and30

is also known as SAT witnesses in other domains. Spur [1], QuickSampler [12], Smarch [39], and31

UniGen2 [7, 8] are some of the state-of-the-art samplers, where Spur aims to address both scalability32

and uniformity [24]. In our work, we use the Z3 solver [34] for constraint solving and rely on its33

random seed to reach a solution for the given constraint. Currently, we investigate the time of34

reaching the first solution by the solver, and analyzing the diversity of solutions by repeating solver35

calls is left for future studies.36

Simplifying constraints and checking for mutual constraint inclusion are two approaches to37

improve scalability of constraint solving [2, 26]. Thanks to the formal foundation of our approach,38

we can apply these techniques to our DSL and improve the performance of the constraint-solving39

based approach in future studies.40

In test generation by filtering random test scenarios [25], test cases that do not satisfy the41

expected criterion are discarded. Test case prioritization [28] is a related technique where test cases42

are reordered for execution based on a criterion. In this approach, instead of discarding low-priority43

test cases, they are reordered to be executed after the ones with higher priority. This method is44

commonly used in regression testing where a test suite is already designed for testing the previous45

version of the system [23, 40]. Based on the feedback taken from previous test runs, the test cases46

are reordered to improve the efficiency from one point of view, for instance, to detect faults faster.47

In our work, the focus is on generating test cases where all generated ones have the same execution48

J. ACM, Vol. 1, No. 1, Article . Publication date: August 2022.
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priority. Prioritizing test cases after their generation can be considered as a future line of work as1

well.2

4 METHODOLOGY3

In this section, we provide an overview of the type of subject systems targeted by our study as well4

as the testing process used for them. Finally, we briefly introduce our approach to test selection,5

which is based on a domain-specific language.6

4.1 Intended Subject Systems7

The Systems Under Test (SUT) considered in our study are grid-based multiagent systems, often8

used in planning for robotic and autonomous systems [43]. Each agent has starting and goal9

coordinates and an initially planned path between them, including several imposed delaying steps10

(to simulate a varying speed or intermediate agent tasks). This initial plan is a pre-calculation only11

and disregards any future observations when the agent is moving in the environment. Agents may12

update their movement plan during operation to avoid collisions with others. Section 7.2 provides13

a more detailed account of the agents’ plans and their updates as implemented in our SUT.14

The input to this system is the grid size (𝑋,𝑌 ) and initially planned paths, i.e., the sequences of15

waiting and displacement steps, for each agent. The output of this system is a sequence of actual16

moves of each agent to reach its goal. The test oracle considers possible collisions (i.e., more than17

one agent residing in the same cell). Any collision is an indication of a failure in the agent’s safety18

mechanism, as the agents are supposed to avoid collisions even if there are collisions in the initially19

planned paths, as depicted in Fig. 1.20

(𝑋, 𝑌)
𝑃𝑎𝑡ℎ!
𝑃𝑎𝑡ℎ".
..
.

𝑃𝑎𝑡ℎ#

𝑀𝑜𝑣𝑒𝑠!
𝑀𝑜𝑣𝑒𝑠".

..

.
𝑀𝑜𝑣𝑒𝑠#

Input Output

SUT

Does the output contain
any collision information?

No

Successful
Test Case

Failed
Test Case

YES

Test Property

Fig. 1. The SUT of autonomous agents and the testing property

4.2 Test Process21

To automate the testing process for this type of system, we aim to generate critical test cases, i.e.,22

initially planned paths, that push the agents toward collisions. The ability of agents to deal with23

critical test cases by avoiding collisions provides more trust in the safety of the agents’ control24

algorithm. For this, we first define the general structure of each test case. Then, using this structure25

and evaluating the parameters, we generate concrete random test cases. Since the agents can26

continuously revise their plan at run-time, the safety of the implementation cannot be tested by27

just analyzing the initial input. Thus, we need a discipline of dynamic testing to evaluate the safety28
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behavior of the SUT. Although this approach can reveal faults in unforeseen corner cases, a large1

number of test cases may be generated to include only a few effective, fault detecting, test cases.2

Executing all these test cases is prohibitively time-consuming, even in a simulation environment.3

Therefore, we propose exploiting the domain knowledge to distinguish effective tests and restrict4

test execution to the potentially effective ones. Such domain knowledge can also be utilized to5

measure test coverage in terms of critical scenarios and compare the reliability of different systems.6

For example, a system passing test cases of more challenging or more diverse types of scenarios7

can be considered more reliable than a system passing less challenging or fewer types of critical8

scenarios.9

4.3 Test Selection10

We propose a DSL to formalize (some aspects of) the domain knowledge. Having this DSL, complex11

testing scenarios can be easily specified by the composition of DSL elements. Our DSL can serve12

as a basis for future extensions capturing more domain elements, such as agents’ dynamics and13

kinematics. In this paper, we consider using the DSL in two different ways for generating test14

inputs. In the first method, random test cases are generated first, and then the ones satisfying the15

domain constraint are filtered. In the second method, a constraint solver is used to derive test cases16

directly from the DSL.17

5 TEST SELECTION DSL18

In this section, we explain the syntax and semantics of our proposed DSL for specifying locality-19

based test selection constraints of autonomous agents in a grid-based multiagent system.20

5.1 Syntax21

The syntax of our DSL is shown in Mod. 2. A constraint in our DSL is either a locality-based22

condition specified about an area, or a Boolean expression built upon such conditions. A locality-23

based condition is of the form “In Area Condition”. An area can be either a circle or a square, where24

“Circle 𝑥” and “Square 𝑥” represent a circle and a square with radius and side length 𝑥 , respectively.25

Conditions can, in turn, either be atomic conditions or a Boolean combination of conditions. There26

are two types of atomic conditions. “Count 𝑑” considers the condition of having at least 𝑑 agents27

at one particular time in a pre-specified area. “Intersection 𝑛 𝑑” considers the condition of having28

at least 𝑛 grid points in a pre-specified area that at least 𝑑 agents cross sometime in their path.29

Different constraints can also be composed using Boolean operators of the DSL to make more30

complex constraints. As an example of a valid constraint specified by this DSL, “In Circle 1 Count31

3” specifies a test input data that includes at least 3 agents residing at one time in a Circle with32

radius 1.33
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Module 2. DSL syntax for locality-based test selection constraint speci-
fication of autonomous agents

1 Constraint -> In Area Condition |
2 And Constraint Constraint |
3 Not Constraint |
4 Or Constraint Constraint
5

6 Area -> Circle Integer |
7 Square Integer
8

9 Condition -> Count Integer |
10 Intersection Integer Integer |
11 And Condition Condition |
12 Not Condition |
13 Or Condition Condition |

1

To illustrate the syntax, a few examples of constraints are shown below for the paths represented2

in Fig. 2. This example consists of the planned paths of four agents in a 7 × 7 grid. The agents start3

to move at the same time 𝑡 = 0 and stop at the same time 𝑡 = 6. Based on the traffic situation, the4

agents are supposed to autonomously adapt their actual moves while running and avoid possible5

collisions with the others if needed. Thus, the constraints always refer to the planned paths, and6

not to the actual paths.7

1 2 3 4 5 60
0

1

2

3

4

5

6

Z1

Z2

Path 1 = ( (1,5), (0,5), (0,4), (0,3), (1,3), (1,2), (1,1) )

Path 2 = ( (3,5), (3,6), (4,6), (5,6), (5,5), (5,4), (6,4) )

Path 3 = ( (3,4), (4,4), (4,3), (4,2), (4,1), (5,1), (5,0) )

Path 4 = ( (5,2), (4,2), (3,2), (3,1), (2,1), (2,2), (1,2) )

Fig. 2. Test input example including the planned paths of four autonomous agents

• In Square 2 Count 3: This constraint is satisfied for the test input since there are three8

agents (i.e., agents 1, 2, 3) that in a particular time (𝑡 = 0) stand in positions that are included9

in a square with side length 2 (the 𝑍1 area).10

• In Circle 1 Intersection 1 2: This constraint is satisfied for the test input since there11

is an occurrence of two agents (agents 3 and 4) crossing a particular point (i.e., point (4, 2))12

which is included in a circle with radius 1 (the 𝑍2 area). In fact, for this condition, the area13

defined in the constraint is effectively irrelevant (this condition occurs in a single point that14

is included in any area).15

• In Square 2 (Intersection 1 2 And Count 3): This constraint is not satisfied for16

the test input since there is no square area with side length 2 in which both conditions17
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10 Entekhabi, et al.

“Intersection 1 2” and “Count 3” are satisfied. An area almost satisfying this constraint1

would be the square defined by (1, 2)–(3, 4) corners; however, the three agents present in2

this square are not present there at the same time.3

5.2 Semantics4

For defining the DSL semantics, we use the internal data types that are shown in Mod. 3. The type5

Point refers to a grid point made of an integer tuple, and Path refers to a sequence of several6

adjacent or repetitive Points in the grid. AreaInstance refers to one particular instance of an area7

type in the grid containing its center point (currently, we only consider circle and square area types8

in the DSL that have a grid aligned center). CheckCase is for holding the required information for9

checking the satisfaction of a condition; the one starting with CasesC contains the Count condition10

related information, and CasesI contains the Intersection related one.11

Module 3. DSL internal data types

Point -> (Integer , Integer)
Path -> [Point]
AreaInstance -> AreaIC Area (Real , Real)
CheckCase -> CasesC [[Point]] | CasesI [Point] Integer

12

The proposed DSL semantics, defined in Def. (1)–(4), assumes a GGG ×GGG grid containingMMM agents13

where each agent has a total ofLLL number of movement steps (including the imposed waiting steps).14

The evaluation of a constraint for a given list of paths is defined by the eval function in Def. (1).15

This function uses the auxiliary function evalCon defined in Def. (2). Based on the condition type,16

evalCon exploits getCases function in order to extract the desired information from the given paths,17

defined in Def. (3). According to this information, the existence of some features in a given area18

is checked by the function areaContains, defined in Def. (4). The Composition of Constraints and19

Conditions by Boolean operators is defined in Def. (1) and (2).20

𝑒𝑣𝑎𝑙 :: 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 → [𝑃𝑎𝑡ℎ] → 𝐵𝑜𝑜𝑙𝑒𝑎𝑛

𝑒𝑣𝑎𝑙 (InInIn 𝑒 𝑐 ) 𝑃 := ∃𝑥,𝑦 ∈ R. 1 ≤ 𝑥,𝑦 ≤ GGG. 𝑒𝑣𝑎𝑙𝐶𝑜𝑛 𝑐 (AreaICAreaICAreaIC 𝑒 (𝑥 ,𝑦)) 𝑃
𝑒𝑣𝑎𝑙 (NotNotNot 𝑓 ) 𝑃 := ¬𝑒𝑣𝑎𝑙 (𝑓 𝑃)
𝑒𝑣𝑎𝑙 (𝑓1 AndAndAnd 𝑓2) 𝑃 := (𝑒𝑣𝑎𝑙 𝑓1 𝑃) ∧ (𝑒𝑣𝑎𝑙 𝑓1 𝑃)
𝑒𝑣𝑎𝑙 (𝑓1 OrOrOr 𝑓2) 𝑃 := (𝑒𝑣𝑎𝑙 𝑓1 𝑃) ∨ (𝑒𝑣𝑎𝑙 𝑓1 𝑃)

(1)

𝑒𝑣𝑎𝑙𝐶𝑜𝑛 :: 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 → 𝐴𝑟𝑒𝑎𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 → [𝑃𝑎𝑡ℎ] → 𝐵𝑜𝑜𝑙𝑒𝑎𝑛

𝑒𝑣𝑎𝑙𝐶𝑜𝑛 (CountCountCount 𝑑) 𝑎 𝑃 := ∃𝑧 ∈ (𝑔𝑒𝑡𝐶𝑎𝑠𝑒𝑠 (CountCountCount 𝑑) 𝑃). 𝑎𝑟𝑒𝑎𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑎 𝑧

𝑒𝑣𝑎𝑙𝐶𝑜𝑛 (IntersectionIntersectionIntersection 𝑛 𝑑) 𝑎 𝑃 := ∃𝑧 ∈ (𝑔𝑒𝑡𝐶𝑎𝑠𝑒𝑠 (IntersectionIntersectionIntersection 𝑛 𝑑) 𝑃). 𝑎𝑟𝑒𝑎𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑎 𝑧

𝑒𝑣𝑎𝑙𝐶𝑜𝑛 (NotNotNot 𝑐) 𝑎 𝑃 := ¬ 𝑒𝑣𝑎𝑙𝐶𝑜𝑛(𝑐 𝑎 𝑃)
𝑒𝑣𝑎𝑙𝐶𝑜𝑛 (𝑐1 AndAndAnd 𝑐2) 𝑎 𝑃 := ∃𝑧 ∈ (𝑔𝑒𝑡𝐶𝑎𝑠𝑒𝑠 𝑐1 𝑃). (𝑎𝑟𝑒𝑎𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑎 𝑧) ∧ (𝑒𝑣𝑎𝑙𝐶𝑜𝑛 𝑐2 𝑎 𝑃)
𝑒𝑣𝑎𝑙𝐶𝑜𝑛 (𝑐1 OrOrOr 𝑐2) 𝑎 𝑃 := ∃𝑧 ∈ (𝑔𝑒𝑡𝐶𝑎𝑠𝑒𝑠 𝑐1 𝑃) . (𝑎𝑟𝑒𝑎𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑎 𝑧) ∨ (𝑒𝑣𝑎𝑙𝐶𝑜𝑛 𝑐2 𝑎 𝑃)

(2)
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𝑔𝑒𝑡𝐶𝑎𝑠𝑒𝑠 :: 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 → [𝑃𝑎𝑡ℎ] → [𝐶ℎ𝑒𝑐𝑘𝐶𝑎𝑠𝑒]
𝑔𝑒𝑡𝐶𝑎𝑠𝑒𝑠 (CountCountCount 𝑛) 𝑃 := (CasesCCasesCCasesC 𝑆) 𝑤ℎ𝑒𝑟𝑒

𝑆 = { 𝑠 | 𝑡 ∈ {0, . . . ,LLL}, 𝑄 = {𝑃 [1] [𝑡], . . . , 𝑃 [MMM][𝑡]}, 𝑠 ⊆ 2𝑄 , |𝑠 | = 𝑛 }
𝑔𝑒𝑡𝐶𝑎𝑠𝑒𝑠 (IntersectionIntersectionIntersection 𝑛 𝑑) 𝑃 := (CasesICasesICasesI 𝑆 𝑛) 𝑤ℎ𝑒𝑟𝑒

𝑆 = {(𝑥,𝑦) | ∃𝑄 ⊆ 𝑃 . |𝑄 | = 𝑑, ∀𝑞 ∈ 𝑄. ∃𝑖 ∈ {1, . . . ,MMM}. ∃𝑡 ∈ {1, . . . ,LLL}. (𝑥,𝑦) = 𝑞 [𝑖] [𝑡] }
(3)

𝑎𝑟𝑒𝑎𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠 :: 𝐴𝑟𝑒𝑎𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 → 𝐶ℎ𝑒𝑐𝑘𝐶𝑎𝑠𝑒 → 𝐵𝑜𝑜𝑙𝑒𝑎𝑛

𝑎𝑟𝑒𝑎𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠 (AreaICAreaICAreaIC (CircleCircleCircle 𝑟 ) 𝑐) (CasesCCasesCCasesC 𝑆) := ∃𝑄 ∈ 𝑆.

∀𝑞 ∈ 𝑄. (𝑞𝑥 − 𝑐𝑥 )2 + (𝑞𝑦 − 𝑐𝑦)2 ≤ 𝑟 2

𝑎𝑟𝑒𝑎𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠 (AreaICAreaICAreaIC (CircleCircleCircle 𝑟 ) 𝑐) (CasesICasesICasesI 𝑆 𝑛) := ∃𝑄 ⊆ 𝑆. |𝑄 | = 𝑛

∀𝑞 ∈ 𝑄. (𝑞𝑥 − 𝑐𝑥 )2 + (𝑞𝑦 − 𝑐𝑦)2 ≤ 𝑟 2

𝑎𝑟𝑒𝑎𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠 (AreaICAreaICAreaIC (SquareSquareSquare 𝑟 ) 𝑐) (CasesCCasesCCasesC 𝑆) := ∃𝑄 ∈ 𝑆.

∀𝑞 ∈ 𝑄. |𝑞𝑥 − 𝑐𝑥 | ≤
𝑟

2
∧ |𝑞𝑦 − 𝑐𝑦 | ≤

𝑟

2
𝑎𝑟𝑒𝑎𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠 (AreaICAreaICAreaIC (SquareSquareSquare 𝑟 ) 𝑐) (CasesICasesICasesI 𝑆 𝑛) := ∃𝑄 ⊆ 𝑆. |𝑄 | = 𝑛

∀𝑞 ∈ 𝑄. |𝑞𝑥 − 𝑐𝑥 | ≤
𝑟

2
∧ |𝑞𝑦 − 𝑐𝑦 | ≤

𝑟

2

(4)

6 SELECTIVE RANDOM TEST CASE GENERATION1

In this section, we present two methods of exploiting the domain knowledge in generating effective2

test cases. In the remainder of the paper, these methods are compared in a rigorous fashion.3

6.1 Filtering Randomly Generated Data4

In the first step of this approach, test cases are generated randomly. Then, the required test selection5

constraint is applied for each generated test case to check whether it satisfies the required criteria.6

If the constraint is satisfied, the test case will be used in test execution, and otherwise, it will be7

discarded.8

For testing our SUT, random paths can be generated in different ways [14]. In this paper, for9

generating a random path with displacement length 𝑑 , we first pick one random starting point and10

one candidate random endpoint in the grid that are reachable from one another with at most 𝑑11

horizontal and vertical moves. Then, we generate a random set of horizontal and vertical moves to12

reach the candidate end point from the starting point with the minimum number of moves𝑚. If13

this path includes less than 𝑑 moves, it will be compensated by adding random pairs of {Left, Right}14

and/or {Up,Down} to the path. In this approach, if either 𝑑 or𝑚 is even and the other is odd, adding15

random pairs of {Left, Right} and/or {Up,Down} to a path with length𝑚 will not generate a path16

with length 𝑑 (it will have the length 𝑑 − 1 or 𝑑 + 1). In other words, the generated path reaches17

the adjacent points of the candidate end point from the starting point in this case. This issue is18

simply resolved by randomly selecting an adjacent point of the candidate endpoint as the target19

endpoint of the generating path, which is 𝑑 moves far from the chosen starting point. In case of20

having mandatory waiting moves with length𝑤 ,𝑤 wait actions are added to random positions in21

the generated path. Finally, all moves in the path are shuffled at the end to add more randomness.22
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12 Entekhabi, et al.

This method of randomly generated paths, which is illustrated in Fig 3, is called Targeted Data1

Generation in [14].2

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

14

M

Fig. 3. The possible end points and some random paths with length 6 starting from point𝑀

In our forthcoming experiments, Erlang and QuickCheck are used for generating random paths,3

filtering them based on the given constraint, and finally executing the tests for the selected ones4

on the target SUT, as shown in Mod. 4. This test specification written in Erlang takes the grid5

size, number of agents, number of displacement and waiting steps, and test selection constraints6

(specified by our DSL) as input. Then, for each list of randomly generated paths (in line 3), it checks7

if the required constraint is satisfied (in line 4). For the paths that satisfy the constraint, the test is8

executed, and the existence of collisions is checked afterwards.9

Module 4. QuickCheck module for testing the SUT of autonomous agents

1 testCollision(X,Y,AgentsNum , ActionSteps , WaitSteps , Constraint)->
2 ?FORALL(AgentsPaths ,
3 pathGenerator(X, Y, AgentsNum , ActionSteps , WaitSteps),
4 ?IMPLIES(eval(Constraint , AgentsPaths),
5 begin
6 Trace = sut:run(AgentsPaths , X, Y),
7 not anyCollision(Trace)
8 end)).

10

6.2 Constraint Solving11

In this approach, a constraint solver is used for generating paths that satisfy the constraint specified12

in our DSL. To generate paths, the path-construction constraints (i.e., the adjacency of the points13

in the parth) are defined in the input language of the solver. Similarly, inter-path constraints14

stemming from our DSL are also translated into the input language of the solver, based on our15

formal semantics.16

Z3 is a state-of-the-art constraint solver that we use in this work. We mechanized the translation17

of our DSL to Z3 constraints format in the following way. We define four classes of variables𝑋,𝑌, 𝐷18

and𝑊 for each agent 𝑖 at each time 𝑡 of their movement to store the following information:19

• 𝑋𝑖,𝑡 : the 𝑋 position of the agent 𝑖 in time 𝑡 in the grid20

• 𝑌𝑖,𝑡 : the 𝑌 position of the agent 𝑖 in time 𝑡 in the grid21
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• 𝐷𝑖,𝑡 : the number of passed displacement moves of the agent 𝑖 up to time 𝑡1

• 𝑊𝑖,𝑡 : the number of passed waiting moves of the agent 𝑖 up to time 𝑡2

To generate simple paths (with no inter-path constraints) for agents, we specify the Z3 constraints3

based on these variables. To begin with, we define that the position (𝑋,𝑌 ) of each agent is always4

bounded to the grid size GGG. Similarly, we define that𝑊 and 𝐷 for each agent are always equal or5

greater than zero and less or equal to the required number of waiting and displacement steps. In6

the beginning,𝑊 and 𝐷 are both zero for each agent, and at the end, they are equal to the given7

required number of steps. The constraints of the agents’ movement are specified by defining that8

at each time, either𝑊 or 𝐷 must be incremented (with respect to the previous time), and the other9

must remain intact.10

The translation from our formal semantics to the input language of Z3 is straightforward. For11

example, to translate the constraint of “In Circle 2 Count 3”, we define new variables 𝐶𝑥 and 𝐶𝑦 as12

the center of a circle and specify that (𝐶𝑥 ,𝐶𝑦) are bounded in the grid. Then, we define that the13

position of at least 3 of the previously declared agents at a time is inside the circle with radius 214

and center (𝐶𝑥 ,𝐶𝑦).15

It has been shown that diversifying test suites improves the fault detection ability, even in16

test suites with small sizes [15]. We considered two ways of building some diversity into our17

path generation. First, in some constraint solvers, solving a set of constraints always leads to one18

particular solution, i.e., the solving process is deterministic. As a result, reaching diverse test cases19

can be a challenge with some solvers. To have diversified solutions, one can first call the solver to20

reach the first solution. Supposing that in the first solution the value of variables 𝑉1,𝑉2, . . . ,𝑉𝑛 are21

determined to be 𝑐1, 𝑐2, . . . , 𝑐𝑛 , respectively, to reach a different solution in the next attempt, the22

constraint (𝑉1 ≠ 𝑐1) ∨ (𝑉2 ≠ 𝑐2) ∨ · · · ∨ (𝑉𝑛 ≠ 𝑐𝑛) can be added to the solver. One could strengthen23

this further by replacing inequality to a stronger notion of diversity. Secondly, in this work, we use24

the Z3 solver and rely on its internal mechanism for the diversifying solutions. This is achieved by25

letting Z3 choose a random seed for each run.26

7 EXPERIMENT DESIGN27

We design and conduct experiments in this section to investigate answers to the following research28

questions defined in Section 1:29

RQ1: Can random generation and filtering test cases make fault detection more efficient in grid-30

based multiagent systems?31

RQ2: Can random generation and filtering test cases lead to a more efficient process for finding32

the most concise failing test case in grid-based multiagent systems?33

RQ3: How does test case generation efficiency by random generation and filtering compare with34

test case generation by constraint solving in grid-based multiagent systems?35

RQ4: How do problem domain and constraint complexity influence test case generation time with36

either of the two methods in grid-based multiagent systems?37

For analyzing the experiment results, we use statistical hypothesis testing. In this approach, a null38

hypothesis, which is represented by 𝐻0, and its opposite, alternative hypothesis which is represented39

by 𝐻𝑎 , are defined first. Then, acceptance of the null hypothesis (and rejection of the alternative) or40

vice versa would be evaluated by considering a particular confidence level of the corresponding41

statistical test. If the confidence level of rejecting a null hypothesis exceeds a specified threshold,42

the alternative hypothesis will be accepted (and the null hypothesis will be rejected). Otherwise,43

the alternative one would be rejected (and the null hypothesis would be accepted). We will accept44

an alternative hypothesis in this paper if the confidence level of accepting it is greater than 95%,45

i.e., the p-value is less than 0.05.46
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In the remainder of this section, we first provide a more detailed account of the subject systems1

and then explain the two experiments designed to answer our research questions.2

7.1 Subject System3

The SUT in our experiment is called SafeTurtles [13] which is a program containing several au-4

tonomous agents. In SafeTurtles, there are a fixed number of agents, called turtles,5 that move5

in a two-dimensional grid, i.e., the possible movement directions are up, down, left, and right. A6

movement in each direction is allowed only if it does not push the agent beyond the grid boundaries.7

All turtles are able to stay at their current points or move to an adjacent point, and the movement8

speed of all turtles is the same. Each turtle has an identifier (a number), a starting point, a goal point,9

and an initially planned path between these two points. In the beginning, all turtles are situated10

outside the arena. Upon launch, the turtles try to occupy their starting positions and move toward11

their goal positions. After reaching the goal position, the turtle goes out of the arena again. All12

turtles have full environmental observability and are aware of the current positions of all others. In13

addition, through communicating with each other, the turtles get aware of the planned immediate14

next move of all others too, including the ones that may potentially collide with them in their next15

move. Each turtle evaluates this information before every move, revises its plan if needed to avoid16

possible collisions, and moves one step forward according to the (potentially revised) plan. This is17

notwithstanding the faults that are injected to evaluate and compare the fault detection capabilities18

of different approaches explained below.19

All turtles should follow two safety rules to avoid collisions. First, for the next step, no turtle is20

allowed to move to a position that is occupied by another turtle in the current step. Second, the21

turtles in the neighboring cells should synchronize such that if more than one turtle plans to move22

to the same position, the turtle with the smallest identifier has the highest priority to go there. If23

executing the current plan of a turtle violates these safety rules, that turtle is supposed to update24

its movement plan. Plan update for each turtle starts with choosing one random position among25

the possible safe positions to move to in the next step. The safe positions for each turtle consist of26

the turtle’s current position and all adjacent positions that are currently not occupied and that no27

turtle with a higher priority wants to occupy in the next step. To complete updating the movement28

plan after picking the next move, the turtle randomly chooses one shortest path to reach its goal29

position from there (the shortest path between two points in a grid can be built with different30

combinations of the required horizontal and vertical moves).31

7.2 Experiment I32

This experiment is designed to evaluate the effect of applying filters on randomly generated33

test cases to answer our research questions RQ1 and RQ2. To do that, we test our simple SUT34

of autonomous agents that includes a few injected faults. The injected faults affect the agent’s35

movement decisions and actions, which is representative of real fault types of multiagent systems.36

However, from the perspective of complexity, the faults are simple (due to having a simple SUT),37

and they have a higher occurrence rate than the faults of realistic multiagent systems. For testing38

our SUT, we use QuickCheck for random generation of inputs with and without test selection filters.39

For generating random paths, we implement the targeted data generator explained in Section 6.1.40

In the shrinking process, we attempt to shorten the agent’s paths by changing their goal positions,41

while keeping their initial points intact.42

5The name is a legacy of our earlier work when we experimented with an implementation of autonomous turtles in the
Robot Operating System.
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We analyze testing efficiency in both fault detection and failed test case shrinking processes. Our1

analysis is mainly based on the observed number of SUT executions up to detecting the SUT fault,2

which is the most resource- and time-consuming task of our testing. Additionally, we measure3

fault detection efficiency by counting the total number test steps (agent moves) before the first4

fault is detected in the test suite: for test cases that do not uncover any fault, this is the maximum5

number of steps taken by any agent in the test case, while for failing test-cases, it is the maximum6

path lengths of the agents that collided. This criterion is a more specific indication of the required7

timing cost or the size of the test suite used for detecting faults in our SUT. Therefore, we also8

apply similar statistical tests to compare the results based on this criterion to answer RQ1.9

We constructed a symbolic model of the safety rules and a correct implementation for agents10

respecting the safety rules to avoid collisions. To validate the correctness of this implementation,11

we tested the system with 10, 000 random test cases, and the agents reached their goals as expected,12

with no observed collision or deadlock. Subsequently, we injected the SUT with three types of13

faults inspired by actual faults. To decide on the fault types, we interviewed two lecturers of the14

graduate course Design of Embedded and Intelligent Systems (DEIS) at Halmstad University [45]15

about the common faults of autonomous robots designed in a project akin to SafeTurtles by students16

in the course. The lecturers have been responsible for this course for the last five years and have17

supervised about 5 graduate-student projects on average each year. Three recurring fault types18

were reported: (i) self-localization faults leading to incorrect estimates of the position of the robot19

in the environment due to the accumulated sensor errors, (ii) faults leading to incorrect actions20

due to actuation mistakes and miscalibration (effectively over-speeding and/or over-braking), and21

(iii) perception and communication faults leading to incorrect information about other robots and22

their movement plans.23

We injected these fault types into SafeTurtles as follows. For the self-localization fault, we allow24

the agent to assume itself in a position that is adjacent to its actual position. For the actuation25

fault, we allow the turtle to overshoot a movement by one additional position going in the same26

direction or move one position when the turtle is supposed to stay put. The third injected fault27

disables synchronization on the plans of another neighboring agent. In the faulty version of the28

SUT, there is an independent and uniform distribution of the probability of each fault type or no29

fault at all (i.e., 25% fault probability) during the execution of each turtle move.30

This experiment is designed for the following parameter sizes and filtering constraints. We also31

repeat testing the SUT with and without each filter 100 times to get better statistics.32

• Grid sizes: {10 × 10, 15 × 15, 20 × 20, 50 × 50}33

• Number of agents: {5}34

• Path length:35

Maximum displacement steps: {5}36

Maximum wait steps: {5}37

• Test selection constraints:38

𝐹1𝐹1𝐹1: In Circle 3 Count 239

𝐹2𝐹2𝐹2: In Circle 1 Count 240

𝐹3𝐹3𝐹3: In Circle 1 Intersection 1 241

In defining the experiment sizes, we are considering two issues. First, we would like to see the42

effect of filtering on fault detection. In our case, the fault happens in a situation when the agents43

are getting close to each other and trying to visit a point at the same time. Therefore, if the grid44

size is increased and the other parameters are kept fixed, the probability of collision will decrease.45

Similarly, decreasing the number of displacement steps or decreasing the number of agents each46
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has the same effect. This provides us with the above-given design space for our experiment by1

varying the grid size, path length, and agent number.2

Our second consideration in designing this experiment is to see the effect of the strictness of a3

constraint. We call a constraint less strict than another one if the accepted test cases by the stricter4

constraint are a subset of the less strict one. For this purpose, we added 𝐹1𝐹1𝐹1 filter to this experiment,5

which is less strict than the filter 𝐹2𝐹2𝐹2. We would also like to observe how both Count and Intersection6

constraint condition types affect the result. For this purpose, we specified 𝐹3𝐹3𝐹3 filter along with the7

filters 𝐹1𝐹1𝐹1 and 𝐹2𝐹2𝐹2. It should be restated that we are not looking for the best filter that detects faults8

faster in our SUT or all considered multiagent systems. The effectiveness of a filter essentially9

relies on the domain knowledge of test engineers. Here, filters 𝐹1𝐹1𝐹1, 𝐹2𝐹2𝐹2, and 𝐹3𝐹3𝐹3 are examples of filters10

with different complexities. It would be an interesting future research problem to find a correlation11

between the effectiveness of filters and the fault types.12

For our experiment, we produced four data sets: one without a filter and three others for filters 𝐹1𝐹1𝐹113

to 𝐹3𝐹3𝐹3. These are referred to as𝐷0𝐷0𝐷0,𝐷1𝐷1𝐷1,𝐷2𝐷2𝐷2, and𝐷3𝐷3𝐷3, respectively. We compare the result of applying14

no filter with each and every filter by applying the corresponding statistical tests. To pick a suitable15

statistical test, we need to check if the data sets are normally distributed. To check the normality of16

the data set distribution, the Shapiro-Wilk statistical test [44] is the most suitable choice. The null17

and alternative hypotheses of this test applied to some data set 𝐷 are defined in Statement (5).18

𝐻01𝐻01𝐻01 : 𝐷 is distributed normally.
𝐻𝑎1𝐻𝑎1𝐻𝑎1 : 𝐷 is not distributed normally. (5)

Once the normality of the data sets is determined, we can pairwise compare the data sets. First,19

however, we can check if at least one of the data sets has significantly different values than one20

of the other ones. If no significant difference is detected, there is no need to put further effort21

into comparing the pairs. The statistical tests used for that are the following. Anova [16] and22

Kruskal-Wallis [31] are the statistical tests that check if the mean of one data set among a group23

of data sets is significantly different than another one. Annova is suitable when all data sets in24

the group are normally distributed, and Kruskal-Wallis can be applied regardless of the data sets’25

distribution. The null and alternative hypotheses of checking a significantly different data set in26

the group are defined in Statement (6). We apply Anova test if𝐻01𝐻01𝐻01 is accepted for all𝐷𝑖𝐷𝑖𝐷𝑖-s (all𝐷𝑖𝐷𝑖𝐷𝑖27

are normally distributed) and apply Kruskal-Wallis test otherwise.28

𝐻02𝐻02𝐻02 : ∀𝑖, 𝑗 ∈ {0, 1, 2, 3}. ` (𝐷𝑖𝐷𝑖𝐷𝑖 ) = ` (𝐷 𝑗𝐷 𝑗𝐷 𝑗 )
𝐻𝑎2𝐻𝑎2𝐻𝑎2 : ∃𝑖, 𝑗 ∈ {0, 1, 2, 3}. ` (𝐷𝑖𝐷𝑖𝐷𝑖 ) ≠ ` (𝐷 𝑗𝐷 𝑗𝐷 𝑗 )

(6)

In this test, the acceptance of 𝐻𝑎2𝐻𝑎2𝐻𝑎2 means that the mean value of one data set is significantly29

different than one other data set. However, it would not clarify which one is greater than the other.30

Since we are interested in comparing the filtered results with the non-filtered one, when𝐻𝑎2𝐻𝑎2𝐻𝑎2 is31

accepted, we need further investigation by pair-wise comparison of the corresponding data sets.32

In other words, by accepting𝐻𝑎2𝐻𝑎2𝐻𝑎2 , we need to pair-wise compare 𝐷0𝐷0𝐷0, 𝐷1𝐷1𝐷1, 𝐷2𝐷2𝐷2, and 𝐷3𝐷3𝐷3. However, if33

𝐻02𝐻02𝐻02 is accepted instead, we conclude that none of the filters significantly affect the testing result34

compared to having no filter at all, and we avoid making any further comparisons.35

For pair-wise statistical comparison, the following are the suitable tests. The t-test [46] and36

Mann-Whitney-Wilcoxon u-test [48] check if the mean values of two data sets are significantly37

different from each other. The t-test is suitable when both data sets are normally distributed, and38

the other test can be applied regardless of the data sets’ distribution. In our experiment, when𝐻01𝐻01𝐻01 is39
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accepted for two of our data sets (they are distributed normally), we apply t-test for their pair-wise1

comparison and apply Mann-Whitney-Wilcoxon u-test otherwise.2

We apply the statistical test with the details defined in Statement (7) to compare these data3

sets with each other. This test is one-tailed and when 𝐻𝑎3𝐻𝑎3𝐻𝑎3 is rejected, either ` (𝐷0𝐷0𝐷0) = ` (𝐷 𝑓𝐷 𝑓𝐷 𝑓 ) or4

` (𝐷0𝐷0𝐷0) < ` (𝐷 𝑓𝐷 𝑓𝐷 𝑓 ) are possible to be accepted. In order to clarify that, we apply another one-tailed5

pair-wise test with the details defined in Statement (8).6

𝐻03𝐻03𝐻03 : ` (𝐷0𝐷0𝐷0) ≤ ` (𝐷 𝑓𝐷 𝑓𝐷 𝑓 )
𝐻𝑎3𝐻𝑎3𝐻𝑎3 : ` (𝐷0𝐷0𝐷0) > ` (𝐷 𝑓𝐷 𝑓𝐷 𝑓 )

(7)

𝐻04𝐻04𝐻04 : ` (𝐷0𝐷0𝐷0) ≥ ` (𝐷 𝑓𝐷 𝑓𝐷 𝑓 )
𝐻𝑎4𝐻𝑎4𝐻𝑎4 : ` (𝐷0𝐷0𝐷0) < ` (𝐷 𝑓𝐷 𝑓𝐷 𝑓 )

(8)

Along with the statistical analysis, we also want to calculate the average fault detection time for7

different grid sizes supposing different SUT execution times, i.e., the practical performance gain8

from our improvements. To do that, we observe the time of filtering one test case by our filters in9

100 filtering attempts. Then, assuming negligible time for random test data generation, we use the10

formula in Def. (9) and (10) to calculate the average filtering and fault detection time based on the11

average value of the other parameters.12

Filtering Time := ( |Executed cases | + |Discarded Cases |) × (Unit Filtering Time) (9)

Fault Detection Time := Filtering Time + |Executed cases | × (SUT Execution Time) (10)

7.3 Experiment II13

This experiment is designed to evaluate and compare the efficiency of constraint solving versus14

random input filtering as means to generate test data. Specifically, this experiment addresses our15

research questions RQ3 and RQ4. In this experiment, the time of generating a valid test input for16

different domain parameters is calculated for both test data generation approaches. Similar to the17

previous experiment, QuickCheck is used for generating random test cases and their filtering, and18

Z3 is used for solving constraints. For generating random test cases, the targeted data generator19

(explained in Section 6.1) is implemented. To get a diverse set of solutions by Z3, we use its internal20

strategy for diversification using random seeds.21

We monitor the performance of both methods for generating a valid test case for the values of22

the following parameters:23

• Grid sizes: {10 × 10, 15 × 15, 20 × 20, 50 × 50}24

• Number of agents: {10, 15, 20}25

• Path lengths:26

Displacement steps:{1, 5, 10, 15, 20}27

Wait steps:{0}28

• Test selection constraints:29

“In Square 2 Count x”, where x ∈ {3, 5, 8}30

“In Square 1 Intersection 1 x”, where x ∈ {3, 5, 8}31

• Time-out (in seconds): {15, 30, 60}32

In designing this experiment, we aim to compare the performance of the two methods by33

changing the parameters of the design space specified above. For different path lengths, we could34

vary the length of both displacement and wait steps. However, since varying wait steps has an35
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effect similar to varying the number of displacement steps, we decided to fix the number of wait1

steps (to zero) in the experiment design. We use the constraints in our experiment with the form2

of “In Square 2 Count x” and “In Square 1 Intersection 1 x” (note again, that for the condition of3

the form “Intersection 1 x”, the area of the constraint is irrelevant since the single intersection of4

agents’ paths occurs in a single point which is included in any area). In addition, because the time of5

generating a valid test case can be prohibitively long, we need to impose a time-out for each method6

for generating a valid test case. For the sake of completeness, we apply different time-outs of 15, 30,7

and 60 seconds to judge whether the running time can affect the results. Moreover, since we are8

using a randomness factor in both of our methods, test case generation time for a single constraint9

and test configuration can vary in different attempts. For example, in 30 attempts of generating10

a single test case in a test set-up (grid size: 10 × 10, number of agents: 15, displacement steps:11

1, wait steps: 0, time-out: 60 seconds, constraint: ‘In Square 2 Count 3’), the mean and standard12

deviation of the generation times that we observed were 34.61 and 23.59, respectively. Therefore,13

to gain statistical confidence, we repeat calculating the performance of each method for each14

experiment configuration 30 times. In this repetition, we also consider that Z3’s solution for one15

set of constraints can possibly be cached. Therefore, we avoid successive calls to Z3 for the same16

experiment configuration. Specifically, between two calls of Z3 for the same configuration, we call17

Z3 for all other experiment configurations once.18

To figure out the correlation between one test scenario parameter and the corresponding test19

generation time, we apply a statistical correlation test to measure the linear association between20

these two factors. Pearson [18] and Spearman [9] methods can be used for this. The first method is21

suitable when both data sets are normally distributed, and the second one can be applied regardless22

of the data set’s distribution. Since all test scenario parameters are defined uniformly by us, we23

know that one side of the correlation test is not distributed normally. Thus, we use the Spearman24

method for correlation testing. Naming test generation time with𝑇𝑇𝑇 and test scenario parameter25

with 𝑃𝑃𝑃 , the null and alternative hypotheses of this test are defined in Def (11).26

𝐻05𝐻05𝐻05 :𝑇𝑇𝑇 and 𝑃𝑃𝑃 do not have a linear correlation.
𝐻𝑎5𝐻𝑎5𝐻𝑎5 :𝑇𝑇𝑇 and 𝑃𝑃𝑃 have a linear correlation. (11)

We also calculate the value of 𝑟𝑟𝑟 in this test, which is the linear coefficient value between test27

generation time and a test scenario parameter. This coefficient value is a number in the range28

[−1, +1], where +1 implies a very strong direct correlation, 0 implies no association, and −1 implies29

a very strong inverse correlation between the two variables.30

8 EXPERIMENT RESULTS31

8.1 Experiment I Results32

8.1.1 Fault detection time. In the case of having filters, the total fault detection time comprises33

path generation, checking the filtering constraint satisfaction, and test execution. Since the SUT34

execution time is significantly large in our domain, the number of executions has a significant35

contribution to the total fault detection time. In case of having no filter, the test generation time is36

negligible and filtering time is zero, but all generated test cases before failure are executed on the37

SUT for detecting the fault. Test filters can reduce the total fault detection time by reducing the38

number of test executions. The number of executed and discarded test cases in our experiment are39

shown in Fig. 4. In Fig. 4a, we see that as the grid size increases, the number of SUT executions to40

catch the fault increases for each filtering case. This is simply because increasing the grid size while41

fixing the other parameters decreases the possibility of randomly generating a critical scenario to42
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(b) Discarded cases

Fig. 4. The number of executed (accepted) and discarded (rejected) test cases up to detecting a failure in
SafeTurtles

Table 1. The p-value of applying hypothesis tests on the required number of test executions

Grid 10 × 1010 × 1010 × 10 Grid 15 × 1515 × 1515 × 15 Grid 20 × 2020 × 2020 × 20 Grid 50 × 5050 × 5050 × 50
𝐻𝑎1𝐻𝑎1𝐻𝑎1 𝐻𝑎2𝐻𝑎2𝐻𝑎2 𝐻𝑎3𝐻𝑎3𝐻𝑎3 𝐻𝑎4𝐻𝑎4𝐻𝑎4 𝐻𝑎1𝐻𝑎1𝐻𝑎1 𝐻𝑎2𝐻𝑎2𝐻𝑎2 𝐻𝑎3𝐻𝑎3𝐻𝑎3 𝐻𝑎4𝐻𝑎4𝐻𝑎4 𝐻𝑎1𝐻𝑎1𝐻𝑎1 𝐻𝑎2𝐻𝑎2𝐻𝑎2 𝐻𝑎3𝐻𝑎3𝐻𝑎3 𝐻𝑎4𝐻𝑎4𝐻𝑎4 𝐻𝑎1𝐻𝑎1𝐻𝑎1 𝐻𝑎2𝐻𝑎2𝐻𝑎2 𝐻𝑎3𝐻𝑎3𝐻𝑎3 𝐻𝑎4𝐻𝑎4𝐻𝑎4

No Filter 0.00

0.34

— 0.00

0.00

— 0.00

0.00

— 0.00

0.00

—
F1 Filter 0.00 - - 0.00 0.82 0.17 0.00 0.70 0.29 0.00 0.01 1
F2 Filter 0.00 - - 0.00 0.07 0.92 0.00 0.00 0.99 0.00 0.00 1
F3 Filter 0.00 - - 0.00 0.00 0.99 0.00 0.00 1 0.00 0.00 1

catch a fault. To measure the effect of filtering on the number of test executions, statistical tests are1

applied to the data, and the results are summarized in Table 1.2

According to Table 1, when the grid size is 10×10, there is no significant difference in the number3

of test executions by the applied filters (𝐻𝑎2𝐻𝑎2𝐻𝑎2 does not have an acceptable confidence level and is4

rejected). In this case, the grid is small enough, and the intended critical scenarios are generated5

with high probability. As a result, random test cases are effective enough in detecting the SUT6

fault even with no help of the proposed filters. However, by increasing the grid size, a significant7

difference is detected in all other three grid sizes (𝐻𝑎2𝐻𝑎2𝐻𝑎2 is accepted for them). In 15 × 15 grid, 𝐹3𝐹3𝐹38

significantly reduces the number of test executions (𝐻𝑎3𝐻𝑎3𝐻𝑎3 is accepted for 𝐹3𝐹3𝐹3). However, the other9

two filters do not lead to a significant improvement in this grid size (𝐻𝑎3𝐻𝑎3𝐻𝑎3 is rejected for both of 𝐹1𝐹1𝐹110

and 𝐹2𝐹2𝐹2). In other words, 𝐹3𝐹3𝐹3 is guiding the random test cases towards our SUT fault in a 15× 15 grid11

with higher effectiveness than the other two filters. By increasing the grid size to 20 × 20, both 𝐹2𝐹2𝐹212

and 𝐹3𝐹3𝐹3 result in a significant reduction of the number of test executions (𝐻𝑎3𝐻𝑎3𝐻𝑎3 is accepted for both),13

but 𝐹1𝐹1𝐹1 which has a less strict constraint than 𝐹2𝐹2𝐹2 does not improve the efficiency of random test14

cases significantly. However, in the 50 × 50 grid, all three filters show a significant improvement in15

the number of test executions (𝐻𝑎3𝐻𝑎3𝐻𝑎3 is accepted for all three filters). Increasing the grid size increases16

the room for randomly generated paths to diverge from each other, leading to less effective test17

scenarios. In this case, even small guidance to the generated inputs can significantly improve18

effectiveness, as we can see in the results for the 50 × 50 grid.19

The fact that 𝐹3𝐹3𝐹3 is effective in smaller grid sizes can be explained as follows. For a small arena20

and small path sizes, an intersection constraint is likely to lead to a possible collision with relatively21

large number of agents. This explains why in our experiment, we see better performance for 𝐹3𝐹3𝐹322

compared to 𝐹1𝐹1𝐹1 and 𝐹2𝐹2𝐹2 in revealing SUT faults in smaller grid sizes.23
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Fig. 5. Average fault detection time

Table 2. The p-value of applying hypothesis tests on the required number of execution steps till detecting
a fault

Grid 10 × 1010 × 1010 × 10 Grid 15 × 1515 × 1515 × 15 Grid 20 × 2020 × 2020 × 20 Grid 50 × 5050 × 5050 × 50
𝐻𝑎1𝐻𝑎1𝐻𝑎1 𝐻𝑎2𝐻𝑎2𝐻𝑎2 𝐻𝑎3𝐻𝑎3𝐻𝑎3 𝐻𝑎4𝐻𝑎4𝐻𝑎4 𝐻𝑎1𝐻𝑎1𝐻𝑎1 𝐻𝑎2𝐻𝑎2𝐻𝑎2 𝐻𝑎3𝐻𝑎3𝐻𝑎3 𝐻𝑎4𝐻𝑎4𝐻𝑎4 𝐻𝑎1𝐻𝑎1𝐻𝑎1 𝐻𝑎2𝐻𝑎2𝐻𝑎2 𝐻𝑎3𝐻𝑎3𝐻𝑎3 𝐻𝑎4𝐻𝑎4𝐻𝑎4 𝐻𝑎1𝐻𝑎1𝐻𝑎1 𝐻𝑎2𝐻𝑎2𝐻𝑎2 𝐻𝑎3𝐻𝑎3𝐻𝑎3 𝐻𝑎4𝐻𝑎4𝐻𝑎4

No Filter 0.00

0.33

— 0.00

0.00

— 0.00

0.00

— 0.00

0.00

—
F1 Filter 0.00 - - 0.00 0.80 0.19 0.00 0.70 0.29 0.00 0.01 1
F2 Filter 0.00 - - 0.00 0.06 0.93 0.00 0.00 0.99 0.00 0.00 1
F3 Filter 0.00 - - 0.00 0.00 0.99 0.00 0.00 1 0.00 0.00 1

To make a more precise quantitative and platform-independent estimate of the fault detection1

time, we also used the total number of execution steps (until failure) in SUT executions for comparing2

fault detection efficiency in our experiments. Then, we apply similar statistical tests and present3

the results in Table 2. Here, we see that the results are very similar to the ones in Table 1 in all4

filtering cases and all grid sizes. A similar p-value analysis explained for the results of Table 1 can5

be restated for the results of Table 2. The results of Table 2 also confirm that our initial assumption6

regarding the similarity of SUT execution time for generated test cases with and without filters7

is valid, and the number of test executions is a good proxy to compare testing efficiency in our8

experiment.9

To answer RQ1, in addition to the number of test cases, and the total number of steps, we also10

calculate the average fault detection time with and without filters. Fig. 5 shows how average fault11

detection time is affected by having different test execution times (assuming a fixed time for each12
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Fig. 6. Average time of filtering a test case
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Fig. 7. Average time of filtering test cases up to
detecting a failure in SafeTurtles

test case execution and using the average value of all other parameters defined in Def. (9) and (10) in1

the required calculations). As mentioned in Def. (10), fault detection time has a linear relation with2

SUT execution time. Applying a test selection filter is an attempt to reduce the coefficient of this3

linear relation in exchange for filtering cost. In other words, filtering would be favorable to utilize4

with random test cases as long as (i) the filters effectively guide test cases towards challenging5

scenarios, which leads to reducing the required number of test executions for detecting faults,6

and (ii) SUT execution time is significantly larger than the time of filtering a test case. In our test7

selection scenarios, when the grid size is 10 × 10, the number of executions will not be significantly8

affected by our filters (see Table 1). However, by increasing the grid size, we see the role of different9

filters, especially 𝐹3𝐹3𝐹3, in guiding the test cases toward potentially faulty cases. It results in reducing10

the number of test executions and, as a result, reducing the fault detection time. The anticipated11

improvement in the efficiency by having filters depends on SUT execution time. If SUT is executed12

very fast, the filtering time may not be compensated by reducing the number of test executions.13

But as long as the SUT execution time is large, the effect of having filters and reducing the number14

of test executions is shown with higher clarity. In more realistic scenarios, following Def. (10), a15

similar linear relation is expected between SUT execution time and fault detection time. However,16

as much as (i) input generators generate more faulty cases, (ii) test selection filters detect more17

faulty cases, (iii) the filtering cost is lower, and (iv) SUT execution is more time-consuming, we18

would see a linear filtering plot with a smaller slope and a smaller vertical-intercept.19

Providing the filtering cost overhead of our experiment can complement the results shown in20

Fig. 4. As mentioned in Def. (9), filtering has the cost of checking the satisfaction of the filtering21

constraint for all generated test cases. To estimate the filtering time overhead in our experiment, first,22

we monitored the number of accepted (executed) and rejected (discarded) test cases, represented in23

Fig. 4. Then, we observed the time of filtering one test case in 100 filtering attempts, represented24

on average in Fig. 6. This figure shows that, on average, filtering a test case by 𝐹1𝐹1𝐹1 takes less time25

than 𝐹2𝐹2𝐹2, and it takes less time than 𝐹3𝐹3𝐹3. It also shows that increasing the grid size raises the filtering26

time, which happens due to the increased searching time in a bigger space. Based on the average27

time of filtering a test case and the average number of generated test cases up to detecting the fault,28

which is shown in Fig. 4a, the average filtering time of fault detection can be calculated (according29

to the Def. 9), which is represented in Fig. 7.30

8.1.2 Shrinking time. In the shrinking process of QuickCheck (see Section 2.1), the same filter that31

is used in the test selection phase is also applied in the shrinking process. Filtering constraints32
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Fig. 8. The number of shrinking attempts

Table 3. The p-value of applying hypothesis tests on the number of successful shrink attempts

Grid 10 × 1010 × 1010 × 10 Grid 15 × 1515 × 1515 × 15 Grid 20 × 2020 × 2020 × 20 Grid 50 × 5050 × 5050 × 50
𝐻𝑎1𝐻𝑎1𝐻𝑎1 𝐻𝑎2𝐻𝑎2𝐻𝑎2 𝐻𝑎3𝐻𝑎3𝐻𝑎3 𝐻𝑎4𝐻𝑎4𝐻𝑎4 𝐻𝑎1𝐻𝑎1𝐻𝑎1 𝐻𝑎2𝐻𝑎2𝐻𝑎2 𝐻𝑎3𝐻𝑎3𝐻𝑎3 𝐻𝑎4𝐻𝑎4𝐻𝑎4 𝐻𝑎1𝐻𝑎1𝐻𝑎1 𝐻𝑎2𝐻𝑎2𝐻𝑎2 𝐻𝑎3𝐻𝑎3𝐻𝑎3 𝐻𝑎4𝐻𝑎4𝐻𝑎4 𝐻𝑎1𝐻𝑎1𝐻𝑎1 𝐻𝑎2𝐻𝑎2𝐻𝑎2 𝐻𝑎3𝐻𝑎3𝐻𝑎3 𝐻𝑎4𝐻𝑎4𝐻𝑎4

No Filter 0.00

0.16

— 0.00

0.16

— 0.00

0.74

— 0.00

0.32

—
F1 Filter 0.00 - - 0.00 - - 0.00 - - 0.00 - -
F2 Filter 0.01 - - 0.00 - - 0.03 - - 0.35 - -
F3 Filter 0.00 - - 0.22 - - 0.05 - - 0.03 - -

Table 4. The p-value of applying hypothesis tests on the number of failed shrink attempts

Grid 10 × 1010 × 1010 × 10 Grid 15 × 1515 × 1515 × 15 Grid 20 × 2020 × 2020 × 20 Grid 50 × 5050 × 5050 × 50
𝐻𝑎1𝐻𝑎1𝐻𝑎1 𝐻𝑎2𝐻𝑎2𝐻𝑎2 𝐻𝑎3𝐻𝑎3𝐻𝑎3 𝐻𝑎4𝐻𝑎4𝐻𝑎4 𝐻𝑎1𝐻𝑎1𝐻𝑎1 𝐻𝑎2𝐻𝑎2𝐻𝑎2 𝐻𝑎3𝐻𝑎3𝐻𝑎3 𝐻𝑎4𝐻𝑎4𝐻𝑎4 𝐻𝑎1𝐻𝑎1𝐻𝑎1 𝐻𝑎2𝐻𝑎2𝐻𝑎2 𝐻𝑎3𝐻𝑎3𝐻𝑎3 𝐻𝑎4𝐻𝑎4𝐻𝑎4 𝐻𝑎1𝐻𝑎1𝐻𝑎1 𝐻𝑎2𝐻𝑎2𝐻𝑎2 𝐻𝑎3𝐻𝑎3𝐻𝑎3 𝐻𝑎4𝐻𝑎4𝐻𝑎4

No Filter 0.00

0.09

— 0.00

0.02

— 0.00

0.01

— 0.00

0.00

—
F1 Filter 0.00 - - 0.00 0.60 0.39 0.00 0.60 0.39 0.00 0.01 1
F2 Filter 0.00 - - 0.00 0.21 0.79 0.00 0.09 0.90 0.01 0.00 1
F3 Filter 0.00 - - 0.00 0.00 0.99 0.00 0.00 0.99 0.00 0.00 1

prune the search space of the possible shrunk test case candidates. Filters can potentially contribute1

to making the shrinking process more efficient, because they filter out those intermediate tests that2

are unlikely to cause a failure and hence, reduce the number of failed attempts while shrinking.3

Additionally, the initial test cases that pass the filtering phase are likely to be better starting points4

for the shriknking process, than randomly generated inputs. On the other hand, an ineffective5

constraint that filters out the most shrunk test input will mislead the shrinking process to continue6

its search with other test inputs, which may further affect the number of failed and successful7

shrinking attempts. Hence, we hypothesize that proper filtering constraints that recognize the cases8

that do not potentially reveal the SUT faults, may reduce the number of failed shrinking attempts.9

The number of successful and failed shrinking attempts in our experiment are shown in Fig. 8. To10

check if the existence of filters can reduce the number of successful and failed shrinking attempts,11

we applied statistical test on the results, shown in Tables 3 and 4.12

According to Table 3, the p-value of 𝐻𝑎2𝐻𝑎2𝐻𝑎2 is greater than 0.05 in all of the grid sizes, and, as a13

result,𝐻𝑎2𝐻𝑎2𝐻𝑎2 is rejected for all of them. It means that filtering does not make a significant impact on14

the number of successful shrink attempts in all of the grid sizes. However, we observe a different15

picture by looking at Table 4. According to Table 4, no significant difference is seen in a 10× 10 grid;16
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i.e., for the number of failed shrinking attempts𝐻𝑎2𝐻𝑎2𝐻𝑎2 is rejected. Similarly, no significant changes1

are seen by having 𝐹1𝐹1𝐹1 and 𝐹2𝐹2𝐹2 filters in 15 × 15 and 20 × 20 grids, but 𝐹3𝐹3𝐹3 shows good performance2

and significantly reduces the number of failed shrinking attempts in these grid sizes. In the 50 × 503

grid, all three filters reduce the number of failed shrinking attempts significantly.4

Since we do not have access to the source code of the shrinking heuristics in QuickCheck, our5

discussion of the results is speculative and based on our intuition. We believe the insignificance of6

changes in the number of successful shrinking steps can be explained by the fact that filtering does7

not directly guide QuickCheck on how to choose successful attempts in the shrinking process to8

reach the most shrunk failed test case. Filters are mostly used to discard the test cases from test9

execution to begin with, when their possibility of revealing the SUT faults is considered to be low.10

This explanation is consistent with the positive effect of filtering on reducing the number of11

failed shrinking steps. When the arena size is not big, the shrinking process is likely to detect faults12

even with no help from filters. The number of failed shrinking attempts is typically small in this13

grid size, and the effect of filtering is not significant as a result. When the possibility of detecting14

the fault in a modified test case is low, the modified paths in the shrinking process will have more15

chance to stray away and fail to detect the SUT fault. In such cases, even small hints can result16

in a considerable benefit. This is the reason that we see more significant results for larger arena17

sizes. In this experiment, we also see a better performance for 𝐹3𝐹3𝐹3 rather than 𝐹2𝐹2𝐹2 in reducing the18

number of failed shrink attempts. This happens because the test cases that 𝐹3𝐹3𝐹3 accepts have more19

potential for detecting a fault of our SUT than 𝐹2𝐹2𝐹2 (and 𝐹2𝐹2𝐹2 more than 𝐹1𝐹1𝐹1). Therefore, there would20

be a higher probability with 𝐹3𝐹3𝐹3 to reach a failed test case rather than the other two. As a result,21

among the modified inputs to consider in the shrinking process, 𝐹3𝐹3𝐹3 will accept a smaller portion of22

those inputs to execute to reach the most shrunk test case. This leads to a better performance in23

the number of failed shrink attempts for 𝐹3𝐹3𝐹3 rather than 𝐹2𝐹2𝐹2.24

8.2 Experiment II Results25

Tables 5 and 6 show the average time of generating a valid test case for a test selection constraint26

of the form “In Square 1 Intersection 1 X” with 60 seconds time-out. It can be seen in Table 5 that27

increasing grid size and constraint strictness increases the test generation time of the filtering28

approach. However, increasing path length and the number of agents decreases the test case29

generation time of this approach. On the other hand, as shown in Table 6, constraint solving looks30

robust to the changes of grid size and the constraint strictness, but increasing the number of agents31

and path length increases its test case generation time. Thus, the two approaches have significantly32

different characteristics.33

Tables 7 and 8 show the average time of generating a valid test case by QuickCheck and Z3 for34

test selection constraint of the form “In Square 2 Count X” with 60 seconds time-out. As presented35

in Table 7, grid size and constraint strictness have a direct correlation with the test generation time36

of the filtering approach. A smaller number of agents sometimes degrade the performance, and37

it looks like path length does not considerably affect this approach’s performance. On the other38

hand, as shown in Table 8, increasing the number of agents and path length directly degrade the39

performance of the constraint solving approach. However, it looks as if the grid size and constraint40

strictness do not affect the performance of this approach significantly.41

In order to find out the correlation between test scenario parameters and test generation time, we42

apply statistical correlation test to check if there is a linear association between both sides; this is43

shown in Tables 9 and 10. In the case of constraint solving, the results show with a good confidence44

level (the p-values are below 0.05) that, for both constraint types ‘Count’ and ‘Intersection’, the45

parameters path length and the number of agents have a direct correlation with the test generation46

time. It also shows that for both constraint types, the path length has a higher impact on test47
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Table 5. The average random input filtering times (by QuickCheck) to generate a valid test input with 60
seconds time-out for the constraints of the form “In Square 1 Intersection 1𝑋𝑋𝑋 "
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Table 6. The average constraint solving times (by Z3) to generate a valid test input with 60 seconds
time-out for the constraints of the form “In Square 1 Intersection 1𝑋𝑋𝑋 "
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Table 7. The average random input filtering times (by QuickCheck) to generate a valid test input with 60
seconds time-out for the constraints of the form “In Square 2 Count𝑋𝑋𝑋 "
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Table 8. The average constraint solving times (by Z3) to generate a valid test input with 60 seconds
time-out for the constraints of the form “In Square 2 Count𝑋𝑋𝑋 "
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generation time than the number of agents (the 𝑟 factor is higher for the path length). On the other1

hand, for both constraint types, the results show that the grid size and constraint strictness do2

have a slight, but not high, impact on the test generation time. For the sake of completeness, we3

have repeated all experiments for time-out values of 15- and 30 seconds. The results, which are4

rigorously analyzed next, are very similar for different time-outs, which shows the running time5

does not considerably affect the results of constraint solving, i.e., for our class of constraints, if the6

problem is not solvable in a shorter time, it is unlikely to be solvable in a longer time.7

The performance of Z3 is affected by the number of its input constraints. In our case, increasing8

path length and number of agents increase the number of constraints and, as a result, degrades the9

performance of Z3 in reaching a solution. However, changing the grid size only changes the domain10

of some variables, which does not considerably affect the performance. Changing the constraint11

strictness results in a change in a Z3 function input, which does not lead to a significant change in12

its performance either.13

According to Tables 9 and 10, in case of random test case filtering, grid size and constraint14

strictness directly affect the test generation time, with an acceptable confidence level for both15

constraint types (the p-values are below 0.05). The results remain invariable for different time-out16

values of 15, 30, and 60 seconds. In random input filtering, constraint strictness has more impact on17

the performance than the grid size (the 𝑟 factor is higher for the constraint strictness). An inverse18

correlation between the number of agents and test generation time is also indicated in random19

input filtering. However, the confidence level of this correlation for both constraint types is not20

high. For the ‘Intersection’ constraint type, an inverse correlation is shown between path length21

and time, where its impact is less than grid size and constraint strictness. However, the inverse22

correlation between the time and path length is not significant for the ‘Count’ constraint type in23

random input filtering. Similar to constraint solving, these results are very similar for different24

time-outs, which shows the running time does not considerably affect the results of random input25

filtering. This result is not surprising; when the probability of satisfying the test selection criterion26

through random selection is very low, increasing the number of attempts 2 or 4 times, will not27

increase this probability as much.28

Two factors affect the performance of the random input filtering approach: the number of29

discarded test cases, and the required computation to check the satisfaction of a constraint. In our30

case, increasing each of the four test scenario parameters increases the problem size and, as a result,31

the required computation. The number of discarded test cases depends on the possibility of random32

paths in satisfying the constraint. This possibility is increased by tailoring random path generation33

definition (see Section 6.1) for the aimed filtering constraints. In the targeted path generator used34

in this experiment, increasing the grid size reduces the possibility of satisfying our constraints.35

Increasing our constraints’ strictness also reduces this possibility. On the other hand, increasing36

path length and number of agents increases this possibility. However, by increasing the number37

of agents, the trade-off with the computation time growth does not allow to have a significant38

performance improvement in test generation. A similar effect is indicated by increasing the path39

length in the case of having the ’Count’ constraint type. However, in the case of the ‘Intersection’40

constraint type, the positive effect of increasing path length on the performance overcomes the41

negative effect of the increased computation. This is the reason that we see a significant inverse42

correlation between path length and test case generation time in Table 9 for the random input43

filtering approach.44

9 THREATS TO THE VALIDITY45

In this work, we conducted our experiments on an SUT of autonomous agents that is an abstraction46

of a realistic multiagent system. The injected faults are artificial but are representative of real47
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Table 9. The linear coefficient value of and p-value of applying correlation test for the constraint of the
form “In Square 1 Intersection 1𝑋𝑋𝑋 ”

Constraint Solving
(Z3)

Random Input Filtering
(QuickCheck)

Time-out
15 seconds

Time-out
30 seconds

Time-out
60 seconds

Time-out
15 seconds

Time-out
30 seconds

Time-out
60 seconds

r 𝐻𝑎5𝐻𝑎5𝐻𝑎5 r 𝐻𝑎5𝐻𝑎5𝐻𝑎5 r 𝐻𝑎5𝐻𝑎5𝐻𝑎5 r 𝐻𝑎5𝐻𝑎5𝐻𝑎5 r 𝐻𝑎5𝐻𝑎5𝐻𝑎5 r 𝐻𝑎5𝐻𝑎5𝐻𝑎5

Path Length 0.93 0.00 0.93 0.00 0.94 0.00 -0.25 0.00 -0.23 0.00 -0.22 0.00
Number of Agents 0.25 0.00 0.26 0.00 0.26 0.00 -0.13 0.06 -0.14 0.05 -0.12 0.09
Grid Size -0.02 0.73 -0.02 0.70 -0.03 0.65 0.46 0.00 0.45 0.00 0.46 0.00
Constraint Strictness X -0.02 0.69 -0.02 0.77 -0.00 0.91 0.71 0.00 0.73 0.00 0.75 0.00

Table 10. The linear coefficient value and p-value of applying correlation test for the constraint of the
form “In Square 2 Count𝑋𝑋𝑋 "

Constraint Solving
(Z3)

Random Input Filtering
(QuickCheck)

Time-out
15 seconds

Time-out
30 seconds

Time-out
60 seconds

Time-out
15 seconds

Time-out
30 seconds

Time-out
60 seconds

r 𝐻𝑎5𝐻𝑎5𝐻𝑎5 r 𝐻𝑎5𝐻𝑎5𝐻𝑎5 r 𝐻𝑎5𝐻𝑎5𝐻𝑎5 r 𝐻𝑎5𝐻𝑎5𝐻𝑎5 r 𝐻𝑎5𝐻𝑎5𝐻𝑎5 r 𝐻𝑎5𝐻𝑎5𝐻𝑎5

Path Length 0.59 0.00 0.65 0.00 0.68 0.00 -0.00 0.93 -0.00 0.93 -0.01 0.80
Number of Agents 0.27 0.00 0.33 0.00 0.27 0.00 -0.14 0.05 -0.13 0.06 -0.13 0.06
Grid Size 0.00 0.97 0.00 0.94 0.02 0.74 0.55 0.00 0.56 0.00 0.58 0.00
Constraint Strictness X 0.06 0.40 0.05 0.46 0.04 0.50 0.70 0.00 0.70 0.00 0.69 0.00

systems and real faults in multiagent systems. Our experiments were based on a single-fault1

assumption, i.e., the occurrence of one fault in our experiment excludes the occurrence of the2

other faults at that time. Extending the experimental setup to a multiple-fault assumption, with3

independent random variables for each fault, is a possible generalization of our results. More4

research and experiments can be done to mitigate the threat of the generalizability of our fault5

model by analyzing fault types and frequencies of faults in other real-world robotic projects.6

The proposed DSL for test selection specification only captures the basic actions of a grid-7

based multiagent system. This is a setting that is rich enough to compare filtering vs. constraint-8

based test selection; moreover, we represent the complexity of constraints by the size of the9

formulae representing them. We expect that the results will transfer to more complex DSLs since10

for other types of constraints, SMT solvers are likely to face similar issues with large formulae.11

This assumption may pose a threat to the generalizability of our results. To address these threats,12

we are currently adding other domain concepts into our DSL. Our early results indicate that this13

abstraction is suitable for complex multiagent systems, and also, the complexity of the constraints14

seems to have similar effects as those observed in the current paper.15

Our extended DSL is inspired by model-based agent and environment abstractions provided16

by Russel and Norvig [43]. Using this extended DSL, we would be able to specify different test17

oracles and test selection constraints on the target environment and agents. For instance, we18

can define different sets of valid actions in different locations, a minimum safe distance between19

agents, or measure the severity of collisions in the test oracles. For environmental constraints,20

we can specify, for example, different assumptions about the observability of the environment21

and stochastic changes in the environment. Along with specifying inter-agent constraints, we22

consider the dynamics and kinematics of the agents in the new DSL. We can specify the agents’23

configurations with properties such as maximum speed, acceleration, and deceleration. We plan to24
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provide abstractions for more complex movement plans, such as visiting a set or a sequence of sub-1

goals. We will provide further information and analysis about our extended DSL in a forthcoming2

paper once its design and implementation are completed.3

For generating random paths, we define our specific data generator and use it along with a4

handful of filtering constraints. Therefore, our experiment results cannot be generalized to other5

random path generators and filters. We would like to consider a wider range of data generators6

and filtering constraints and study the relative effect of them in our future work.7

In our experiments, we used a particular range of values for the experimental parameters. We8

defined these ranges to see the trend of performance changes based on input parameter changes.9

Therefore, the experiment results cannot be generalized to the parameter values much smaller10

or larger than our conducted experiments. We also used time-outs in our second experiment due11

to the limited available resources (even with time-out, conducting the experiments takes about12

26 days). Experimenting with other, longer, timeouts would give us a broader perspective on the13

results, and it would improve the accuracy of statistical analysis. In addition, for each parameter in14

our experiment, we just picked coarse-grained values from the considered range of that parameter.15

Certainly, doing the experiment with higher parameter resolution (ideally all the values in the16

range) would provide a clearer picture of the results, but the timing limitations persuaded us to17

make that decision in the experiment design.18

For evaluating the performance of constraint solving and random input filtering approaches,19

we rely on the performance of our experiment tools QuickCheck and Z3. Each tool has its own20

configurations that can be optimized and affect the final result to some extent. This threat can21

be addressed by conducting the same experiments with other tools to improve the reliability of22

the results. There can be some code optimization threats in our implementation too. Although we23

tried our best in coding, there might be room for performance improvement (for example, by using24

different functions of Z3) in our implementation that influences the efficiency of our code and the25

experiment’s results.26

10 CONCLUSIONS27

In this paper, we designed a DSL with formal semantics for capturing the domain knowledge in test28

case specification for grid-based multiagent systems. We used this DSL as a means for comparing29

two test case generation techniques, random test case generation with filtering versus test case30

generation by constraint solving. While both approaches have a promise of making testing more31

effective, they show distinct characteristics with respect to the parameters of the system under test.32

In our experiments, we observe that the grid size and constraint strictness (in the right order)33

increase test case generation time for the filtered random data approach. On the contrary, these34

parameters do not seem to severely affect the effectiveness of the constraint solving approach.35

On the other hand, the number of agents and path length increase test case generation time for36

the constraint solving approach while they have some insignificant positive effect on the filtered37

random data approach. Our results suggest a clear complementarity of the two approaches based38

on the problem parameters and call for follow-up research on how to combine the two techniques39

in a suitable way.40

As an immediate next step, we would like to scale up our case study toward our demonstrator41

within the SafeSamrt project. We can use the existing Robot Operating System (ROS) version of our42

case study that has a more elaborate decision making algorithm of agents or use Apollo6, which is43

an open-source (ROS-based) system of autonomous agents for this purpose. Furthermore, we can44

use the simulation environment of Apollo, or SUMO/Veins simulations of communicating vehicles45

6https://github.com/ApolloAuto/apollo
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(V2X) for simulating our methods. In order to do that, we plan to extend our DSL to generate test1

cases for more realistic systems. The DSL could also consider the severity and likelihood of the2

undesired situations along with the possibility of failures. On the implementation level, we would3

also consider when to use constraint solving or random input filtering approaches, or when and4

how to combine them, to generate test cases efficiently based on the lessons we learned from this5

work. A complete implementation for the testing framework of QuickCheck would then follow.6
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