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We perform a systematic literature review on testing, validation, and verification of robotic and autonomous systems (RAS). The scope
of this review covers peer-reviewed research papers proposing, improving or evaluating testing techniques, process, or tools that
address the system-level qualities of RAS.

Our survey is performed based on a rigorous methodology structured in three phases. First, we made use of a set of 26 seed papers
(selected by domain experts) and the SERP-TEST taxonomy to design our search query and (domain-specific) taxonomy. Second, we
conducted a search in three academic search engines and applied our inclusion and exclusion criteria to the results. Respectively, we
made use of related work and domain specialists (50 academics and 15 industry experts) to validate and refine the search query. As a
result, we encountered 10,735 studies, out of which, 195 were included, reviewed and coded.

Our objective is to answer four research questions, pertaining to (1) the type of models, (2) measures for system performance and
testing adequacy, (3) tools and their availability, and (4) evidence of applicability, particularly in industrial contexts. We analyse the
results of our coding to identify strengths and gaps in the domain and present recommendations to researchers and practitioners.

Our findings show that variants of temporal logics are most widely used for modelling requirements and properties, while variants
of state-machines and transition systems are used widely for modelling system behaviour. Other common models concern epistemic
logics for specifying requirements and belief-desire-intention models for specifying system behaviour. Apart from time and epistemics,
other aspects captured in models concern probabilities (e.g., for modelling uncertainty) and continuous trajectories (e.g., for modelling
vehicle dynamics and kinematics).

Many papers lack any rigorous measure of efficiency, effectiveness, or adequacy for their proposed techniques, processes, or tools.
Among those that provide a measure of efficiency, effectiveness, or adequacy the majority use domain-agnostic generic measures
such as number of failures, size of state-space or verification time were most used. There is a trend in addressing the research gap in
this respect by developing domain-specific notions of performance and adequacy. Defining widely-accepted rigorous measures of
performance and adequacy for each domain is an identified research gap.

In terms of tools, the most widely used tools are well-established model-checkers such as Prism and Uppaal, as well as simulation
tools such as Gazebo; Matlab/Simulink is another widely used toolset in this domain.

Overall there is very limited evidence of industrial applicability in the papers published in this domain. There is even a gap
considering consolidated benchmarks for various types of autonomous systems.

We further analyse the results of our coding for the sub-domains of robotics and autonomous systems and provide a refined picture
of the research landscape as well as strengths and weaknesses in each subdomain.
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1 INTRODUCTION

1.1 Motivation

Robotic and Autonomous Systems (RAS) involve a rich integration of several disciplines such as control engineering
and robotics, mechanical engineering, electronics, and software engineering. Validation and verification of RAS entails
a non-trivial extension of traditional testing techniques to deal with their multi-disciplinary nature. In particular, for
researchers and practitioners from the software testing community, extending the existing software testing techniques
to RAS is a challenge that has led to a sizeable literature on proposing and evaluating different techniques and processes.
This rich literature calls for a secondary study that puts a structure to this landscape and identifies relative strengths
and weakness of available results. The present paper addresses this gap by performing a structured literature survey of
RAS testing.

There are a number of earlier surveys on related topics; we provide an in-depth comparison of related work with
our survey in Section 2. However, briefly speaking, some of these surveys have a different or more confined scope,
e.g., considering machine learning components [79], formal specification and verification techniques [139] or driving
data-sets [109], or do not aim to provide a structure overview of the field in order to answer concrete questions for a
given audience [20]. To our knowledge, this is the first systematic secondary study that covers the breadth of results in
testing RAS (see the Related Work section for other studies with different foci) and moreover, provides an analysis of
such results with the aim of characterising the type of techniques, process and analyse their evidence of applicability
(in terms of tools and type of case study).

1.2 Scope and audience

Our scope covers novel results (including techniques, process, tools, and applications thereof) that deal with testing
robotic and autonomous systems. We call such novel results “interventions”, following the tradition in medical secondary
studies, as well as recent systematic reviews in testing [3]. In our terminology, an intervention is “an act performed (e.g.
use of a technique or a process change) to adapt testing to a specific context, to solve a test issue, to diagnose testing or
to improve testing” [68]. The scope of our survey includes several validation and verification techniques, including
physical testing, model-based testing, runtime monitoring, formal verification and model checking.

Our audience are both researchers and practitioners in software and systems engineering. Hence, we perform our
analysis from two perspectives:

(1) researchers: to identify strengths and gaps in the research landscape of testing RAS, particularly concerning the
traditional software testing taxonomies, are there new challenges not covered by software testing taxonomies,
and

(2) practitioners: identify interventions that have the evidence of applicability given the environment and available
resources.
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We provide a precise definition of RAS in the remainder of this paper, in order to derive rigorous inclusion and
exclusion criteria. But in a nutshell, for our interventions to be useful for the intended audience, we confine our scope
to those interventions that

(1) address testing the computer systems integrated in RAS (as opposed to only physical, mechanical, or control parts)
in their methodology; this is justified by the fact that our intended audience are researchers and practitioners in
software and systems engineering,

(2) have some evidence of applicability, efficiency, or effectiveness on RAS; this is motivated by our scope (testing,
validation and verification of RAS) as well as our goal to provide evidence of strength (or weakness) for researchers
and practitioners, and

(3) take the system-level validation and verification into account and do not focus on a specific unit or component
of such systems (e.g., a specific type of learning or planning algorithms or testing of physical or mechanical
parts of such systems), this is motivated by the inherent multi-disciplinary of RAS and the requirement for
accommodating it for any system-level testing RAS.

Next, we define a number of research questions that help us structure and analyse the existing interventions for the
two groups of audience.

1.3 Research questions

As specified above, we would like to review and analyse those interventions that are applicable to testing, validation,
and verification of RAS; in particular, we have an emphasis on those intervention that take into account the computer
systems in RAS and their interactions with their physical environment and human users. In the remainder of this section
and throughout the rest of the paper, we use the term testing to refer to various testing, validation, and verification
techniques.

A structured method of testing, validation, or verification is often steered by models, describing the structure or
the behaviour of the system under test. The type of models often determines the type of analysis that can be applied
and hence, has a far-reaching effect on the applicability and effectiveness of the technique. However, not all included
interventions are model-based (or even related to test cases) as we also consider other forms of verification such as
runtime monitoring. Moreover, the metrics of effectiveness, efficiency and coverage used to evaluate the system under
test and the intervention itself are both a major factor in determining the intervention’s applicability and hence, form a
major part of our research questions. Finally, the case studies performed to evaluate the technique are a major source of
evidence for applicability. Based on these observations, our research questions are specified below:

(1) What are the types of models used for testing RAS?
We interpret the word “model” liberally as any information source or domain abstraction that is used to structure
or steer the testing process or evaluate the outcome of testing. This helps us understand and decide about the type
of abstractions that are commonly used or needed for testing RAS. They help both researchers and practitioners
identify the types / aspects of RAS that can be addressed using the current testing interventions and also the
type of information that need to be made available in order for these interventions to be applicable. It also points
out to aspects of RAS that are currently not covered by the current interventions. In line with the above specified
goals, we analyse two types of models: those that address the system under test or its environment, versus
models that describe its quality attributes.
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(2) Which efficiency, effectiveness and coverage measures were introduced or used to evaluate RAS testing interven-
tions?
Efficiency refers to the amount of time and resource needed for an intervention to achieve its goal. Effectiveness
refers to the type and the number of faults recovered by a testing intervention and coverage refers to any measure
that is used to decide the adequacy and the stopping criteria for a testing intervention. Answering these two
questions also provide researchers and practitioners with the available evidence for the strength and applicability
of the existing techniques, process, and tools.

(3) What are the interventions supported by (publicly available) tools in this domain?
Tool support is a key enabler to the application of testing interventions in practice and their integration with
other interventions in research contexts. We analyse the literature regarding this research question by providing
information about the tooling available for and needed for each intervention; we call the first class of tools, i.e.,
those tools that are developed to support a particular intervention, effect tools, and those tools used and needed
for the effect tools to function. The second category, called context tools, provides further information about
what is needed for a particular intervention to be automated in its context. We also report about the license
information, when available to facilitate decision-making.

(4) Which interventions have evidence of applicability to large-scale and industrial systems?
We gather evidence from the reviewed interventions in terms of case studies and classify them into small-scale,
benchmarks, and industrial case studies.

1.4 Structure of the Paper

The remainder of this paper is structured as follows. In Section 2, we review related work, with a focus on secondary
studies (literature surveys and reviews) on related subject matters. In Section 3, we define the scope of the paper and
explain the background to this structured review. There, we report on the core set of results we started with as the seed
for our search in order to shape the study. In Section 4, we review the methodology we used for the our systematic
review; this include the description of our search and selection strategy, the development of the taxonomy used for
coding the results, our data extraction and synthesis methods. In this section, we also reflect on the threats to our
study. In Section 5, we present the results of our coding and analyse them to answer our research questions. In Section
6, we reflect on our analysis and provide concrete suggestions for our target audience, i.e., both for researchers and
practitioners. In Section 7, we conclude the paper and present some directions of future research.

2 RELATEDWORK

There are a number of literature reviews, surveys, and mapping studies conducted which cover different aspects of
robotic and autonomous systems. In what follows, we give an overview of the ones that are most related and have the
closest connection to our study (in chronological order).

Cortesi, Ferrara and Chaki [55] discuss the features of a number of analysis techniques, namely data-flow analysis,
control-flow analysis, model-checking and abstract interpretation. The survey covers features such as automation,
precision, scalability, and soundness for these techniques. The goal for the study is stated as providing robotics software
developers hints to help choosing appropriate analysis approaches depending on the kind of properties of interest and
software system. However, the interventions studied in this paper are not necessarily applied in the robotics domain
already. Furthermore, the work is not a systematic review and does not claim providing any coverage on existing work
on analysis techniques applied in its target application domain.
Manuscript submitted to ACM
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Helle, Schamai and Strobel [100] as well as Redfield and Seto [182] provide an overview of challenges in and available
techniques and results for testing and verification of autonomous systems. Both studies only sample a small subset of
available results and techniques and use them to identify the areas requiring future research. Our findings based on
a much larger set, provide a much more refined view about the available interventions and the landscape for future
research.

Koopman and Wagner [119] give an overview of challenges in the V model adapted to deal with the problems
in the context of autonomous vehicles. The paper identifies five major challenge areas in testing according to the V
model for autonomous vehicles, namely, driver out of the loop, complex requirements, non-deterministic algorithms,
inductive learning algorithms, and fail operational systems. The paper covers solution approaches that seem promising
across these different challenges including phased deployment using successively relaxed operational scenarios, and
using a monitor/actuator pair architecture to separate complex automated and autonomous functions from simpler
safety functions, and fault injection. Similar to the previous two papers, the work of Koopman and Wagner has a
more restrictive scope than the present paper; moreover, the above-mentioned work is not a (structured) review of the
literature.

Gao and Tan [79] provide an overview of the state-of-the-art in V&V for safety-critical systems that rely on machine
learning techniques (based on deep learning) for autonomous driving. In this work, the researchers first extract a set of
studies by conducting a search and identify a set of challenges by reviewing these studies. Then, the validity of the
identified challenges is checked by setting up an industrial questionnaire to survey. Furthermore, a set of research
recommendations are provided for future work in automated driving based on deep learning. The search query used in
this study is more limited than ours in scope, because it focuses on testing for automated driving and deep learning,
while we cover robotic and autonomous systems in a much broader sense. The articles covered in this study are
published before 2017.

Knauss et al. [115] present an empirical study for investigating software-related challenges of testing automated
vehicles. In the work two different kinds of data collection namely, focus groups (including eleven practitioners from
Sweden) and interviews (including 15 practitioners and researchers from a number of countries) are used. The work
provides insights about challenges such as virtual testing and simulation, standards and certifications, increased need
to test nonfunctional aspects, and automation. This work is not a systematic mapping.

Rao and Frtunikj [181] identify three concrete issues regarding assessment of functional safety of neural networks
used in automotive industry to initiate the discussion with industrial peers to find practical solutions. The issues include:
dataset completeness, neural network implementation, and transfer learning.

Kang, Yin, and Berger [109] provide a survey of publicly available driving datasets as well as virtual testing for
autonomous driving algorithms. A detailed overview of 37 datasets for open-loop testing and 22 virtual testing
environments for closed-loop testing have been provided. A remarkable aspect of this survey is the involvement of
an industrial domain expert. The scope and results of the paper is significantly different from ours: they focus on
autonomous driving algorithms, while we include the whole domain of RAS; they focus on datasets and tools, while we
focus on interventions and their effects, as well as their tools.

Beglerovic, Metzner, and Horn [20] provide a brief overview of methodologies used for testing in automated driving.
The work provides recommendations about promising methodologies and research areas aimed to reduce the testing
effort. The authors mention challenges such as complexity of automated driving functions, variation of scenarios and
parameters, scenario selection and test generation. Furthermore, the work briefly touches upon validation, supporting
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tools in the validation task, and standardisation. This paper is significantly different in methodology from ours: it is not
a mapping study and does not provide any detail about the coverage of existing work.

Luckcuck et al. [139] provide a survey of formal specifications and verification methods and tools used for autonomous
robotics systems. The work covers a range of studies from 2007-2018. In their work, a number of challenges for formally
modelling and verifying the environments that the robotic systems operate in in addition to the internals of such
systems is provided. Their work differs from ours as it only covers formal specification and verification tools for such
systems. Hence, techniques such as (non-exhaustive) testing and simulation are not covered in their work. Also, our
work has a different methodological approach in that we pose and answer research questions as the result of our
secondary study, while they focus on the literature review itself. We did use the studies reviewed by Luckcuck et al. to
validate and refine our search query in the third phase of our research.

Gleischner, Foster, and Woodcock [90] provide an overview of the strengths, weaknesses, opportunities and threats
in the application of integrated Formal Methods to robotic and autonomous systems. Some of their findings, such as the
gaps concerning evidence of effectiveness and tool support, reinforce our findings and some, such as the challenges in
training, are complementary to those of the present paper. We believe some of the complementary findings arise from
the general experience and findings about the application of formal methods, which goes broader than the scope of a
survey in the domain of robotic and autonomous systems.

Tahir and Alexander [208] perform a systematic literature review on coverage-based validation, verification, and
safety assurance techniques for autonomous vehicles. The scope of their survey is much more confined than ours. They
do code different coverage criteria as an answer for one of their research question, which has an overlap with our goal
with identifying the coverage criteria. We have used their included papers to validate our search query as a part of our
third phase methodology.

Rajabali et al. [179] perform an extensive and systematic literature review on software validation and verification for
autonomous vehicles. Their scope is more restricted than the scope of the present study, but some of their research
questions (such as identifying gaps in the literature) are common to ours. However, their methodology does not involve
a detailed taxonomy as in the present study and hence, their conclusions are more abstract and at a higher level. We
have also used this recent paper to validate the query and the final set of considered papers in the third phase of our
research.

3 BACKGROUND AND RATIONALE

In this section, we provide an overview of the motivation behind this literature survey, and define its domain. Subse-
quently, we introduce the basic taxonomy that we have extended and adapted for coding the literature. We also review
the pilot study that was used to shape our taxonomy (and later validate our search query, presented in the next section).

3.1 Motivation

Based on our study of the existing literature reviews and surveys, we identified the gap for a secondary study that 1)
presents a structured review of the existing results on validation and verification of robotic and autonomous systems
and 2) targets specific research questions regarding a) the types of models, b) measures of efficiency and effectiveness,
c) available tools, and d) evidence of applicability to large-scale and industrial systems.
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3.2 Robotic and Autonomous System

There are a variety of definitions for our domain, RAS; these definitions encompass aspects such as autonomy (including
high-level decision making and planning), and adaptation (including artificial intelligence and machine learning) and
interaction with human users and the physical environment (including perception, actuation, and mobility). In our
view, the following definition provides a concise synthesis of these aspects:

An autonomous system is an intelligent system that is designed to deal with the physical environment on
its own, and work for extended periods of time without explicit human intervention. They are built to
analyse, learn from, adapt to, and act on the surrounding environment.

This definition is inspired by and merges some complementary aspects in the earlier definitions given by the Royal
Academy of Engineering [165] and the National Science Foundation [76]. We emphasise two important aspects of
this definition: one is the system-level perspective; hence, modules or units of software and hardware that are not
autonomous systems themselves will not be included in our studies; the second important aspect is the interaction with
the environment; hence, autonomous systems that work on offline data and do not feature an interaction with their
environment are excluded as well.

3.3 Testing and the SERP-Test Taxonomy

In this work, we consider a testing intervention as any structured approach to validate or verify the quality of a robotic
and autonomous system. Validation concerns checking the system specification, design, or implementation against user
requirements. Verification concerns checking the system specification, design, or implementation against another piece
of specification, design, or implementation. In other words, validation checks whether we have built the right system
(for its users), while verification checks whether we have built it correctly (with respect to other specifications and
artefacts) [174].

Our classification of testing research is based on the SERP-Test taxonomy [68]. This taxonomy provides a very
general framework for classifying and communicating software testing research and has been used and adapted for
this purpose across different domains [3, 184]. It serves as a useful tool for researchers and practitioners to select a
testing process or technique based on the available resources or the expected evidence of applicability, effectiveness,
and efficiency. In SERP-Test, testing research is classified in terms of four facets: intervention, effect, scope, and context.
Intervention pertains to the test techniques, their adaptation, and adoption in different context. Effect facet is used to
identify the improvement or adaptation in a given practise as well as any insights gained through assessment. The scope
specified whether the effect has been materialised in planning, design, execution, or analysis of tests. Context, as its
name suggests, specifies the environment where the intervention takes place, in terms of people and their knowledge,
the system under test, and the required models and other types of information.

In the next section, we report on the methodology of this study; namely, in Section 4.1 we discuss the seed papers
that formed the basis of our search; in Section 4.2, we report on the final inclusion and exclusion criteria; and in Section
4.3, we report on the adapted taxonomy. In Section 4.4, we report on the search query and its validation with respect to
the seed papers; Finally, in Section 4.5 we detail our strategy to extract data from the set of included papers.

4 METHODOLOGY

In this section, we present the methodology used throughout our study that encompasses three phases. In the first
phase, a pilot study was conducted, in which, we gathered a set of seed papers (Section 4.1), developed a set of
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inclusion/exclusion criteria (Section 4.2) and refined our taxonomy (Section 4.3). In the second phase (Section 4.4.1), we
performed the search, applied the exclusion criteria and coded the selected papers. In the final phase (Section 4.4.2), the
search query was validated and refined via an analysis of the secondary studies on the subject and, also, in consultation
with domain experts; a new search was performed and additional studies were included for review and coding. Finally,
in Section 4.5, we present our strategy for further filtering papers by their content and an overview of the outcomes.

A repository containing artefacts of this study (namely, the seed papers, the result of the searches and the coding) is
publicly available1.

4.1 Seed papers

The set of seed papers contain 26 manually selected studies gathered in consultation with domain experts: three experts
from academia with 32, 23, and 19 years of experience and one expert from industry with 26 years of experience in
computer systems testing and verification domains. We reviewed this set as a pilot study with the following objectives:

(1) gathering keywords for the initial search query,
(2) sharpening the inclusion and exclusion criteria, and
(3) evaluating and adapting the SERP-Test taxonomy.

4.2 Selection strategy

To set the boundaries for the scope of our study, based on our research questions, we defined and used a set of
inclusion/exclusion criteria as follows.

4.2.1 Inclusion Criteria. The criteria considered for inclusion of studies is as follows:

• The topic of the study is on Testing RAS (Robotics and Autonomous Systems),
• The context must consider the cyber and physical aspects of a system (as opposed to only physical, mechanical,
or control parts.), and

• Evidence for applicability is provided.

In the scope of our study, Testing is interpreted in a broad sense, which includes formal verification techniques, static
and dynamic testing, validation and non-exhaustive techniques.

4.2.2 Exclusion Criteria. The studies matching the following criteria are excluded.

• Not available online,
• Not in English,
• Short papers,
• Not peer-reviewed,
• Patents,
• Published before 2008 (in the second phase), published before 2014 (in the third phase),
• Not addressing robotics and autonomous systems,
• No research contributions to testing (incl. validation or verification),
• Only testing units in isolation; not considering the robotics and autonomous systems as a whole. (If the contri-
bution for testing units are not specific to the system considered in the paper and can have applications in the
bigger context, we included the study.),

1https://figshare.com/s/40bb82bba792d80bdbfa

Manuscript submitted to ACM



Testing, Validation, and Verification of Robotic and Autonomous Systems: A Systematic Review 9

• The study only considers the physical aspects of the system and not software components,
• Concerning human-controlled systems, e.g., UAVs and robots that are remotely controlled by a human, and
• For papers on the topic of simulation, as there are a large number of studies among the search results which do
not have new contributions in the process or technique of testing interventions; we consider excluding such
papers unless they provide clear contributions in the context of testing, validation and verification, have available
tool, or provide evidence of applicability in industrial context.

4.3 Taxonomy

In order to consistently classify the set of included studies to extract the information required for answering the research
questions described in Section 1.3, we follow a modified version of the SERP-Test taxonomy (see Section 3.3). We started
with the high-level facets proposed in SERP-TEST taxonomy and throughout a number of iterations we defined and
re-defined a number of categories based on the information obtained from coding the included studies. The extracted
data from each facet has been used to answer the research questions and to identify strengths and gaps (provided to
researchers and practitioners) as part of our analysis in Section 6. An overview of the final taxonomy, based on which
the studies are classified, is depicted on Fig. 1.

Fig. 1. Illustration of Taxonomy.

As follows, we provide a brief description of our taxonomy.

Context. For context we consider two main categories, namely, system under test and the technique.

• System Under Test. System under test describes the type of systems on which the testing technique is applied.
In our study, we consider two main categories of RAS, namely, Robotics and Autonomous Systems. These two
categories of systems are selected as they dominate the case studies and a broad range of systems that are
considered in the studies concerning testing RAS.

• Technique. This is the second category that is considered under Context which represents the testing technique
that is improved or affected as a part of the contributions of the work to testing RAS.

• Models. Different types of models can be used for describing the behaviour of a system under test. We consider
this category to extract the information about the variety of models that are used in the work on testing RAS.

• Tools and languages. This category consists of details on tools and languages, under which, the subject systems
are described.
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Effect. We refine the Effect facet (see Section 3.3) further to four categories as follows.

• Metrics. This category encompasses the metrics used as a way of evaluating test adequacy or correctness of the
subject, based on performance (i.e., efficiency and effectiveness) or coverage measures.
– Performance. This category describes the effect of an intervention on the performance of the testing technique
or the subject system. The performance covers a variety of measures concerning safety, quality and resources
observed during testing.

– Coverage. This category concerns the measures that indicate how comprehensive the testing technique is
once performing in the context of RAS.

• Process. This category describes the kind of effects that impact the process of testing technique.
• Technique. The technique concerns methods presented as new testing methods or improvements for testing
RAS.

• Tooling In this category, we extract information about the type of tools that have been used throughout each
work. We further classify the tools according to their availability: (1) open source, that are tools for which the
source artefacts are available, (2) publicly available, which are tools that are accessible to be used but the source
code has not been provided and (3) private, which are tools that have not been made available for download or
purchase.

Scope. This facet in SERP-Test taxonomy is further refined to two main categories as follows:

• Model testing. This category represents techniques which use a model of the system for testing. We define two
sub-categories for such techniques:
– Simulation. This category comprises different types of simulation techniques used for testing RAS.
– Formal verification. This category describes formal verification techniques that use a model of the system
to rigorously verify the behaviour.

• System testing. This category describes techniques which are applied on actual implementation artifacts of
systems.
– Static testing. This category describes techniques which perform testing of system without code execution.
– Dynamic testing. This category describes techniques which check the functional behaviour by executing the
implemented code for the system.

Evaluation. We define the case study category which has three main subcategories for this facet in SERP-Test
taxonomy (see Sect. 3.3)

• Case Study. This category specifies the type of systems that has been used in evaluations of the selected papers.
We categorise the case studies into three subcategories, namely, small scale, benchmark, and industrial.
– Small. We consider examples that are developed solely for the purpose of evaluating the method in a specific
study and are not applicable for evaluating other similar intervention (due to lack of available details, lack of
genericity, or insufficient scale / number of subject systems) as small scale.

– Benchmark. We consider a case study as benchmark if it represents a set of systems with sufficient level of
details such that they are / can be used as a point of reference in the evaluations performed in the context of
testing autonomous systems.

– Industrial.We categorise a case study as industrial if the subject system is of industrial scale and the evaluation
has been performed in industrial context.
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4.4 Search strategy

A total of four searches have been conducted. Following after the initial search, three additional searches were conducted
to account for our own internal validation and, also, external validation from domain experts. In addition to Google
Scholar, two digital libraries, namely, ACM and IEEE, that broadly cover publications with topics in computer science
and engineering fields, have been selected as search venue.

4.4.1 Initial query. From the seed papers, an initial set of keywords was extracted to form a search query; additional
terms with close meanings and relation to the initial keywords were used to broaden the search. Our query is a
conjunction of two main sub-queries: one that comprises terms relevant to our application domain, robotic and
autonomous systems, and the other, contains the terms related to testing and verification. The initial query was as
follows.

(“Robots” OR “Robotics” OR “Deep learning” OR “Machine Learning” OR “Artificial Intelligence” OR “Robot Simulator”
OR “Autonomous Vehicle” OR “Autonomous Vehicles” OR “Autonomous Cars” OR “Image Classification Systems” OR
“Neural Networks” OR “UnmannedVehicles” OR “UnmannedAerial Vehicles” OR “UAV”OR “Connected andAutonomous
Vehicle” OR “CAV” OR “Automated Functions” OR “Drive Assist” OR “Multi-Agent Systems” OR “Autonomous Agents”)

AND
(“Testing” OR “Validation” OR “Verification” OR “Safety Case Analysis” OR “Runtime Monitoring” OR “Robustness”

OR “Simulation” OR “Coverage” OR “Metaheuristics” OR “Search-Based” OR “Combinatorial” OR “SMT Solving” OR
“SAT Solving” OR “Constraint Solving” OR “Model Checking”)

For this first search, we limited the scope of our search to papers published between 2008 and 2018. Its outcome was
a set of 3030 studies.

4.4.2 Validated query. During our validation process, we made use of the seed papers, secondary studies (by checking
papers that were referenced amongst included papers but were not an outcome of the search, i.e., snowballing technique)
and domain specialists. We approached 50 academics and 15 industry experts in the domains of testing and verification
to validate the outcome of the above-given search. They provide expertise in several areas, including verification and
validation (31 experts with a median of 18 years of experience), artificial intelligence (8 experts with a median of 12
years of experience), human factors (5 experts with a median of 11 years of experience), and robotics and control
systems (9 experts with a median of 14 years of experience). Of that group, we received detailed comments from 8
experts - 7 academics and 1 from industry with an average 18.25 and median 26 years of experience in the field. This
resulted in three revisions of our search query.

In the first revision, we included additional keywords ("Robot", "Robotic", "Swarm", "Swarms", "UAVs", "Automated
Driving", "ADAS", "Verifying", "Verifiably", "Assurance", and "Assuring"), removed keywords that did not result in coded
papers ("Machine Learning", "Deep Learning", "Artificial Intelligence", "Image Classification System", "Neural Networks",
"Robustness", "Coverage", and "Combinatorial") and swapped terms for more generic ones ("Autonomous Vehicles" and
"Autonomous Cars" were swapped for "Autonomous"). Furthermore, we observed that from years 2008 to 2014, only a
handful of papers were included; this led us to further focus the search to papers published between 2014 and 2018.

In the second revision, we added the terms "Driveless" and "Self-driving". Finally, in the third revision, to increase
the relevancy of our results, we also included papers from 2019. The consolidated search query is as follows:
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("Robots" OR "Robot" OR "Robotics" OR "Robotic" OR "Swarm" OR "Swarms" OR "Autonomous" OR "Unmanned" OR "UAV" OR "UAVs" OR "CAV" OR
"Automated Functions" OR "Automated Driving" OR "Drive Assist" OR "Multi-Agent Systems" OR "Multi-Agent System" OR "Driverless" OR "Self-Driving"
OR "ADAS")

AND

(""Testing" OR "Validation" OR "Verification" OR "Verifying" OR "Verifiably" OR "Assurance" OR "Assuring" OR "Safety Case Analysis" OR "Runtime

Monitoring" OR "Metaheuristics" OR "Simulation" OR "SMT Solving" OR "SAT Solving" OR "Constraint Solving" OR "Model Checking" OR "Search-Based")

The validation process resulted in a total of 7679 additional and unique papers (i.e., the duplicates from the first
search were automatically excluded).

4.5 Overview of the results

As discussed in Section 4.4, 3030 papers were obtained as a result of the initial query. As a result of the validation
process, we obtained a further 7679 papers. This leads to a total of 10709 search results. Our data extraction methodology
consisted as follows.

First, we went through the results and filtered papers based on their title; we obtained a total of 1247 potentially
relevant papers. Second, the remaining studies were reviewed by abstract and we applied the exclusion criteria (see
Section 4.2), which led to a final set of 195 studies. Third, this final set was coded according to our taxonomy and
reviewed in detail as a part of this survey. Figure 2 shows a summary of the number of published articles clustered by
year of release. We notice a steady yearly increase of studies included in our review.

Fig. 2. Relevant and included papers by year.

5 RESULTS

In this section, we present the results of coding the literature in our taxonomy. We structure our results in terms of
the four research questions. Regarding RQ1, we present the results concerning the different property specification
languages and modelling languages and frameworks used for testing TAS. Regarding RQ2, we review the metrics used
to measure the effectiveness, efficiency, and adequacy of testing interventions as well as the quality of systems under
test. Regarding RQ3, we code the tools used to implement different interventions as well as any tools implementing the
interventions themselves. Regarding RQ4, we present the evidence provided for applicability of the interventions in
terms of the case studies and benchmarks used to evaluate the interventions.
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5.1 RQ1: Models

In this section, we review the type of models and formalisms that are used for describing the behaviour of robotics
and autonomous systems and their properties in testing interventions. Tables 1 and 2, show an overview of results
of coding for models used in the studies included in this survey. We classify models according to their semantics (i.e.,
formal or informal), the domain in which they are employed (i.e., agnostic or domain-specific) and type (i.e., qualitative
or quantitative).

We consider a model to be quantitative if it can represent measurable quantities such as probabilities or real-valued
entities. Otherwise, the model is considered qualitative. This classification applies regardless of whether the results of
the evaluation or the testing technique applied on the model is qualitative or quantitative.

5.1.1 Modelling Properties. Table 1 presents the models that have been used to represent properties and the studies
that employ them. Among all studies included in our survey, less than one third use a model or logic to describe the
properties of the subject systems. For this set of studies all models are classified as formal. Among those, we notice that,
over two thirds employ logics to describe qualitative properties of systems [8, 9, 17, 19, 22, 23, 23, 41, 41, 64, 64, 69, 71,
75, 77, 81, 104, 108, 111, 120–123, 135, 137, 141, 159, 171, 176, 198, 204, 217, 221–223]. Linear temporal logic, first-order
logic, and epistemic logic are examples of such logics that have been used in this set of studies. The remaining studies
employ logics that can describe quantitative properties, e.g., describing stochastic or temporal aspects of systems
[7, 8, 16, 37, 63, 88, 95, 111, 136, 138, 166, 172, 202, 235, 236]. We notice how there is a lack of languages that cater for
specific domains; all property languages found in our survey have been domain agnostic.

Table 1. Models for system properties. The table maps the models used to represent properties to the studies that employ them. We
classify the models according to their semantics (formal or informal), domain (agnostic or domain-specific) and type (qualitative or
quantitative).
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[8] First-order logic

[9, 17, 19, 41, 64, 75, 77, 104, 108,
141, 159, 171, 176, 222, 223] Linear Temporal Logic (LTL)

[69, 204] Computation Tree Logic (CTL)

[41] ForSALE

[71] Property Specification Language (PSL)

[23, 120–123, 135, 137] Epistemic temporal logics (ATL, ATLK, ACTL*K\X , IACTLK\X , CTLK)

[23] Epistemic strategy logic (ESL)

[22] Parametrised Data-Aware Multi-Agent Systems (P-DAMAS)

[198] Temporal Logic of Actions

[217] TRIO (Temporal Logic)

[64] Rewriting logic

[221] Past time linear temporal logic (ptLTL)

[7, 37, 172, 235, 236] Probabilistic Computational Tree Logic (PCTL)

[136] Probabilistic Linear Temporal Logic (PLTL)

[138] Continuous stochastic logic

[16, 95, 202] Timed Computation Tree Logic (TCTL)

[63, 88] Signal Temporal Logic (STL)

[166] Metric Interval Temporal Logic (MITL)

[111] First Order LTL

[89] Differential Dynamic Logic

[81] Graphical Structuring Notation (GSN)
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A review of the results presented in Table 1 shows there is a limited number of studies which consider analysis
of properties of systems formulated using formal logics. Furthermore, quantitative properties are considerably less
represented in the selected studies. Properties to verify stochastic, continuous and temporal aspects of the systems
should play an important role when testing complex and real-time systems, such as RAS. This gap emphasises the need
for quantitative logics that are tailored for the domain.

5.1.2 Modelling System Behaviour or Structure. In Table 2, an overview of models used for describing the behaviour or
structure of robotics and autonomous systems is provided. Close to half of all of the included studies in this survey,
employ system models in their testing strategy; mathematical and rigorously defined models, i.e., formal models, are
used in most of such interventions. For instance, Petri Nets and a variety of their extensions [10, 19, 75, 192, 231],
labelled transition systems and some of their extended versions [12, 37, 95, 138, 190], finite state machines and their
extensions [94, 141, 141], and Markov chains [18, 158, 172, 200, 235, 236] are examples of such models. One observation
is that among studies which use informal description of systems, models that are used in Gazebo and on ROS are more
commonly used [13, 14, 42, 42, 51, 103, 118, 128].

Some studies employ a combination of models throughout their testing intervention; in particular, for some higher-
level models, lower-level models can be used to specify their semantics [47, 157].

Of the studies that consider a behavioural model of their subject systems, around a third utilise qualitative models.
Most of such models are employed in formal verification strategies, where correctness is evaluated via mathematical
proofs or model checking. The remaining studies use models which describe different quantitative aspects of systems
such as temporal and stochastic behaviour, e.g., using variations of Petri nets (e.g., stochastic and coloured) [10,
19, 75, 133, 191, 192, 231], probabilistic timed automata [12, 138], and Markov chains [18, 158, 172, 200, 235, 236];
system dynamics, using differential equations [6, 54, 70, 130, 140, 149, 166, 203], hybrid automata and their extensions
[39, 40, 82, 226–228], functional mockup units [1] and various informal simulation models for dynamical systems
[13, 14, 42, 51, 103, 118, 128, 173, 201, 233].

Compared to studies before 2019, we notice that there has been an increase in the use of stochastic models (from 4%
to 14%). However, this number is still relatively small given the innate probabilistic aspects observed in RAS; hence,
this might indicate the need for further stochastic models that are tailored for the domain. Furthermore, we observe a
prevalence of qualitative models, despite the importance of quantitative aspects in the behaviour of RAS.

Table 2. Models for system behaviour or structure. The table depicts the studies which make use of models to specify the behaviour
or structure of their subject system. Such models are further classified in terms of their semantics (formal or informal), domain
(agnostic or domain-specific) and type (qualitative or quantitative).
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[37] Labelled Transition System (LTS)

[13, 14, 60, 62, 72, 108, 164] Belief Desire Intention (BDI)

[231] Predicate Transition Re-configurable Nets (PrTR Nets)

[9, 64, 99, 141, 176, 188] Finite State Machine (FSM)

[148] Prolog (horn clauses)

[214] Series-Parallel Action Graphs

[150] Alloy

[89, 219] Higher Order Logic (HOL)

Continued on next page
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[10] Petri nets

[133, 191, 192] Coulored Petri Nets

[94] CEFSM - Communicating extended finite state machines

[193] Computation Graph

[104, 222, 223] Promela

[202] Kripke model

[123] Global Transition Systems

[56] Relational Functional Model

[17] Event-B

[69] DIME framework

[206] Finite State Abstract Model

[209] Ontology model

[147] Demand Compliant Design (DeCoDe-bsaed model)

[123] Open Interpreted Systems

[232] SysML

[89] Structured Assurance Case Meta-model (SACM)

[31] Soar cognitive models

[18, 158, 172, 200, 235, 236] Markov chain

[159] Markov Decision Processes (MDP)

[19] Stochastic petri nets

[129] Safety Automata

[136] Probabilistic agent templates

[142, 143] Process Algebra for Robot Schema (PARS)

[6, 54, 70, 130, 140, 149, 166,
203]

Differential Equations

[36] Real valued functions

[127] Knowledge Association Graph

[57] Open scenario framework

[46–48, 157, 183, 205, 229] Communicating Sequential Processes (CSP)

[12, 138] Probabilistic timed automata

[15] Continuous time Markov chain

[33, 134, 198, 204] Extended Finite State Machine

[7, 16, 31, 73, 95, 190] Timed Automata

[73, 75] Timed Petri Nets

[168] ALICA

[71, 108] Gwendolen

[60] ETHAN (Gwendolen extension)

[101] Hybrid System model

[39, 40, 82] Hybrid Automata

[226] Periodic Controlled Hybrid Automata

[227, 228] Stochastic Hybrid Automata

[46–48] RoboChart

[48] RoboSim

[58] Meta-model (UML-like)

[81] Graphical Structuring Notation (GSN)

[10] UML class diagrams

[163] Tabular use cases

[177] DSLs

[131, 132] Stackelberg policies

[1] Functional Mockup Unit model

[1] SystemC

[87] Klaim

[237] Software Reliability Growth Model

Continued on next page
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Table 2 – Continued from previous page
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[87] Mobile stochastic logic (MOSL)

[25, 30, 162] Matlab/Simulink models

[75] GenoM

[169] Configuration Network Language

[221] RoboticSpec

[230] DSL for cognitive models

[173] USARsim (Unreal Script)

[13, 14, 42, 51, 103, 118, 128] Unified Robot Description Format (URDF)

[52] Geometrical model

[201] DSL for traffic scenario

[222, 223] Brahms

[233] Roadview models

5.2 RQ2: Effect

In this section, we review two different types of measures: the first type of measures coded and reviewed in this section
are those measures used for evaluating efficiency, effectiveness and coverage of the various testing interventions. The
second types of measures are the measures of quality used in testing the subject system; by reusing the terminology
we classify them under efficiency (i.e., concerning timing and resources) and effectiveness (i.e., concerning safety and
quality) of the subject system.

5.2.1 Measures for Interventions. Table 3 provides an overview of our coding of these measures, classified into efficiency
(testing time or resources), effectiveness (testing quality), and coverage (testing adequacy). It is remarkable that about a
third of the papers included for this survey used a measure of efficiency, effectiveness, or coverage to evaluate their
results. This shows a significant gap in using well-defined measures to evaluate and compare various interventions.

It is also noteworthy that the interventions were measured against a vastly different range of measures. Apart from
some very basic notions of efficiency (testing time, or state-space size) [13, 27, 53, 103, 111, 122, 148, 166, 172, 190, 193]
and coverage (such as state and transition coverage) [10, 13, 14, 58, 94, 133, 192], most other notions are only used for
a single intervention. This emphasises the need for coming up with domain-specific and more sophisticated notions
of efficiency, effectiveness, and coverage that are used for benchmarking and comparing various interventions. Some
exceptions that concern domain-specific measures are hypervolume (as a domain-specific measure for the searched
space) and generational distance (as a measure of distance from optimal solutions) [25], cost of testing for autonomous
vehicles in Euros per kilometre [35], feature interaction coverage [2, 33], situation coverage [144], and neuron- [212]
and surprise adequacy [113] coverage.

5.2.2 Measures for Subject Systems. In this section, we review the measures of quality for the system under test that
are used in various interventions, presented in Table 4. Unlike the previous section, there is more prevalence of domain
specific measures; two commonly used measures are spatial distance from the intended trajectory (and variants thereof)
[30, 37, 127, 128], collisions and obstacle avoidance [19, 25, 63, 131, 138, 141, 164, 214]. The remaining measures are
sparsely used across many different interventions.
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Table 3. Classification of measures considered in testing interventions into efficiency (testing time or resources), effectiveness (testing
quality), and coverage (testing adequacy)

Measure References

Effectiveness

Accuracy of the image recognition (failure rates) [200]
Hypervolume in fixed time (search-space coverage in time) [25]
Feature interaction failure [2]
Distance-based surprise adequacy [113]
Number and probability of faulty scenarios generated [156]
Reachability [7, 18]
Number of test cases [114, 209]
Number of failures [176]
Number of counter-examples [206]
Accuracy of the simulation [199]
Precision [160]

Efficiency

Generational distance in time (distance to Pareto optimal solutions in
time)

[25]

Testing (est gen. and exc., model checking) time [72, 77, 92, 103, 111, 122, 137, 142, 143, 148, 166, 168, 169,
183, 190, 206]

Test case generation time [13]
Test execution and simulation time [16, 32, 67, 70, 88, 118, 161, 172, 193]
Reduced test case execution time [27]
Testing cost (€/ km) [35]
State-space size [5, 10, 15, 72, 77, 111, 123, 136, 183, 190, 202, 222, 223, 235]
Search time [53]

Coverage

Hypervolume [25]
Structural coverage metrics (state, code, function, transition, path
coverage)

[10, 13, 14, 58, 94, 133, 191, 192]

Feature interaction (e.g., pairwise and n-wise coverage) [2, 33]
Neuron coverage [212]
Surprise adequacy coverage [113]
Situation (graph) coverage [144]
Requirement [198, 210]
Diversity [160]

5.3 RQ3: Tooling

We gather and describe the tools that have been employed and introduced amongst included studies. We categorise tools
as context and effect tools; a context tool is one that has been employed by the intervention but it is not a byproduct of
its respective work. Effect tools, on the other hand, are the tools that have been developed by the academic community
in our list of selected papers.

5.3.1 Context Tools. As shown in table 5, tools for simulation are amongst the most utilised; their usefulness comes
from a less costly method of visualising whether the design and process are satisfactory. The middleware ROS [178]
combined with the 3D simulator Gazebo [116] form the most popular tool for robotics simulation. Furthermore, Simulink
[65], a graphical extension of MATLAB [152], is the most used tool for modelling and simulation of dynamic systems.

In the context of autonomous vehicles, traffic simulators such as SUMO [21] and SYNCHRO [105] have also been
employed by included interventions, along with vehicle simulators such as CarMaker [44] and Autoware framework
[110].

Moreover, tools for formal verification are also extensively used, with model checkers being the most prominent type.
The statistical model checker, Prism [124], provides modelling and analysis of systems of stochastic nature modelled in
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Table 4. Classification of measures of quality for the subject systems used in testing interventions.

Measure References

Effectiveness

Probability of time to collision [129]
Performance and safety properties [70, 177, 221]
Safety for human operators [128]
Satisfied performance properties wrt. number of robots [12]
Number of failures [177]
Requirements satisfaction [37, 215]
Spatial deviation of intended behaviour [30, 32, 37, 50, 78, 127, 128]
Endurance distance and stairs traversal of robots [106]
Accuracy of the image recognition [200]
Collisions & obstacle avoidance [11, 16, 19, 25, 49, 54, 63, 131, 138, 141, 164, 214, 239]
Stability [214]
Search depth [71]
Throughput [12]
Schedulability [73]
Positive and supportive interactions towards humans [151, 159]
Anthropomorphism measure [189]
Number of hazards and risk reduction measures [217]
Probability of mission success and failure [15, 142, 143, 159, 169, 227, 228, 235, 236]
Formal assertions (deadlock freedom, liveness) [7, 227, 228]
Criticality (complexity of scenario and dynamics) [57]
Vehicle performance (acceleration, speed, position) [75, 88, 128, 209]
Regret (Difference between rewards earned and achievable rewards) [154]
Severity of failure [210]
Probability of rare events [167]

Efficiency

Number of collisions over time [164]
Time to collision [114]
Resource utilisation (e.g.: CPU) [71, 173]
Network usage [173]
Fuel consumption [70, 138]
Constraint violation rate [132]
Device utilisation [12]
Response time [12]
Training time [32]
Latency [161]
Idle time [6]
Task completion time [83, 159]
Time for hazard identification and risk reduction [217]
Median miles to next disengagement [237]
Battery life [235]

markov chains or probabilistic automata. As for qualitative models, UPPAAL [126] offers formal verification for timed
automata models that can be, however, extended to employ data types.
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Table 5. Tools used in the context of testing interventions for RAS and description of tools.

Tool Type

References Name Description
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[15, 18, 37, 136, 138, 158, 159, 176, 235, 236] Prism Probabilistic model checker

[64, 231] Maude LTL model checker

[7, 7, 12, 14, 16, 31, 73, 95, 108, 190, 227, 228] UPPAAL Timed automata model checker

[1, 4, 25, 30, 33, 92, 101, 156, 198, 203, 207] Matlab/Simulink System design and simulation environment

[13, 14, 34, 42, 50, 51, 67, 80, 149, 215, 216, 225, 239] Gazebo Robots simulator

[96, 112, 170, 201, 207] Unity-3D 3D games engine

[1, 2, 156] PreScan ADAS simulation platform

[164] Jadex BDI reasoning engine

[141] JavaMoP Runtime monitoring framework

[11, 13, 14, 34, 42, 50, 51, 103, 128, 149, 185, 220,
225]

ROS Robotics middleware

[150] Alloy analyser Analysis of Alloy models

[148] Acceleo Code generator

[80, 91, 173, 207] SUMO Traffic modelling and simulation

[173] UsarSim Robot simulation

[63] Breach Cyber-Physical Systems simulation

[74, 75] TINA Circuit simulator

[75] Genom3 Robotic components development

[63] P Robotic logics model checker

[74, 75] Fiacre Formal verification for TOPCASE environment

[10] Pipe Petri Nets editor and analyser

[10, 129] CADP Design of communication protocols and concurrent systems

[58] PATeCa Autonomous vehicles field testing analysis

[46] Wodel Mutant generator

[89, 219] Isabelle Automated theorem prover

[19] Cosmos Tool for statistical models

[193] haROS Static analysis of ROS application code

[202] SMV Symbolic model checker

[70] Cplex Mathematical programming solver

[41, 77, 111] NuSMV Extension of SMV symbolic model checker

[62, 71, 72, 108] MCAPL framework Prototyping and model checking BDI agents

[46, 47, 157, 183, 205, 229] FDR CSP model checker

[104] Spin PROMELA model checker

[198] TLC Model Checker TLA+ model checker

[217] Zot TRIO model checker

[108] Torcs Car racing simulator

[70] Synchro Traffic simulation and analysis

[203] Simscape Multidomain physical systems simulator

[1] Veloce Hardware simulator

[1] Simcenter Amesim Analysis of digital systems

[11, 88] IPG CarMaker Autonomous vehicle simulator

[11] Autoware Simulation and analysis of self-driving vehicles

[96] Apollo Autonomous driving platform

[198] Supremica Modelling and analysis of discrete-event control functions

[101] Wolfram Mathematica Computing system

[78, 170] TensorFlow Machine learning platform

[78] DeepDriving Vision-based learning for autonomous cars

[220] YOLO Real-time object detection system

[198] Spark Programming language and verification toolset

[220] OpenSceneGraph (OSG) 3D graphics toolkit

Continued on next page
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Table 5 – Continued from previous page

Tool Type

References Name Description
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[129] CARLA Autonomous vehicle simulator

[154] Multi-Attribute Task Battery II (MATB-II) NASA workload simulation tool

[69] Gear DIME model checker

[142, 143, 169] VIPARS PARS model checker

[168] Clingo Programming solver

[82] ARIADNE Reachability analysis of hybrid automata

[223] BrahmsToPromela Translation tool from Brahms to PROMELA

[225] Orocos toolchain Creation of real-time robotics applications

[31] X-Plane Flight simulator

5.3.2 Effect Tools. A total of 37 tools, publicly available or otherwise, have been introduced by the academic community
as an effect of their intervention. Seven of them were not accessible at the time of writing this survey and were classified
as private, including SSIM [118], which is a tool for simulating flight software employed in Mars rovers projects. The
remaining tools, a total of 30, are available for the general public; 27 of those also have the source artefacts made public
and have been classified as open-source. In Table 6, we also inlcuded the specific licence, if any, that the tools are under.
We note how the source code of some tools were made available without a licence being specified. In this case, certain
repositories, such as GitHub, consider that default (US) copyright laws apply.

Analogously to context tools, we notice a focus on development of tools for simulation and model checking. Tools
for testing vehicles are amongst such tools, including in road [4, 54, 78, 166, 233], aerial [67, 140] and maritime [52]
environments. As for robots, RoboTool [48] and Improv [6] offer formal verification alternatives for testing robots
whilst ROSRV [103] provides a ROS extension for verification at runtime.

Table 6. Tools introduced by studies included in this survey for testing RAS.

References Name Description Availability

[212] DeepTest Testing of DNN-driven autonomous cars Open-source (GPLv3)

[166] APEX Formal verification of autonomous vehicle trajectory planning Private

[75] Translation tool Translation tool from GenoM to Fiacre Private

[233] Roadview Traffic scene simulator for Autonomous Vehicles Private

[46–48, 157] RoboTool Formal verification and simulation of robots Public (No licence found)

[140] MAV3DSim Simulation platform for UAV controllers Public (No license found)

[4] Florida Poly AV Verification Framework
(FLPolyVF)

Verification of the decision making of autonomous vehicles Open-source (MIT licence)

[118] Simulator in Julia Robots simulation Public (No license found)

[52] Stonefish Simulation tool for marine robots Open-source (GPLv3)

[67] GzUAV Framework to run multiple-UAV simulations in Gazebo Public (No license found)

[54] Move Suite of tools to test autonomous vehicles Open-source (GPLv3)

Continued on next page
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Table 6 – Continued from previous page

References Name Description Availability

[216] SSIM Simulation of flight software Private

[6] IMPROV Tool for self-verification of robots Public (No license found)

[16] VerifCar Framework for validation of decision policies of communicating au-
tonomous vehicles

Public (No license found)

[18] MCpMC Statistical model checking of pMC Open-source

[161] Asynchronous Multi-Body Framework Simulation of multi-body systems Public (No license found)

[53] RobTest Tool for stress testing of Single-arm robots Private

[78] AsFault Test case generation for self-driving cars Public (No license found)

[234] CyberEarth Simulation of robots and cyber-physical systems Public

[37] Argos Multi-physics robot simulator Open-source (MIT licence)

[63] Drona Programming framework for robotic systems Open-source

[103] ROSRV Runtime verification framework for ROS Public (No license found)

[80] Hybrid Simulation 3D simulation tool Public (No license found)

[92] Spot Prediction of traffic participants Open-source (GPLv3)

[101] FROST* Modelling and simulation of dynamical systems Open-source (BSD 3-Clause)

[136] PSV-CA Probabilistic swarms verifier Open-source

[176] RoVer Model Checker Open-source (BSD 3-Clause)

[99] Formal Modelling and symbolic execution of CPS Private

[149] UUV Gazebo extension for underwater scenarios Open-source (Apache-2.0)

[185] V-REP Robots simulator Open-source (Commercial or
GPLv3)

[213] MARS Simulation environment for marine swarm robotics Open-source (BSD 3-Clause)

[77] Cruton Translation from robotics DSL into NuSMV Open-source (GPLv3)

[160] Range Adversarial Planning Tool (RAPT) Test scenarios generation Public (No license found)

[196] Pegasus Autonomous vehicles simulation Private

[199] AirSim Drone simulation environment Public (Commercial licence)

[225] Cosina Simulation of real-time robotics systems Public (No license found)

[137] MCMAS Multi-agent systems model checker Public (No licence found)

5.4 RQ4: Applicability

Table 7 provides an overview of the case studies conducted amongst included papers. We classify them as small,
benchmark, and industrial. Case studies designed specifically to evaluate a particular intervention, which lack sufficient
details or generality to be employed for a general class of interventions, were classified as small. On the other hand,
those cases studies that are sufficiently general and contain details to evaluate a range of interventions, provided that
they are not used in an industrial context, are categorised as benchmark. Industrial case studies are those real-world
(and hence, typically detailed and complex) cases conducted in a industrial setting.
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Our observation identifies a significant gap in industrial evaluation of interventions; only 20 interventions ([1, 2, 25,
31, 70, 77, 88, 106, 114, 149, 154, 186, 196, 198, 198, 199, 209, 215, 216, 238]) have been evaluated in a industrial context.
Understandably, the majority of cases studies have been fully conducted in academic settings. Of those, approximately
half made use of small-scale models, which are often not representative of real systems. The other half, employed their
proposed interventions on large scale subjects and data-sets, including physical systems.

Table 7. Classification of case studies considered in testing interventions as small, industrial, and benchmark.

Case studies References

Small

Pedestrian detection [81]

Humanised robots [231]

UAV [17, 18, 30, 46, 56, 60, 94, 134, 234]

Cleaner agent [164]

Self-driving vehicle [148]

Sensor system [35]

Software functions [218]

Family of surgical robots [150]

Path planning and decision making [51]

Surveillance drone [63]

Lane-changing scenarios [80, 166]

Small robot [62, 64, 219]

Simple controllers [19]

Unmanned Surface Vehicles [138]

USAR robots [10]

Cooperative forklifts [133]

Agricultural robot [190]

Cruise control [111, 131]

Traffic environment [132]

Mullti-agent manufacturing controller [229]

AR.Drone [42]

Cooperative UAVs [104]

(Industrial scale) transport robot [12]

Platoon [108]

Robot swarm [7, 7, 47, 120]

iCub robot [172]

Collision avoidance scenarios [4, 49, 129]

Trained gate controller [123]

Autonomous vehicles scenarios [130, 156, 227, 228, 232]

Footbot [48]

Path following autonomous vehicle [11]

Autonomous parking [50]

Car following [50]

Single arm robot [53]

Ultimatum game [189]

LEGO EV3 robot [205]

Simple robot with LiDAR [206]

Continued on next page
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Table 7 – Continued from previous page
Case studies References

Border control system [9]

Military overwatch missions [142]

“AMiResot” robot platform [147]

Service robot [168]

Re-configurable autonomous trolley [191]

Surgical robot [39, 40]

Cruise control agent [72]

Paint spray robot [82]

Group of robots [87]

Communicating robots [159]

Search mission [169]

Industrial

ADAS System [25]

Self-driving system [2]

Emergency response robot [106]

Test drive in a test track [70]

Mars Rover [216]

Automated breaking system [1]

Lateral State Manager [198]

ADAS scenarios [88]

Automated Emergency Break [114, 209]

NASA benchmark and user case studies [154]

RexROV and Desistek SAGA mini-ROV [149]

Cartesian impedance Control System in torque mode [215]

Care-O-bot [77]

Farming [186]

Quadrotor with Pixhawk controller [199]

Adaptive cruise control [238]

Autonomous CoPilot agent [31]

Autonomous off-road robot RAVON [177]

Benchmark Swarm of robots [37]

2 wheels differential drive robots [128]

UAV / Land vehicle cooperation [33]

Smores [214]

Udacity [212]

BERT 2 [13, 14]

MIT and NIRA datasets [180]

Traffic sign database [200]

Benchmark [173]

Carina I [58]

Kobuki robot [95, 193]

LEGO EV3 robot [141]

RMP400 Robot MANA [75]

Landshark [103]

Alice autonomous vehicle [226]

Parallel delta robot [36]

Continued on next page
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Table 7 – Continued from previous page
Case studies References

Jack ROV [127]

UAV [162]

Quadcopter controller [74]

Videos of pedestrians and vehicles [32, 170]

Traffic wave observations [54]

Leader and follower UAVs [67]

ROBNAV mobile robot [73]

Udacity, MNIST and CIFAR-10 datasets [113]

ATLAS robot [118]

Human-robot interactions [6, 151]

Benchmark DaVinci research kits [161]

Turtlebot 2 [203]

ZalaZone Smart City Zone [207]

Flexible Manufacturing System (FMS) [217]

Drone with Pixhawk flight controller [220]

WAYMO public road testing dataset [237]

Unmanned underwater vehicle (UUV) [236]

Windfarm drone [235]

Traffic Scenarios [92]

ATLAS and DRC-HUBO robots [101]

NAO robot [176]

NASA’s Unmanned Ground Vehicle [99]

Hanse UAV [213]

iRobot vaccum cleaner [15]

KUKA LWR4+ and the Universal Robots UR5 [34]

Underwater vehicle [160]

Chemical detector [183]

COUR-1 robot [221]

Care-O-bot [222, 223]

COMAN [225]

CoCar parking [239]

6 SUGGESTIONS AND RECOMMENDATIONS TO STUDY AUDIENCE

In this section, we analyse the results of the previous sections in order to identify relative strengths and weaknesses
regarding our research questions and for our two target audience groups: researchers and practitioners. We conclude
this section by drawing recommendations from our analysis both for researchers and practitioners.

6.1 Analysis

6.1.1 Domain. Table 8 provides a concise summary of the domains covered by the reviewed interventions. A bulk of
reviewed interventions do not pertain to any specific sub-domain of RAS. This indicates a clear gap for subdomain-
specific research that considers the characteristics of each of these subdomains and takes them into account in their
testing interventions. Most importantly, the subdomain of testing marine and submarine RAS as well as space RAS is
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under-explored (the only included intervention regarding marine and submarine robots [52, 149, 175, 213] and regarding
space robots [154, 216] are not represented in the table for the sake of brevity). We note that there is a recently funded
European project REMARO to fill in this substantial gap. 2

Below we analyse the results gathered in Table 8 on a row-by-row basis:

Qualitative Despite the intrinsic quantitative nature of RAS, qualitative models also play an important role in the verification
of such systems, particularly when they are abstracted away to be amenable to rigorous and exhaustive techniques
in formal verification. In the case of vehicles, qualitative models abstract away from physical dynamics and
rather focus on observable behaviour that can be modelled as discrete events. Overall, we noticed a gap in the
qualitative analysis that focus on aerial vehicles and mobile robots (excluding road vehicles), this is likely due to
the challenge of modelling movement without using continuous dynamics.

Road In the domain of autonomous cars, qualitative models have been used to reason about Human-Machine
Interactions [163, 232] and high-level decision-making particularly regarding ethical concerns [60] and safety
[81, 200]. most quantitative interventions propose use of formal models in their methodology [58, 60, 71, 72,
148, 163, 198, 206, 230, 232]. For instance, Yun et al. [232] propose an strategy that formalises Human-Machine
interaction into SysML language to help steer the testing process. In the same vein, Naujoks et al. [163] provide
a DSL using a taxonomy of use cases to cover transitions and modes in Human-Machine Interaction interfaces
used in the verification process. Sun et al. [206] employ Satisfiability-Modulo-Convex encoding to build finite
state abstractions of the learning component and formally verify it. Dennis et el. [60] focus on formalising
and verifying ethical concerns in BDI agents. More informal approaches include the use of 3D simulation by
describing scenarios in UML notation modelling [209] and the use of graphical notations for safety assurance
analysis [81, 200]. A mix of formal and informal models is employed by Heitmeyer et al. [99] where they
provide two new tools to be included into their toolset (FORMAL [98]). The first tool synthesises formal
models from scenarios written in Event Sequence Charts and the second tool incorporates a 3D simulation
tool (eBotworks [93]) into their toolset.

Aerial In the aerial domain, there are only a handful of interventions that use qualitative models for testing of aerial
vehicles, mostly regarding safety and security concerns. For instance, linear temporal logic is used more than
once to formalise safety assurance cases [17, 41]. Hagerman et al. [94] make use of finite state machines to
extract security test suites and Bhattacharyya et al. [31] focus on formally verifying the boundaries beyond
which the agent are designed to operate by translating models from a cognitive architecture (Soar [125] ) into
UPPAAL.

Mobile Only two studies have been found in this category. Andrews et al. [10] model autonomous systems and
their environment using Petri nets to generate test cases and apply their technique to a case study in the
human-robot interaction domain. Furthermore, in the context of software product lines, Mansoor et al. [150]
conduct a case study on a family of surgical robots by employing formal analysis, feature modelling and
testing; they discuss the key challenges and lessons learned from the case study.

Generic Most of the included interventions in this category concerned abstract representations of multi-agent au-
tonomous systems and provided efficient algorithms for parametric (formal) verification or state-space reduc-
tion techniques [8, 22–24, 120–123, 135, 137, 168, 188]. Similar to the previous item, most of the interventions

2https://cordis.europa.eu/project/id/956200
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Table 8. Testing, Validation, and Verification Interventions for Specific Subdomains of RAS

Vehicles Robots
Road Aerial Mobile Generic / Non-Physical /

Immobile

RQ1

Qualitative [58, 60, 71, 72, 81, 99,
148, 163, 198, 200, 206,

209, 230, 232]

[17, 31, 41,
56, 94]

[10, 150] [8, 9, 14, 22–
24, 38, 62, 64, 69, 89, 120–

123, 133, 135, 137, 147, 153, 164,
168, 188, 192, 193, 217, 222–

224, 229, 231]
Quantitative [1, 16, 19, 25, 30, 51, 54,

57, 70, 88, 108, 111, 129–
132, 134, 156, 158, 166,
171, 173, 201, 207, 226–

228, 233, 237]

[18, 33, 42,
63, 104, 140,
162, 202,
235]

[12, 37, 138,
177]

[6, 7, 15, 34, 39, 40, 46–
48, 52, 53, 73–75, 77, 82, 87, 89,
95, 101, 103, 118, 127, 128, 136,
141, 142, 149, 157, 159, 169, 172,
176, 183, 185, 190, 191, 203, 205,
213, 216, 219, 221, 225, 236]

Formal [16, 19, 58, 60, 71, 72,
99, 108, 111, 129, 134,
158, 166, 171, 198, 200,
209, 226–228, 230, 232]

[17, 18, 33,
41, 56, 63,
94, 104, 202,

235]

[10, 12, 37,
138, 150,
177]

[7–9, 14, 15, 22–24, 38–40, 46–
48, 62, 64, 69, 73–

75, 77, 82, 89, 95, 120–
123, 127, 133, 135–

137, 141, 142, 147, 157, 159, 164,
169, 172, 176, 183, 188, 190–
193, 205, 217, 219, 221–
224, 229, 231, 236]

Informal [1, 25, 30, 51, 54, 70, 81,
130–132, 148, 156, 163,
173, 201, 207, 233, 237]

[42, 67, 140,
162]

[6, 34, 52, 87, 101, 103, 118, 128,
149, 168, 185, 203, 213, 216, 225]

RQ2

Effectiveness [2, 11, 16, 19, 25, 30, 32,
49, 50, 54, 57, 70, 71, 78,
113, 114, 129, 131, 156,
160, 167, 198, 200, 209,
210, 227, 228, 239]

[18, 63, 199,
235]

[12, 37, 138,
177]

[7, 15, 66, 73, 127, 128, 141, 142,
151, 154, 159, 164, 189, 214, 215,

217, 236]

Efficiency [16, 32, 35, 70–72, 88,
92, 111, 114, 132, 148,
160, 166, 173, 206, 237]

[67, 202,
235]

[10, 12] [6, 15, 39, 40, 53, 66, 77, 83, 103,
118, 123, 136, 137, 142, 159, 161,
172, 183, 190, 193, 217, 229]

Coverage [58, 113, 144, 210] [33, 94] [14, 133, 191, 192, 212]

RQ3

Open-source [4, 16, 54, 78, 80, 92,
212]

[18, 67, 140] [6, 37, 52, 63, 77, 101, 103, 118,
136, 137, 149, 161, 176, 185, 213,

225]
Public [160] [199] [48, 234]

Proprietary [99, 166, 196, 233] [53, 75, 216]

RQ4

Small [4, 11, 19, 27, 30, 35, 49–
51, 60, 71, 72, 80, 81, 96,

108, 111, 129–
132, 134, 148, 156, 166,
218, 226–228, 232, 233]

[17, 18, 41,
42, 56, 63,
94, 104, 140,
197, 202]

[12, 138] [7, 9, 15, 22, 24, 38–40, 46–
48, 53, 62, 64, 69, 82, 83, 87, 89,
120, 121, 123, 133, 136, 137, 147,
159, 164, 169, 172, 185, 188–

192, 205, 213, 219, 229, 231, 234]
Industrial [1, 2, 25, 70, 88, 114,

196, 198, 209, 238]
[31, 186,
199]

[186] [77, 106, 149, 154, 195, 215, 216]

Benchmarks [32, 54, 58, 78, 92, 99,
113, 160, 170, 171, 173,
200, 207, 237, 239]

[33, 67, 162,
220, 235]

[10, 37, 150,
177]

[6, 14, 34, 36, 73–
75, 95, 101, 103, 118, 127, 128,
141, 151, 161, 176, 180, 183, 193,
194, 203, 212, 214, 217, 221–

225, 236]
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used Linear Temporal Logic or variants thereof to model safety properties [89, 223]. Formal modelling and
verification of human-machine interaction is also a common theme in this category [69, 222, 223].

Quantitative We see that quantities such as time (representing the real-time behaviour), probabilities (representing abstractions
in communication networks or choices made by human actors), and physical dynamics (such as velocity and
acceleration) are used for testing in various domains. Most of the developed techniques, such as compositional
verification techniques or evaluation of intervention do not pertain to domain-specific instances of these quantities
and consider general multi-agent and robotic systems. Below we review domain-specific interventions as well
interventions that are developed for the general context of RAS, structured by the columns in Table 8.

Road In this domain we see a strength in integrating code-level abstractions (e.g., for individual components or
functions) with system-level specifications (for vehicles and fleets of vehicles and using); such integration
are then tested using simulation and formal verification frameworks. The quantitative models used for such
testing intervention often pertain to vehicle dynamics and also probabilities arising from communication
frameworks. AbdElSalam et al. [1] present a framework for verification of ADAS and autonomous vehicles
which uses SystemC TLM models for virtual ECUs. Transaction-Level Models provide a high level abstraction
of the SystemC components that are used in virtual ECUs. These models are then integrated with the vehicle
and traffic models for simulation. Parametric modelling of CAVs as a network of timed automata is used
by Arcile et al. [16]. In this work, VerifCar tool is applied to asses the impact of communication delays on
the decision algorithms of CAVs and to check the robustness and efficiency of such algorithms. Similarly,
variations of extensions of timed-automata, probabilistic timed automata and stochastic timed automata
are used [12, 138, 227] for modelling the behaviour of autonomous vehicles to verify properties of different
decision making and collision avoidance algorithms. Barbot et al. [19] use statistical model checking to verify
an autonomous vehicle controller where the controller is specified in C++. A set of safety properties specified
in HASL, a quantitative variant of linear temporal logic are verified for a controller. Betts et al. [30] compare
the effectiveness of two search based testing methods, genetic algorithms and surrogate-based optimisation,
for test case generation for UAV flight control software. There are several works in this category which provide
and use simulation platforms [51, 51, 70, 88, 129, 132, 134, 173, 207].

Aerial In this domain timing information Human-machine interaction is formalised (through a formalisation of a
cognitive architecture) in terms of networks of timed automata and UPPAAL is subsequently used for their
verification. [18, 33, 42, 63, 104, 140, 162, 202, 235]

Mobile There are a few studies in this domain that consider quantitative models. Among these studies, the majority
employ formal models [12, 37, 138]. Statistical model checking is one of the techniques that is used [12] to
verify performance of transport robots based on behavioural models, stochastic timed automata, using UPPAAL
SMC. Furthermore, model checking of Markov models is used [37] to verify PCTL properties of swarm robotics
behaviour in the design phase. The models then are used as a blueprint for implementation and simulation.
Probabilistic model checking of unmanned surface vehicles is another technique used [138]. PRISM model
checker verifies PCTL properties of USVs on probabilistic timed automata as behavioural model. Other work
in this category [177] use a designed DSL (graph-based models) to describe the system behaviour which is
used as test model for generating test cases.

Generic As a general observation a considerable portion of all interventions (23% of papers) in this category have been
an out-of-the-box application of model checking tools (mostly using PRISM [124], in some cases UPPAAL [126]
and FDR [86]) to specify small-scale robotic case studies; another prevalent category (30% of papers) concerns
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theoretical papers on various logics and model-checking algorithms for multi-agent robotic systems. Notable
exceptions of this general theme include languages and toolsets for rigorous simulation [47, 48, 157, 183] using
formal verification as part of the design of robotic interaction protocols [64, 229], using formal verification to
analyse human-robot interaction [69, 159, 176, 217, 222, 223], and generating test cases from formal models
[14, 46, 133, 164, 193]. Another interesting intervention concerned comparison of different hybrid-systems
solvers [39, 40] for formal verification of robotic applications. Also the theorem prover Isabelle/HOL has
been used to formalise safety assurance claims [89]. Also model checking has been used to train policies in
reinforcement learning [172]. Compositional techniques has been used to reduce the complexity of the model
checking problem [171, 190]. Another noteworthy attempt is in formalising and verifying ethical concerns
[60, 62].

Formal In summary, there is a relative strength in theoretical foundations of testing, validation, and verification, com-
prising various logical and specification formalisms and small-scale proof of concept exercise in model checking
abstractions of RAS. There seems to be a recent trend, identified below in analysing human-machine interactions.
There is a relative weakness in non-exhaustive testing, validation, and verification techniques and studying
and improving their applications to large-scale and industrial systems. To give a more nuanced analysis, we
distinguish our analysis further based on the domain:

Road There are a number of non-exhaustive testing from formal models [134, 209] and scenario generation [158]
techniques proposed in this domain. Model synthesis from scenarios has also been studied [99]. The applications
of different verification techniques such as formal verification based on supervisory control, model checking,
and deductive verification has been studied in industrial context [198]. Also in this domain, a framework for
validating ethical policies has been developed [230] and human-machine interaction for user interfaces have
been validated [232].

Aerial Apart from applying traditional model checking [104, 202] and simulation [56] techniques to this specific
domain, we observe notable attempts to combat the huge state-space of domain-specific models by employing
statistical model checking [18] and run-time monitoring [63]. Most papers in this domain have focused on
constructing safety models / properties or even coming up with safety specification frameworks [17, 41];
however, energy-efficiency [235] and to a limited extent, security [94] have been addressed as well.

Mobile The landscape in this domain is much more sparse and scattered. As usual for this category, there are a number
of applications of model-checking tools. There is a single paper on test description and test-case generation
[177]; also variability is an under-studied aspect in robotics that has been handled in this context [150] and
finally, there is an industrial case study on the application of model checking [12].

Generic Formal verification is prevalent in this category; besides parametric verification of multi-agent systems using
variations of epistemic logic [8, 22, 24, 122, 136, 188], formal verification using timed automata has also been
used in a strategy that composes verification problems into smaller ones [190] and in the verification of path
planning [7]. Furthermore, Araiza-Illan, Pipe and Eder [14] use BDI models and model checking of probabilistic
timed automata (in UPPAAL) to generate test sequences for human-robot collaboration tasks. Another use of
UPPALL in this category is for model checking of ROS applications that makes use of an ad-hoc translation
from ROS to UPPAAL [95].
Verification of probabilistic aspects can be found in a few studies. Zhao et al. [236] employ bayesian inference
to estimate the distribution of parameters of Markov chains. Then, they combine formal verification, synthesis
and runtime monitoring to check that the estimated parameters are not violated. Pathak et al. [172] make use
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of probabilistic properties of Markov chains for self-repair capabilities in robots and tie those into a formal
verification process (of PCTL formulae). Araujo, Mota and Nogueira [15] apply probabilistic model checking to
verify whether a robot trajectory (described in terms of an algorithm) satisfies specific behaviours or properties
(stated as temporal formulas).
The combination of CSP and FDR can be seen in a few studies. Cavalcanti et al. [46] generate mutations on
RoboCart models and feed the mutated CSP [102] (obtained from the RoboChart models) into FDR, which
yields a counter-example that is used for testing. Yueng et al. [229] detail a process to contribute to the design of
simulation experiments by analysing variations of timing parameters in CSP. They shown that the simulation
experiment can yield different results in performance and in behavioural terms. Sumida et al. [205] demonstrate
a case study in which they model a LEGO robot (EV3) and verify it in FDR for deadlock and livelock.
Several other studies employ different strategies to achieve different goals. Gainer et al. [77] synthesise formal
models from control rules of robots in a DSL and input those models into NuSMV for model checking. Doan et
al. [64] employ MAUDE to formally verify gathering of robots in a RING network. Santos et al. [193] work on
generating unit testing for ROS components and property-based testing for ROS using the Hypothesis tool
[155]. Bresolin et al. [39, 40] apply reachability analysis of Hybrid Automata in ARIADNE [26] to analyse the
dynamics of surgery robots.

Informal In this category, there is a clear strength in generic simulation tools and architectures, followed by a strength
in simulating road vehicles with domain-specific kinematic models. Some interventions focus on test-case
generation and prioritisation as well as runtime monitoring both for generic RAS and for road vehicles. There
is a clear weakness in domain-specific intervention for aerial vehicles, where there are only simulation tools
for individual and connected vehicles reported in the literature and mobile robots (excluding road vehicles),
where no intervention is included in our review. The simulation tools in various domains are often based on
a combination of ROS [178] and Gazebo [116], Unity [211] and/or USARSim [45]. We refer to Section 5.3 for
further explanation of these tools.

Road A majority of papers in this category introduce a simulation tool [1, 51, 54, 70, 130, 156, 207, 233] combining
vehicle kinematics with other aspects of vehicle modelling such as communications [51], vision-based algorithm
[130] and fuel consumption [70]. There are two interventions that use search-based testing and [25, 30].
Surrogate modelling, where a higher-level model is used to steer the search, is used in both approaches.
Another approach uses past data to identify challenging situations and embed them into test-cases (using an
XML structure) [201].
There are also a number of process interventions describing a process for safety assurance [81, 237] and testing
Human-Machine Interfaces [163]. Some papers do use a well-defined syntax or a mathematical notation, but
are classified as informal; in our classification, if a model does not have a rigorous formal syntax, semantics and
reasoning method it is classified as informal. These include using XML as a formal model [201], mathematical
descriptions of vehicle kinematics (see simulation tools above), and probabilistic descriptions for risks [237].

Aerial All interventions reported here concern simulation tools for modelling dynamics and control [42, 140, 162]
and communication of aerial vehicles [67]. It is remarkable that these simulation tools rely on entirely different
context tools, which will be analysed further in RQ3.

Generic In this category, the majority of interventions again propose simulation tools [118, 149, 185, 203] or a simulation
architecture [225]. (Note that there are two simulation tools that address marine robots [149, 213], but since we
did not have a separate class for such robots, we classified it here.) There are, however, a couple of interventions
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concerning test-case prioritisation [128] and automated unit-test execution [34], and run-time monitoring
[103]. The run-time monitoring environment [103] provides an integration with ROS implementations.

Effectiveness Here we summarise the notions of effectiveness used in different domains; these notions comprise two sub-
categories: the effectiveness of the RAS under test, which is the oracle or the property against which the RAS is
tested and the effectiveness of the testing techniques, which provides an evaluation of the techniques, rather
than the system under test:

Road Concerning the effectiveness measures for road vehicles, collision analysis is the most prominent metric,
including analysis on the number of collisions [11, 16, 49, 54, 114, 131, 228], probability of collision [19, 129],
and severity [210]. Furthermore, a few studies focus on the analysis of deviation from the intended path in
terms of spatial and rotational deviation [30, 32, 50, 78]. As for measures for test adequacy, probability of faulty
and rare events [156, 167], and the number of tests generated [209] have been studied; however, these latter
measures are not domain-specific and similar measures have been used in other sub domains.

Aerial Only four studies have been included in this category. As measures of SUT efficiency, Desai et al [63] measure
obstacle avoidance and plan execution. Similar to road vehicles, studies on probability of completing a task for
aerial vehicles are found in the literature [18, 235]. Zhao et al. [235] takes a further step by analysing expected
mission time and expected number of battery recharges during a mission. Conversely, as a test adequacy
metric, [199] measures the accuracy of its simulation.

Mobile With respect to mobile robots, only a handful of papers collective metrics related to effectiveness. As in other
sub-domains, collision avoidance [138] and probability of satisfying requirements [37] can also be found here.
Brambilla et al. [37] also measures the improvement in the behaviour of a robot by analysing the number of
objects retrieved. Arai et al. [12] also consider a similar measure of improvement in the behaviour but in terms
of device utilisation. The only metric regarding testing adequacy is number of failures detected studied by
Proetzsch et al. [177].

Generic As a unique measure of effectiveness, Ruijten [189] detects anthropomorphism in its subjects, which is a
measure of human likeliness in robots. Several studies focus on analysing the probability of completing a
mission successfully [15, 142, 159, 236]. Studies on safety [7, 164, 217] are also commonly found in this category.
For instance, Viventini et al. [217] focus their efforts on analysis of hazards, such as the number of hazards
identified, number of types of hazard and number of risk reduction measures taken.

Efficiency Similar to effectiveness, measures of efficiency can pertain to the system under test (measuring resource usage
as a property to be checked or as an oracle for pass and fail) and the testing techniques (to measure the resources
used in testing):

Road Mullins et al. use [160] precision, convergence and resolution for efficiency in testing. In a number of studies
on verification of autonomous systems [71, 72, 111] the size of the state space as well as the total memory
footprint [71] in their evaluation. is measured to evaluate efficiency. Sun et al. [206], in the verification of finite
state models, use abstraction and verification time to estimate the efficiency in their work. Verification time
is used in a number of studies [16, 71, 72, 92, 111, 148, 166] to measure efficiency. Gladisch et al. in [88] use
simulation time to measure efficiency. Similarly Bi et al. use simulation time [32] for measuring the efficiency
of the their work. Fayaz et al. [70] measure test duration in their evaluation. To evaluate the efficiency of
the work [173], measure CPU usage and network bandwidth. Bode et al. [35] measure the cost (euros) of
application of their approach as a notion of efficiency. Li et al. in [132] measure computational time in testing
and comparing various autonomous vehicle decision and control systems.
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Aerial Sirigineedi et al. [202] use verification time and number of states in Kripke structures, as system model,
for measuring efficiency in their work. Urso et al. [67], use simulation time once using Gazibo as notion of
efficiency. Zhao et al. [235], in their work that is using prism model checker, consider the expected measure
time as a notion of efficiency.

Mobile Andrews et al. [10] consider the number of states and transitions as a measure of efficiency for the testing
method. Arai et al. [12] presents results on the response time, throughput and device utilisation as measures
of efficiency for the system under test.

Generic Verification time is commonly used in a number of studies [77, 137, 142, 172, 183, 190], to measure efficiency. The
number of states is another common notion measured in evaluations [15, 77, 123, 136, 183, 229]. Furthermore,
testing and simulation time is used to measure efficiency in a set of studies [83, 118, 193]. Althoff et al. in [6]
measure the reduced idle time in self-verifying robots. Munawar et al. [161] measure latency and number
of steps in simulation of surgical robots. Search time and optimisation time is used by Collet et al. [53] in
evaluation of testing single arm robots. Gerstenberg et al in [83] measure task completion time in simulation.
Vicentini et al. in [217] present the total time for risk reduction and hazard identification in their evaluation
of formal verification techniques. Probability of task completion, number of executed instructions and time
for completing the task are other measures used in evaluation of model checking autonomous systems [15].
Muhammad et al. [159] measure time and probability of task completion in probabilistic model checking of
cooperative robot interaction.

Coverage Compared to the measures of efficiency and effectiveness, coverage measures are not as widely adopted.
Road Variations of structural coverage can be found in studies within this sub-domain. Neves et al. [58] developed a

tool that conducts post-analysis (based on meta-models) on outputs collected from field testing of autonomous
vehicles. Their tool aims to expand test coverage by exploring functionalities in the meta-model that were
not covered during the field testing. Majzif et al. [144] devise a process that guarantees coverage of safety
standards. They abstract results from component testing and make use of meta-models and situation graphs to
compute a system-wide degree of test coverage and derive new scenarios to cover unexplored situations. Tatar
[210] presents a method (implemented in TestWeaver [107]) for testing and validation of ADAS systems. The
tool generates scenarios to cover relevant system states and feeds back previous executions to guide the next
round of testing.

Aerial In the only paper in this category, Bicevskis, Gaujen and Kalnins [33] developed a new methods for testing
and validation of autonomous processes collaboration. They build a collaboration model using an extended
finite state machine and employ symbolic execution and feasibility tree analysis to check that all relevant
states can be reached in the model. They have evaluated their strategy using a UAV case study.

Generic Tian et al. [212] propose DeepTest, a tool for testing Deep Neural Networks in autonomous vehicles. It generates
tests that explore different parts of the DNN logic with the goal of maximising neuron coverage. Araiza-Illan,
Pipe and Eder [14] propose a methodology for generating test cases that achieve high code coverage in
human-robot collaborative tasks. They developed a testbench for ROS that makes use of belief-desire-intention
(BDI) agents to generate valid and human-like tests. Structural coverage of Petri nets models have been utilised
by Sagglietti in different contexts, such as in the generation of test cases for autonomous agents [133], and the
verification of reconfiguration behaviour of autonomous agents [191, 192].

Open-source
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Road There are a handful of open-source tools for formal verification [16], testing [54], and simulation [4, 80, 212]
of autonomous vehicles. Testing and simulation seem to be gaining some strength with respect to open-source
tools and we see tools for scenario generation, testing, and simulation of autonomous vehicles within various
traffic scenarios. For connected vehicles, VerifCar [16] is a framework based on timed automata and is dedicated
to modelling and verifying and validating connected autonomous vehicles policies.
Garzón and Spalanzani [80] present a tool that combines 3D simulation (for ego-vehicle control) with a traffic
simulator (which controls the behaviour of other vehicles). The goal is to test the ego-vehicle in realistic high
traffic situations. The FLPolyVF tool [4] connects functional verification, sensor verification, diagnostics, and
industry/regulatory communication of autonomous vehicles whilst checking the effects of using different
scenario abstraction levels. The MoVE tool [54] provides the possibility of modelling pedestrian behaviour.
The framework focuses on testing autonomous system algorithms, vehicles, and their interactions with real
and simulated vehicles and pedestrians.
Gambi, Mueller and Fraser present the AsFault prototype tool [78]. The tool combines procedural content
generation and search-based testing in order to automatically create challenging virtual scenarios for testing
self-driving car software. Tian et al. [212] propose DeepTest, a tool for testing Deep Neural Networks in
autonomous vehicles. It generates tests that explore different parts of the DNN logic with the goal of maximising
neuron co

Aerial All new tools reported here concern simulation tools for modelling dynamics and control [18, 140] and
communication of aerial vehicles [67].
Lugo-Cárdenas, Luzano and Flores [140] introduce a 3D simulation tool for UAVs whose focus is on assisting
the development of flight controllers. Analogously, D’Urso, Santoro and Santoro [67] also present a simulator
for UAVs, called GzUAVChannel. The framework combines Gazebo, Autopilot, and NS-3 network simulator to
provide a 3D visualisation engine, a physics simulator, a flight control stack and a network simulator to handle
communications among unmanned aerial vehicles. On the stochastic side of software verification, Bao et al.
[18] present a prototype tool for parametric statistical model checking that can cope with complex parametric
Markov chains where state-of-the-art tools (such as PRISM) have timed out. They provide evidence of their
tool efficiency by conducting an industrial case study.

Generic Several open-source tools have been proposed in this category, with a majority of them being simulators. The
only exceptions are a formal verification tool [176] for human-robot interactions and two runtime verification
tools [63, 103].
Rohmer, Singh and Freese introduce VREP [185] a popular robotics physics simulator that is now known as
CoppeliaSIM. The tool uses a kinematics engine and several physics libraries to provide rigid body simulations
(including meshes, joints and multiple types of sensors). Brambilla et al. have developed ARGOS [37], which
is a multi-physics robot simulator that can simulate large-scale swarms and can be customised via plug-ins.
In the Matlab environment, the FROST tool [101] is an open-source Matlab toolkit for modeling, trajectory
optimisation and simulation of robots, with a particular focus in dynamic locomotion. Munawar and Fischer
[161] present the Asynchronous Framework, which incorporates real-time dynamic simulation and interfaces
with learning agents to train and potentially allow for the execution of shared sub-tasks.
For underwater robots, three new tools have been introduced: Manhaes and Rauschenbach present UUV
simulator [149] which is an extension of Gazebo accomodating the domain-specific aspects of underwater
vehicles. Cieslak et al. introduces Stonefish, a geometry-based simulator [52] that can be integrated with
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ROS. Lastly, the MARS [213] tool provides simulation environments for marine swarm robots. As for tools
in the human-robot interaction (HRI) domain, RoVer [176], provides visual authoring of HRI, formalisation
of properties in temporal logic, and verification that the interactions abide by set of social norms and task
expectations.
Huang et al. present ROSRV [103], which is a runtime verification framework that that can be used with ROS.
Desai et al. [63] presents a runtime verification framework based on Signal Temporal Logic [145], where an
online monitor checks robustness on partial trajectories from low-level controllers. In the context of surgical
robots.

Public The tools included in this category are diverse; we report below on a test-scenario generation tool for road
vehicles [160], two simulation tools for aerial [199] and generic [234] robots and a formal verification tool for
generic robots (applied to a UAV case study) [46–48, 157].

Road Mullins et al. [160] developed a tool (RAPT - Range Adversarial Planning Tool) for generating test scenarios.
The tools employs an adaptive search method that generates new scenarios based on the performance and
results of the previous one. A clustering algorithm ranks the scenarios based on the performance type and how
close they are to the boundaries of each cluster. The boundaries are based on notions of efficiency, diversity
and scaling.

Aerial Shah et al. [199] introduce the AirSim simulator that generates training data for building machine learning
models used in autonomous air crafts. It offers physical and visual simulation, including models of physics
engine, vehicle, environment, and sensors.

Generic There are two tools included in this category: a formal specification and verification tool [46–48, 157] and
a simulation tool [234]. Cavalcanti et al. [46–48, 157] introduce RoboTool, supporting graphical modelling,
validation, and model checking (via FDR [85]) of robotic models written in RoboChart [157] and RoboSim
[48]. Zhang et al. [234] introduce CyberEarth, a framework for program-driven simulation, visualisation and
monitoring of robots. The tool integrates modules from several other open-source tool such as ROS [178] and
OpenSceneGraph (OSG [43]).

Proprietary
Road The three tools included in this category comprise two tools for formal analysis [99, 166] and a simulation

tool [233], each of which are explained further below.
Heitmeyer and Leonard [99] introduce two tools integrated into the FORMAL framework; the tools synthesise
and validate formal models. The first tool syntheses a formal Software Cost Reduction (SCR) requirements
model from scenarios and the second tool combines the existing SCR simulator [97] with eBotworks 3D
simulator to allow for simulation of continuous components.
O’kelly introduces APEX [166], which is a tool for formally verifying the trajectory planning and tracking stacks
of ADAS in vehicles. Zhang et al. present RoadView [233] a photo-realistic simulator that tests performance of
autonomous vehicles and evaluate their self-driving tasks.

Generic The three tools included in this category are diverse and range from simulation [216] to formal verification
[75] to model-based testing [53].
Verma et al. [216] present a Flight Software simulator that is used to simulate MARS Rover missions. The
simulator assists in predicting the behaviour of semi-autonomous systems by providing the capability for
human operators to check if their intent is correctly captured by the robot prior to execution in different
scenarios and environments. Foughali et al. [75] implement an automatic translation from GenoM [146], a
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robotics model-based software engineering framework, to the formal specification language Fiacre [28], which
can be fed into TINA [29] for formal verification. Collet et al./ [53] introduce RobTest, a tool for generating
collision-free trajectories for stress testing of single-arm robots. It employs constraint programming techniques
to solve continuous domain constraints in its trajectory generation process.

Small A considerable number of studies, among included in this survey, consider small case studies in their experiments.
Here, we review the most prominent ones.

Road A few papers employ case studies with a focus on collision avoidance for road vehicles [4, 49, 71, 129]. They
all focus on detecting imminent collision using built-in sensors. Similarly, Gaurehof, Munk and Burton [81]
conduct a case study where a machine learning function detects pedestrian using a video analysis.
Several case studies concentrate on driving scenarios and manoeuvres, such as lane changing [19, 166], lane
and path following [11, 233], merging [80], roundabouts [228], traffic scenarios [132, 156], parking [50], and
overall cruise control [72, 111, 131, 148, 218]. A focus on the actual decision making and path planning can
be seen in a handful of the case studies [50, 51, 227] as well. Hardware in the loop simulations [96] and
human-machine interaction for driving assistance [232] can also be seen among the included case studies.

Aerial The small scale case studies in this domain only present theoretical or very limited models of UAVs, such as
a surveillance drone [63] or a model for UAV launch [94]. Moreover, Brunel et al. [41] conduct a safety case
analysis whilst Bu et al. [42] explore simulation and realistic testing of vision-based object tracking for UAVs.
Aerial drones in co-operative scenarios are also the subject of two case studies [104, 202].

Mobile Only two small scale case studies were included here: Lu et al. [138] make use of PRISM model checker to
investigate three collision avoidance algorithms in a unmanned surface vehicle model with a dynamic intruder
and Arai and Schlingloff [12] employ a model checking technique on a transport robot model.

Generic Several case studies can be found within this category, with the vast majority being small models that are
applied to demonstrate the respective intervention. Here, we briefly present and discuss some of them.
Walter, Täubig, and Lüth [219] provide an algorithm that increases safety through formal verification using
the theorem prover Isabelle; the case study is a small robot. Nguyen et al. [164] provide a multi-step process to
verify correctness of autonomous agents and apply it to a cleaner robot. Fu and Drabo [231] model a humanoid
robot in an extension of Petri nets (called Predicate Transition Reconfigurable Nets - PrTR Nets) and formally
verify it. Lill et al. [133] also make use of Petri Nets, however, they develop models of cooperative forklifts
and simulate scenarios where the robots decide which one has the priority when passing through narrow
pathways.
Farulla and Lamprecht [69] conduct a case study on human-robot interaction processes that have beenmodelled
in DIME, and show how they can be verified with the GEAR model checker. Zhang et al. [234] have built
a virtual simulation platform, CyberEarth, for robotics and cyber-physical systems. A visual coverage task
for UAVs is also introduced to demonstrate the platform. Dennis and Fisher [62] apply an agent verification
approach to verify the correctness of an agents ethical decision-making. Doan, Bonnet and Ogata [64] specify
and formally verify, using the model checker Maude, a robotic gathering model.

Industrial
Road The industrial case studies involving road vehicles included in our survey typically involve verifying specific

components of such systems.
In the context of advanced driver assistance systems (ADAS), Abdessalem et al. [25] generate test cases for a
such system that can visually detect pedestrians. Zhou et al. [238] introduces a framework for virtual testing of
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advanced driver assistant systems that uses real world measurements. Kluck et al. [114] consider virtual driving
scenarios for testing automated emergency breaks. AbdElSalam et al. [1] use Hardware Emulation-in-the-loop
to verify Electronic Control Units (ECUs) for ADAS systems.
Fayazi, Vahidi, and Luckow [70] implement a vehicle-in-the-loop verification environment and conduct field
testing in the International Transportation Innovation Center (ITIC).
Gladisch et al. [88] select case studies that use industrial automated driving (adaptive cruise control, lane
keeping, and steering control scenarios) to evaluate their search-based testing strategy. Abdessalem et al.
[2] generate test cases for the SafeDrive system, which contains the following four self-driving features:
autonomous cruise control, traffic sign recognition, pedestrian protection, and automated emergency braking.

Aerial Shah et al. [199] build a model of quadrotor with pixhawk controller in their newly developed simulator,
AirSim, that includes a physics engine and and supports real-time hardware-in-the-loop. Rooker et al. [186]
demonstrate their validation framework for autonomous systems in a farming context with simulations and
field testing. They employ both UAVs and ground mobile systems. Bhattacharyya et al. [31] apply formal
verification methods to an autonomous CoPilot agent.

Mobile The only study in this category is the study conducted by Rooker et al. [186], which is also mentioned above.
In summary, they demonstrate their validation framework for autonomous systems in a farming context with
simulations and field testing.

Generic Jacoff et al. [106] conduct field testing for the performance evaluation of robots used in disaster scenarios.
Verma et al. [216] present a Flight Software simulator that is used to simulate MARS Rover missions. They
demonstrate their approach with a case study. Satoh [195] conducts a case study using a physical transport
robot to demonstrate their framework that can emulate the robot’s physical mobility.
Manhaes and Rauschenbach [149] model the Sperre SF 30k ROV underwater robot (RexROV) in the demonstra-
tion of the simulator for unmanned underwater vehicles. Uriagereka et al. [215] conduct simulation-assisted
fault injection to assess safety and reliability of robotic systems. The feasibility of their method is demonstrated
by applying it to the design of a real-time cartesian impedance control system. Gainer et al. [77] conduct a
case study in the context of verification of human-robot interaction using the Care-O-Bot robotic assistant.

Benchmark
Road Many different case studies have been included in this category. We briefly discuss the most distinguished

ones. For instance, Neves et al. [58] developed a tool that conducts post-analysis (based on meta-models) on
outputs collected from field testing of autonomous vehicles. Five field testings involving a program to control
the navigation of an autonomous vehicle, CaRINA I, were performed. Zofka et al. [239] present the framework
Sleepwalker for verifying and validating autonomous vehicles and demonstrate the benefits of their framework
using different instances stimulating an autonomous vehicle.
Mullins et al. [160] have developed a tool (RAPT - Range Adversarial Planning Tool) for generating test
scenarios to be employed on the System Under Test. Their tool is applied to realistic underwater missions.
Heitmeyer et al. [99] synthesise software cost-reduction models of multiple autonomous systems to be used in a
simulator integrated with the eBotworks simulation tool. Gruber and Althoff [92] present a reachability analysis
tool (Spot) that finds counter-example to property violations. Their tool is evaluated using the CommonRoad
benchmark PM1:MW1:DEU_Muc-3_1_T-1.
Pereira et al. [173] employ several small case studies in their attempt to couple two simulators, namely SUMO
and USAR-Sim. Pasareanu, Gopinath, and Yu [171] present a compositional approach for the verification
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of autonomous systems and apply the technique on a neural network implementation of a controller for a
collision avoidance system on the ACAS Xu unmanned aircraft. Bi et al. [32] present a deep Learning-based
framework for traffic simulation and execute several scenarios of intersections with and without pedestrians.

Aerial Not many studies have applied their intervention to benchmarks of aerial systems. Bicevskis, Gaujens, and
Kalnins [33] develop models for the testing of UAV and UGV collaboration in the Simulink environment. Mutter
et al. [162] also explore the simulation of UAV models in Simulink and discuss the results when combining the
platform and environment models. D’Urso, Santoro, and Santoro [67] simulate leader follower UAV scenarios
in their framework. Their goal is to combine four simulation environments: a 3D visualisation engine, a physics
simulator, a flight control stack and a network simulator.
Wang and Cheng [220] present a hardware-in-the-loop simulator for drones that can generate synthetic images
from the scene as datasets, detect and verify objects with a trained neural network, and generate point cloud
data for model validation. They simulate and conduct filed testing on a physical UAV. Zhao et al. [235] model
an unmanned aerial vehicle (UAV) inspection mission on a wind farm and, via probabilistic model checking in
PRISM, show how the battery features may affect verification results.

Mobile Two studies fit this category. Proetzsch et al. [177] use a designed DSL (graph-based models) to describe the
system behaviour of the autonomous off-road robot RAVON. The model is used is used as test model for
generating test cases. Brambilla et al. [37] model a probabilistic swarm that is checked in PRISM to evaluate
their property-driven design method.

Generic Several studies have applied their intervention to benchmark case studies of generic/immobile robots. We
briefly discuss the most distinguished ones.
Tosum et al. [214] present a design framework that facilitates the rapid creation of configurations and behaviours
for modular robots. They’ve demonstrate their framework on the SMORES robot. Halder et al. [95] use the
physical robot Kobuki as a case study, over which properties are automatically verified using the UPPAAL
model checker. The focus of their approach is to model and verify ROS systems using real time properties.
Laval, Fabrese, and Bouraqadi [128] introduce a methodology to support the definition of repeatable, reusable,
semi-automated tests and apply it to a 2-wheels differential drive robot.
Bohlmann, Klinger, and Szczerbicka [36] automatically generate a model of a parallel delta robot on-the-
fly. Their method for model generation is based on machine learning and symbiotic simulation techniques.
Mariager et al. [151] design and field-test a robot that interacts with adolescents with cerebral palsy. Althoff
et al. [6] propose a framework (IMPROV) for self-programming and self-verification for robots, which is
demonstrated on a physical robotic arm. Wingand et al. [225] have developed CoSiMA, which is an architecture
for simulation, execution and analysis of robotics system. They conduct experiments on the humanoid robot
COMAN.

In Table 8, we map the identified subdomains to the different aspects of our research questions as follows:

RQ1 Across all subdomains a majority of models have been formal and quantitative and substantial gaps can be
detected (most notably in the aerial vehicles and mobile robots subdomain) regarding using qualitative and
informal models for testing.

RQ2 Across all studied subdomains, there is a clear gap in using precise notions of effectiveness, efficiency, and
coverage. Among these, some generic notions of effectiveness and efficiency (such as testing time and state
space size) and the notion of coverage (such as node and transition coverage) are the most-used measure for
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quantifying the effect. Common, more sophisticated measures of effectiveness, efficiency, and adequacy such as
Average Percentage of Faults Detected (APFD) [187] do not seem to have been adopted in or extended to the
domain of RAS. We do see some recent trend towards domain-specific notions of effectiveness and coverage
[2, 25, 33, 35, 113, 144, 212]; almost all of these notions have been applied to the autonomous vehicles domain,
but most of them can be adapted to be applicable to other domains as well.

RQ3 There is a considerable gap concerning tool support for testing RAS. There are very few open source tools,
mostly in the autonomous vehicles [4, 16, 54, 78, 80, 92, 212] and aerial vehicles [18, 67, 140] subdomains. No
open-source tools support the domain-specific aspects of mobile robotic system. The same pattern with a more
severe gap is present for proprietary tools. Very few public (but not open source) tools are developed or used in
the reviewed literature.

RQ4 There is also a very severe gap across all subdomains in using industrial case studies for evaluating RAS testing
interventions. The most notable exceptions are a handful of case studies, mostly in the autonomous vehicles
[1, 2, 25, 70, 88, 114, 196, 198, 209, 238] and the aerial vehicles [77, 106, 149, 154, 195, 215, 216] sub-domains,
performed in an industrial context. Many interventions used small case studies, mostly without any specific
application subdomain (e.g., using generic models of mobile robots); in these cases, the models did not contain
enough details to be part of a general benchmark. There have also been some evaluations performed on small
case studies based on drones and UAVs.

Analysis for Researchers. Gaps: In our analysis of the studied subdomains, there is a clear gap in treating marine
and sub-marine RAS. Also there is a relative weakness in treating aerial vehicles and mobile robots. Moreover, there
is a relative weakness across subdomains concerning the treatment of informal and qualitative models. Developing
a common set of notions of effectiveness and efficiency to compare different intervention is a worthwhile research
challenge and there is a gap in the literature in tailoring them for specific domains. The same observation holds for the
notion of test adequacy. Tooling, particularly tailored for specific subdomains, is a general weakness for all interventions.
Moreover, applying the interventions in industrial context is an outstanding challenge.

Strengths: The road vehicle subdomain has a considerable strengths across all research questions. Also there are
far more interventions that have been developed for generic RAS systems without treating the specific concerns of
sub-domains. Formal and quantitative models are by far the strongest interventions both in terms of the number of
techniques studies and the evaluations performed, even in industrial domains.

Analysis for Practitioners.

Gaps: Since most of the proposed interventions have not been evaluated in industrial context, evaluating their
applicability, including studying factors such as the learning curve and training, remains a substantial gap.
Strengths: Due to the available strength in formal and quantitative models, developing such models provides a starting
point to benefit from the developed and studied interventions. There is certainly more maturity in the area of road
vehicles to benefit from in practice, but we can envisage that by tuning the domain-specific aspects, other sub-domains
may also benefit from these strengths.

6.1.2 Cooperation and Connectivity. Verification methods are pivotal for the wide-spread deployment and public
acceptance of autonomous systems. The need for such methods is intensified in the functions enabled by network
services, due to the close interaction among the communication protocols, control software (e.g., for cooperation
rules), and system dynamics. Existing (manual) analysis techniques typically do not scale to the huge design-space

Manuscript submitted to ACM



38 Hugo Araujo, Mohammad Reza Mousavi, and Mahsa Varshosaz

and input-space of these functions and, hence, in this work, we survey automated verification techniques found in the
literature.

Table 9 provides an overview of the interventions used to test cooperation and connectivity in RAS. The interventions
can be broadly categorised into swarm RAS, where an emerging behaviour is to be observed through cooperation of a
large number of RAS, versus cooperative RAS where few RAS units engage in a well-defined interaction (possibly with
their environment) to achieve a goal.

In general, this turns out to be an understudied area of testing RAS and little focus has been put in testing cooperative
and connected scenarios in the literature. For the very few interventions reported in the literature, there is scarcely any
evidence of efficiency or effectiveness available. The handful of reported evaluations are only performed on small-scale
case studied and are not accompanied by open source tools. In our analysis, we focused on cooperation among robots;
however, only in 2019, we encountered some papers that study cooperation from a human-robot interaction viewpoint
[6, 151, 189].

Table 9. Testing Cooperation and Connectivity in RAS

Swarm Cooperative

RQ1

Qualitative [56, 120–122] [64, 133, 192]
Quantitative [7, 37, 47, 136] [16, 33, 104, 108, 159, 191]

Formal [7, 37, 47, 56, 120–122, 136] [16, 33, 64, 104, 108, 133, 159, 191, 192]
Informal [67]

RQ2
Effectiveness [7, 37] [16, 159]
Efficiency [136] [16, 67, 159]
Coverage [33, 133, 191, 192]

RQ3
Open-source [37, 136] [16, 67]

Public [48]
Private

RQ4
Small [7, 47, 56, 120, 121, 136] [64, 104, 108, 133, 159, 175, 191, 192]

Industrial [186]
Benchmarks [37] [33, 67]

Overall there is very little about the stochastic details of communication protocols. The studies in this category
mostly focus on verification of movement of robots (i.e., gathering and merging).

Qualitative
Swarm With respect to swarms, a number of theoretical studies [120–122] focus on scaling up the parametrised model

checking problem to large swarm sizes. They employ various types of epistemic extensions of CTL as property
specification languages. Their models include case studies on clustering of swarms, which synchronise to
gather in a certain area. Cybulski et al.’s contribution [56] to the field is a simulation framework for the
behaviour of UAV swarms. The framework also allows for performing simulations with a user-defined map of
the environment.

Cooperative Regarding the use of qualitative models of cooperative systems, our search only resulted in three studies, two
of which employ variations of Petri Nets as their models. Lill et al. [133] make use of Petri Nets to develop
models of cooperative forklifts. The forklifts communicate to decide which has the priority when passing
through narrow pathways. Sagglieti et al. [192] employ Coloured Petri Nets and classify cooperation in three
distinct levels: perception-based, reasoning-based and action-based cooperation. In order to demonstrate their
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strategy, they model platooning-like scenarios where different robots follow each other. The third study, by
Doan et al. [64], is a more theoretical study of parametric model checking employs model checking for multiple
small robots gathering in circular configurations using a ring-based topology. Their study focuses on model
checking the underlying distributed system and the properties written in LTL.

Quantitative
Swarm Three out of four papers in this category deal with probabilistic behaviour: Lomuscio et al. [136] perform

model checking on probabilistic LTL, whilst Anmin et al. [7] and Brambilla et al. [37] both describe properties
in PCTL. Cavalcanti et al. [47], on the other hand, models timed dynamics in CSP.

Cooperative The studies that have been classified in this category employ variations of temporal logic as their properties,
such as LTL [104, 108, 159] and CTL [16]. As an exception to that list, Bicevskis et al. [33] provide a simulation
environment in Simulink.

Formal
Swarm Kouvaros et al. [120–122] provide several theoretical studies in the field of formal verification and model

checking of autonomous systems. They have demonstrated the applicability of their strategy on a case study
of gathering of UAVs swarms. With respect to probabilistic systems, three studies have been found: Lomuscio
et al. [136] offer a strategy for parameterised model checking of probabilistic LTLs. Furthermore, Brambilla
et al. [37] provide a property-driven design method for probabilistic swarms that is checked using Prism.
Lastly, Amin et al. [7] verify probabilistic behaviour expressed via PCTL properties using UPPAAL. They assert
deadlock freedom, safety liveness checks, and reachability computations.

Cooperative The majority of studies employing formal methods in analysing RAS used model checking [16, 33, 64, 104,
108, 159, 159]; after model checking the most frequently used technique is model-based testing [133, 191, 192].
Arcile et al. [16] and Kamali et al. [108] investigate car platooning manoeuvres. In the former, the vehicles are
modelled as timed automata and UPPAAL is used as a model-checking tool. In the latter, joining and exiting
operations are modelled in Belief Desire Intention models and model checked using AJPF. They focus on
abstracting a formal (untimed) model from an agent (timed) model and checking the correspondence between
the agent model and the code. With respect to probabilistic model-checking, Muhammad et al. [159] model
robots that synchronise to position themselves in an attempt to guarantee coverage of a certain area. The
models are Markov Decision Processes that are checked using PRISM. Humprey et al. [104] make use of the
model checker Spin to investigate cooperation between UAVs and sensors and collaboration among sensors as
well.

Informal
Cooperative The only study in this category [67] provides a simulation environment that integrates existing solutions for

simulation of multi-UAV applications such as Gazebo (for robotic simulation), ArduPilopt (for UAV control
algorithms) and NS3 (for network simulation). Their case study is a model of a leader-follower application for
large convoys of UAVs.

Effectiveness As noted before, there are very few measures of effectiveness used for evaluating the system or the testing
technique:

Swarm Amin et al. [7], use very generic notions of effectiveness for the system under test, namely, deadlock freedom,
safety, liveness, and reachability. Brambilla et al. [37] go beyond that and in addition to some domain-agnostic
properties, such as probability of satisfying the requirements (safety), they measure aggregation time of the
swarm, and improvement of the behaviour (in terms of objects retrieved).
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Cooperative Muhammad et al. [159] measure the probability of task completion, and human interaction to measure efficiency
in wireless sensor networks. Arcile et al. [16] measure the number of collisions in its vehicle verification
approach.

Efficiency
Swarm Lomuscio et al. [136] count the number of sates and transitions as a measure of efficiency of their formal

verification methodology.
Cooperative Muhammad et al. [159] also measure the time of task completion, and human interaction as a measure of

efficiency for the system under test. Arcile et al. [16] measure the travel time for the system under test, and
the verification time as efficiency metrics for the respective testing technique. D’Urso et al. [67] measure
simulation time as a measure of efficiency of their integrated simulator.

Coverage
Cooperative Saglietti, Winzinger, and Lill [192] consider state coverage in the analysis of their model-based reconfiguration

testing strategy, whilst Bicevkis et al. [33] conduct testing of collaborative UAV and UGV and consider “the
complete test set” as a measure test coverage. Lill and Saglietti [133] model Petri nets entities and address the
maximisation of interaction coverage whilst minimising the amount of test cases.

Open-source
Swarm With respect to swarms, two open-source tools have been reported: the PSV-CA tool [136] can model check

probabilistic PLTL properties for swarm systems and ARGOS [37] is a multi-physics robot simulator, which
can simulate large-scale swarms and can be customised via plug-ins.

Cooperative Only two open-source tools have been found for cooperative robots: VerifCar [16] allows for fault injection in
models for UPPAAL model checking. GzUAV [67], on the other hand, is a simulation tool for connected UAVs.

Public
Swarm The only public, non-open source tool that as been employed in the testing of swarms is the RoboTool by

Cavalcanti et al. [48]; RoboTool supports modelling, and model checking (through the FDR tool [86]). The tool
has been applied to a UAV swarm case study.

Small
Swarm Kouvaros and Lomuscio [120, 121] study parameterised verification of robot swarms against temporal-epistemic

specifications and model a small, theoretical, robot swarm. Cavalcanti et al. [47] introduce RoboChart, which
facilities for modelling and verifying collections of interacting robots. Cybulski [56] provide mathematical
models of a UAV swarm that can be simulated in their proposed framework. Amin et al. [7] presents a formal
verification approach using timed automata for the verification of path planning of robot swarms.

Cooperative Poncela and Aguayo-Torres [175] conduct a case study where they test underwater robots wireless communi-
cation. Lill et al. [133] make use of Petri Nets to develop models of cooperative forklifts and simulate scenarios
where the robots decide which one has the priority when passing through narrow pathways. Humprey et
al. [104] make use of the model checker Spin to investigate cooperation between UAVs and sensors and
collaboration among sensors as well. Saglietti, Winzinger, and Lill [192] use coloured Petri Nets to model
interacting autonomous agents and generate test cases for reconfiguration scenarios.

Benchmarks
Swarm The only reported benchmark for this category is by Brambilla et al. [37], where they investigate aggregation

and foraging manoeuvres on large scale swarms of multiple sizes.
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Cooperative D’Usrso et al. [67] evaluate their methodology on a number of test programs using different UAV sizes. They
aim their evaluation at testing (i) the scalability of the solution and (ii) its performances by comparing the
simulation time with respect to physical execution time.

Industrial
Cooperative The only reported industrial case study is by Rooker et al. [186]. They make use of a simulation tool in the

smart farming domain. Land and air robots are modelled using real dynamics and cooperate to complete
farming tasks.

RQ1 Regarding the models used for analysing cooperative scenarios in RAS, we notice that formal probabilistic
models (based on variations of temporal logic [120–122], process algebra [48], and timed automata [7, 16]) are
the most used types of models. Often these models are used for the purpose of model checking abstract models
of cooperative scenarios. Informal models are used less frequently, and only as input to simulation tools [67].
Qualitative and informal models are used far less often in this context.

RQ2 Most notions of effectiveness and efficiency are the generic notions such as state-space size, verification time,
and test coverage [33, 133] for the technique and deadlock freedom and probability of temporal logic formula
satisfaction for the system under test. The only exceptions where domain-specific notions of efficiency and
effectiveness were used concern aggregation time of the swarm [37] and effectiveness of human-robot interactions
[159].

RQ3 There is clearly a lack of tools for testing cooperative and swarm scenarios in RAS. The only exceptions are
public model checking tools [16, 37, 48, 136] and a simulation tool for connected UAVs [67].

RQ4 Very few studies have evaluated their interventions on industrial-scale case studies [186] and benchmarks
[33, 37, 67].

Analysis for Researchers. Gaps: An analysis of the included studies reveals that in cooperative scenarios for RAS,
the role of communication networks and protocols and their effect on functionality, safety, and reliability of the RAS
system is severely understudied. Integrating the body of knowledge available in communications with the testing and
verification of RAS is clearly an area for future research. The very few available studies do not provide domain-specific
measures of efficiency and effectiveness that pertain to the cooperative aspects and the emerging cooperative behaviour.
Moreover, there is a lack of sufficient evidence of strategies being applied to industrial-scale case studies and benchmarks.

Strengths: There is certainly a strength in abstract theories for parameterised model checking of swarms. Apart
from that there is no other concentrated area of strength.

Analysis for Practitioners. Gaps: As noted above, we do not think we have reached sufficient maturity in the research
results for cooperative and swarm robots to be able to apply them in practice. Even the existing techniques have not
been applied to many industrial case studies yet and no stable tool-sets are available at the moment. Working with
researchers to define meaningful notions of efficiency and effectiveness as well as providing benchmarks and industrial
case studies could lead an impactful future research agenda.
Strengths: There are no practical areas of strength in testing cooperative and swarm RAS scenarios.

6.1.3 Testing strategy. Table 10 provides an overview of the testing strategies used for RAS. By far the most widely
used strategy is formal verification, followed by simulation and runtime monitoring, respectively. Model-based testing
is the least researched strategy.

Qualitative
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Table 10. Overview of the testing strategies used for RAS.

Simulation Model Based
Testing

Formal Verification Runtime
Monitoring

RQ1

Qualitative [56, 99, 193] [10, 14, 94, 133,
147, 164, 192]

[8, 9, 17, 22–
24, 31, 38, 41, 60, 62, 64,

69, 71, 72, 89, 120–
123, 135, 137, 148, 168,
188, 198, 206, 217, 222–

224, 229, 231]
Quantitative [1, 37, 42, 48, 52, 54, 87,

101, 118, 127, 130–
132, 140, 149, 156, 157,
162, 173, 185, 201, 207,
213, 216, 225, 233]

[25, 30, 53, 134,
177, 191]

[6, 12, 16, 18, 19, 33, 37,
39, 40, 46–48, 57, 63, 73–
75, 77, 82, 87, 89, 95,
104, 108, 111, 136, 138,
142, 157, 159, 166, 169,
171, 172, 176, 183, 190,
202, 205, 219, 226–
228, 235, 236]

[63, 88, 103, 141,
171, 203, 221]

RQ2

Effectiveness [11, 32, 37, 49, 50, 54,
78, 127, 131, 156, 167,

199, 214, 215]

[25, 30, 160,
177]

[12, 16, 18, 19, 37, 57, 63,
71, 73, 138, 142, 159, 198,
217, 227, 228, 235, 236]

[63, 141]

Efficiency [35, 67, 83, 118, 132,
161, 173, 193]

[10, 32, 53, 160] [6, 12, 16, 39, 40, 71, 72,
77, 92, 111, 123, 136,
137, 142, 148, 159, 166,
172, 183, 190, 202, 206,

217, 229, 235]

[88, 103]

Coverage [14, 94, 133,
191, 192]

[33] [144]

RQ3

Open-source [6, 37, 52, 54, 67, 78, 80,
101, 103, 118, 140, 149,
161, 185, 213, 225]

[4, 6, 16, 18, 63, 77, 92,
136, 137, 176]

[63, 103]

Public [48, 199, 234] [160] [48]
Private [99, 196, 216, 233] [53] [75, 166]

RQ4

Small [11, 35, 42, 48–
50, 56, 83, 87, 96, 130–
132, 140, 156, 185, 213,

233, 234]

[10, 30, 53, 94,
133, 134, 147,
164, 191, 192]

[9, 12, 17–
19, 22, 24, 38–41, 46–

48, 60, 62–64, 69, 71, 72,
82, 87, 89, 104, 108, 111,
120, 121, 123, 136–

138, 148, 159, 166, 169,
172, 188, 190, 202, 205,
219, 226–229, 231]

[63]

Industrial [1, 149, 186, 196, 199,
215, 216, 238]

[25] [31, 77, 198] [88]

Benchmarks [32, 36, 37, 54, 67, 78,
99, 101, 118, 127, 161,
162, 170, 173, 193, 203,
207, 214, 220, 225]

[14, 160, 177] [6, 33, 37, 73–
75, 92, 95, 171, 176, 183,
217, 222–224, 235, 236]

[103, 141, 171,
221]
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Simulation Heitmeyer et al. [99] synthesise state-based formal models (Software Cost Reduction tabular models) from
scenarios specified in Mode diagrams (extensions of Message Sequence Charts). The models are used in a
simulator integrated with the eBotworks simulation tool. Cybulski et al. [56] developed a simulation tool for
UAV based on class- and activities diagrams. Further, their framework allows for user-defined maps of the
environment.

MBT Two search-based testing approaches are employed in this category: Lill and Saglietti [133] employ genetic
algorithm to maximise coverage in the Petri nets models for generating test cases. Analogously, Nguyen et
al. [164] provide a multi-step process to verify correctness of autonomous agents. They makes use of multi-
objective evolutionary algorithms to cover stakeholder soft goals. Araiza et al. [14] and Andrews et al. [10]
focus on human robot interaction. The former generate test cases from BDI models whilst the latter focuses on
coverage to generate test cases from Petri nets. Another model-based testing tool that uses Petri nets is [192],
which uses Coloured Petri Nets and structural coverage metrics to generate test cases for reconfiguration
scenarios. Finally, Hagerman et al. [94] combines a behavioural model with attack and mitigation analyses to
generate a security test suite for UAVs.

Formal Verification The vast majority of papers in this category perform formal verification based on properties specified in
variations of temporal logic; since autonomous systems specifications typically involve aspects such as beliefs
and intentions, several studies are dedicated to studying the theoretical boundaries (e.g., (un)decidability) of
verifying epistemic extensions of temporal logics [120–123, 135, 137]; a notable tool used in this context is the
MCMAS model checker [137], which is also evaluated on a small-scale benchmark against the general-purpose
model checker NuSMV.
Many theoretical studies study the issue of abstraction for parameterised specifications, where parameters can
be the number of autonomous agents [120–123, 135, 137] or the size and shape of the arena [8, 9]. Aminof et
al. [9] investigate the decidability problem for parameterised grid sizes. They found that restricting the grid
size, results the problem being solved in Pspace. On the same vein, Rubin et al. [8] establish a framework in
which to model and automatically verify autonomous agents. The framework contains an algorithm tailored
to solve a parameterised verification problem where they use the model graphs as parameter.
Coming up with temporal logic specifications is known to be difficult and require some level of formal training.
To alleviate this, a few papers focus on writing LTL properties. Webster et al. [222, 223] model scenarios for a
robot in the healthcare sector; they use Brahms as the language to describe human-robot interaction scenarios
and the properties are written in LTL. Babiceanu et al. [17] combine LTL and Event-B to build models of
trustworthiness for small unmanned aerial systems (sUAS).
Formalisation of and applying formal verification on different cognitive architectures have been the focus of
many studies.
Bhattacharyya [31] formalise a rule-based representation of cognitive architecture using SOAR framework
[125] UPPAAL and connect the verification agent to the simulation environment. They model an auto-pilot
avionic system and analyse contingency situations during takeoff.
The Belief-Desire Intention framework is another natural cognitive architecture for specifying autonomous
agents and it has been extensively used in the literature. Several studies make use of theMCAPL framework [61].
Dennis et al. [60, 62] verify ethical aspects of autonomous agents’ interactions with people, by modelling their
behaviour using the BDI models and capturing ethical priorities; these ethical models are subsequently model
checked against LTL specifications using the MCAPL framework. Furthermore, Ferrandes et al. [71] model
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autonomous vehicle components and also use MCAPL to formally verify their BDI models. Lastly, Ferrando
et al. [72] go further and provide an approach that combines formal verification and runtime monitoring
by specifying trace behaviour in Prolog and connecting that with a JAVA implementation (using the JPL
framework 3) for runtime monitoring.
Sun et al. [206] study the effect of Neural networks components in the behaviour of autonomous systems;
in particular, Rectified Nonlineary in Neural Networks and analyse it using Satisfiability Modulo Convex
(SMC). In order to mitigate the verification effort, they perform a pre-processing and evaluate the effect of
pre-processing on the verification time, measured in the number of neurons in the Neural Network.
With respect to the verification of safety on human-robot interaction, Vicentini et al. [217] provide safety
assessments by formally verifying models written in TRIO temporal logic [84]. Their strategy aims to identify
hazardous situations associated with non-negligible risks. Analogously, Farulla and Lampretc [69] focus on
model checking security properties formulated in Computational Tree Logic (CTL).
Selvaraj et al. [198] evaluate the application of different formal techniques to verify control software for an
autonomous vehicle. They investigate the application of Supervisory Control Theory, Model Checking and
Deductive Verification and provide insights on how these different approaches can address different industrial
challenges.

Quantitative
Simulation Most interventions in this category focus strictly on introducing a simulation tool for a specific sub-domain,

such as underwater robots [52, 149, 213], vehicles [54, 201, 233], robots [101, 127], and UAVs [140, 162].
On the other hand, a number of interventions combine a simulation approach with other testing aspects. Li et
al. [132] employ a game-theoretical approach where vehicles have different levels of knowledge about other
vehicles. For instance, a level 0 car has no knowledge about the other cars and a level k car has information
about level k - 1 cars. Strangely, they show that, in some instances, lower level cars effect less constraint
violations.
Szalay et al. [207] provide a scenario-in-the-loop simulation using SUMO and Unity engine. The simulate
simplified platooning and valet parking scenarios and in both the simulation and in a real smart city (Salazone).
Verma et al. [216] present a Flight Software simulator that is used to simulate MARS Rover missions. The
simulator assists in predicting the behaviour of semi-autonomous systems by providing the capability for
human operators to check if their intent is correctly captured by the robot prior to execution in different
scenarios and environments.
Two studies present supporting libraries: Koolen et al. [118] implement robotic simulation library in the Julia
programming language. The library offers support for robot dynamics, visualisation, and control algorithms.
Rohmer et al. [185] developed libraries to integrate VREP and other programming language (Lua, C++, Java,
Python, Matlab and Ruby) with support for different types of 3D objects and modules for kinematics and
dynamics.

Model Based Testing Multi-objective search is an increasingly popular technique for coping with complex robotics systems. Betts
et al. [30] employ the monte-carlo search heuristic to verify the lateral distance between the outcome of
surrogate-based models compared to a known ground truth in UAV applications. A similar approach is used
by Nejati et al. [25] on pedestrian detection using vision-based system. They employ NSGA-II [59] using

3https://jpl7.org/
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minimum distance and minimum time to collision as fitness functions and compare the performance of the
heuristic with and without surrogates.
Sagliatelli and Meitner [191, 192], on the other hand, propose multiple notions of coverage to help generating
test cases from Petri Nets models of autonomous, cooperative and reconfigurable robots. Furthermore, they
employ statistical testing techniques, which intend to evaluate the degree of acceptance of the behaviour
observed.
A framework for automated testing using metamorphic testing principles combined with model-based testing
is employed by Lindvall et al. [134]. Test cases are generated from test models and multiple variations of
scenarios that are programmatically generated based on metamorphic relations.

Runtime Monitoring In this category, verification checks at runtime have been typically coupled with model checking strategies,
where properties are being checked during the system execution. For instance, Desai et al. [63] presents an
STL-based framework where assumptions used during model checking hold at runtime, where the online
monitor checks robustness on partial trajectories from low-level controllers.
In the context of obstacle avoidance, Luo et al. [141] employ JavaMOP to verify that a robot does not behaves
against requirements written in FSM and PTLT languages. Temporal properties are also employed by Wang et
al. [221], where the RoboticSpec specification language for robotic applications is translated into a framework
for online monitoring that also uses PLTL properties.
Huang et al. [103] present ROSRV which is an online monitoring framework that runs on top of ROS. They
make use of a public-subscribe communication architecture and intercept commands and messages passing
through the communications channel. This way, they are able to verify safety and security requirements at
runtime using a domain-specific language.

Open-source
Simulation Manhaes and Rauschenbach present UUV simulator [149] which is an extension of Gazebo accommodating

the domain-specific aspects of underwater vehicles. They assist with modelling of underwater hydrostatic and
hydrodynamic effects, thrusters, sensors, and external disturbances and demonstrate their tool on a case using
a modified model of the Sperre SF 30k ROV robot (RexROV).
As another tool for underwater robots, MARS [213] provides simulation environments for marine swarm
robots that allows for hardware-in-the-loop simulation. The tool has a Java interface and has been applied to
the MONSUN and HANSE autonomous underwater robots.
In the Matlab environment, the FROST tool [101] is an open-source Matlab toolkit for modeling, trajectory
optimisation and simulation of robots, with a particular focus in dynamic locomotion. In the study, they model
the ATLAS and DRC-HUBO as examples.
Munawar and Fischer [161] present the Asynchronous Framework, which incorporates real-time dynamic
simulation and interfaces with learning agents to train and potentially allow for the execution of shared
sub-tasks. Due to the asynchronous nature of the communication, they measure the number of packets against
latency. Furthermore, they focus on surgical robots as part of their application domain and they employ the
CHAI3D haptics framework. They connect their tools with ROS, which allows them to connect to learning
libraries such as TensorFlow.
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D’Urso, Santoro and Santoro [67] also present a simulator for multi-UAV applications, called GzUAVChannel.
It works as a middleware that combines Gazebo, Autopilot, and NS-3 network simulator to provide a 3D visu-
alisation engine, a physics simulator, a flight control stack and a network simulator to handle communications
among unmanned aerial vehicles. They model a leader-follower example.
The MoVE tool [54] provides the possibility of modelling pedestrian behaviour. The framework focuses on
testing autonomous system algorithms, vehicles, and their interactions with real and simulated vehicles and
pedestrians. They conduct three case studies: traffic wave observation, medical evacuation and virtual vehicles
avoiding real pedestrian.
Rohmer, Singh and Freese introduce VREP [185] a popular robotics physics simulator that is now known as
CoppeliaSIM. The tool uses a kinematics engine and several physics libraries to provide rigid body simulations
(including meshes, joints and multiple types of sensors).
Koolen et al. [118] implement robotic simulation library in the Julia programming language. The library offers
support for robot dynamics, visualisation, and control algorithms.
Brambilla et al. have developed ARGOS [37], which is a multi-physics robot simulator that can simulate
large-scale swarms and can be customised via plug-ins.
Cieslak et al. introduces Stonefish, a geometry-based simulator [52] that can be integrated with ROS. Lastly,
the MARS [213] tool provides simulation environments for marine swarm robots.
Gambi, Mueller and Fraser present the AsFault prototype tool [78]. The tool combines procedural content
generation and search-based testing in order to automatically create challenging virtual scenarios for testing
self-driving car software.
Garzón and Spalanzani [80] present a tool that combines 3D simulation (for ego-vehicle control) with a traffic
simulator (which controls the behaviour of other vehicles). The goal is to test the ego-vehicle in realistic high
traffic situations.
Lugo-Cárdenas, Luzano and Flores [140] introduce a 3D simulation tool for UAVs whose focus is on assisting
the development of flight controllers.

Formal Verification Parametric modelling of CAVs as a network of timed automata is used by Arcile et al. [16]. In this work,
VerifCar tool is applied to asses the impact of communication delays on the decision algorithms of CAVs and
to check the robustness and efficiency of such algorithms.
Gruber and Althoff [92] present a reachability analysis tool (Spot) that finds counter-example to property
violations. It starts with a coarse model of the system dynamics but it can refine the abstraction levels for
precision/scaling.
Desai et al. [63] present a runtime verification framework (DRONA) based on Signal Temporal Logic [], where
an online monitor checks robustness on partial trajectories from low-level controllers.
RoVer [176], provides visual authoring of HRI, formalisation of properties in temporal logic, and verification
(via model-checking with PRISM []) that the interactions abide by set of social norms and task expectations
whose goal is to identify social norms violation.
Althoff introduces IMPROV [6], a tool that is used to formally verify human-robot interaction for modular
robots.
Gainer et al. [77] provide a tool (CRutoN) for translation to formal models from control rules of robots in
a DSL and input those models into NuSMV for model checking. Their main emphasis is the verification of
human-robot interaction.
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Bao et al. [18] present a prototype tool for parametric statistical model checking that can cope with complex
parametric Markov chains where state-of-the-art tools (such as PRISM) have timed out. They provide evidence
of their tool efficiency by conducting an industrial case study.
The FLPolyVF tool [4] connects functional verification, sensor verification, diagnostics, and industry/regulatory
communication of autonomous vehicles whilst checking the effects of using different (matrix-based) scenario
abstraction levels.
Lomuscio et al. have developed the MCMAS model checker [137]. They used a logic (ATL-k) alternating
temporal logic (epistemic). One of the few tools that uses CTL. They demonstrate their strategy in a couple of
small-scale examples, where they compare their strategy against alternatives (NuSMV and MCTK).

Runtime Monitoring Huang et al. present ROSRV [103], which is a runtime verification framework that that can be used with ROS.
Desai et al. [63] presents a runtime verification framework based on Signal Temporal Logic, where an online
monitor checks robustness on partial trajectories from low-level controllers. In the context of surgical robots.

Public
Simulation Cavalcanti et al. [46–48, 157] introduce RoboTool, supporting graphical modelling, validation, and model

checking (via FDR [85]) of robotic models written in RoboChart [157] and RoboSim [48].
Shah et al. [199] introduce the AirSim simulator that generates training data for building machine learning
models used in autonomous air crafts. It offers physical and visual simulation, including models of physics
engine, vehicle, environment, and sensors. Further, it connects to an API for planning and control [REF].
Zhang et al. [234] introduce CyberEarth, a framework for program-driven simulation, visualisation and
monitoring of robots. The tool integrates modules from several other open-source tool such as ROS [178] and
OpenSceneGraph (OSG [43]).

Model Based Testing Mullins et al. [160] developed a tool (RAPT - Range Adversarial Planning Tool) for generating test scenarios
to be employed on the System Under Test. The tools employs an adaptive search method that generates
challenging scenarios based on the performance and results of the previous ones. A clustering algorithm ranks
the scenarios based on the performance type and how close they are to the boundaries of each cluster. The
boundaries are based on notions of efficiency (precision and convergence), diversity (how many performance
boundaries are being covered) and scaling.

Formal Verification The only tool in this category is RoboTool [48] which has also been described above in the Simulation category.
It provides formal verification via translated CSP models fed into the FDR model checker [85].

Private
Simulation Heitmeyer and Leonard [99] introduce two tools integrated into the FORMAL framework; the tools synthesise

and validate formal models. The first tool syntheses a formal Software Cost Reduction (SCR) requirements
model from scenarios and the second tool combines the existing SCR simulator [97] with eBotworks 3D
simulator to allow for simulation of continuous components. They focus on the verification of human-machine
interaction.
Verma et al. [216] present a Flight Software simulator (SSIM - part of Rover Sequencing and Visualisation
program (RSVP) suite) that is used to simulate MARS Rover missions. The simulator assists in predicting the
behaviour of semi-autonomous systems by providing the capability for human operators to check if their
intent is correctly captured by the robot prior to execution in different scenarios and environments.
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Zhang et al. present RoadView [233] a photo-realistic simulator that tests performance of autonomous vehicles
and evaluate their self-driving tasks. They make use of driving scenarios where they compare autonomous
vehicle to a human driven scenario in order to demonstrate their tool.
Schöner presents a simulation tool that is part of the (industrial) Pegasus framework [196]. It integrates sensors,
traffic and road models (in open-drive Format) into the simulation where different scenarios and situations are
executed.

Model Based Testing Collet et al. [53] introduce RobTest, a tool for generating collision-free trajectories for stress testing of single-
arm robots. It employs constraint programming techniques to solve continuous domain constraints in its
trajectory generation process. The efficiency of such a process is evaluated in a controlled experiment where
the generation time of acceptable near-optimal trajectories.

Formal Verification O’kelly introduces APEX [166], which is a formal verification tool for verifying vehicle dynamics, trajectory
planning and tracking stacks of ADAS in vehicles. Property specifications are written in metric interval
temporal logic. The tool calls DReach [117] in the background to perform reachability analysis on the vehicle
trajectories.
Foughali et al. [75] implement an automatic translation from GenoM [146], a robotics model-based software
engineering framework, to the formal specification language Fiacre [28], which can be fed into TINA for model
checking (on the Petri Net models). They apply their tool to an autonomous ground vehicle (RMP 400 Segway)

Small
Simulation Regarding small scale case studies for simulation environments, the vast majority conduct a simple demonstra-

tion to illustrate features of their simulation tools [11, 42, 48, 50, 56, 96, 140, 233, 234], such as Mars [213] (for
underwater robots) and VREP [185] (for generic robots) case studies.
Differently, Li et al. [132] employ a game-theoretical approach where vehicles have different levels of knowledge
about other vehicles. For instance, a level 0 car has no knowledge about the other cars and a level k car has
information about level k - 1 cars. Strangely, in their case study, they show that, in some instances, lower level
cars effect less constraint violations.

MBT Two of the case studies in this category consider generating test cases from formal models [133, 164] of
autonomous agents. Furthermore, Andrews et al. [10] model autonomous systems and their environment
using Petri nets to generate test cases and apply their technique to a case study in the human-robot interaction
domain. In Hagerman’s case study [94], finite state machines are used to extract security test suites. Sagglietti
et al. [191, 192] conduct a case study in which the reconfiguration behaviour of autonomous agents is verified.
Betts et al. [30] compare the effectiveness of two search based testing methods, with a case study involving a
UAV flight control software.

Formal Verification Several of the included case studies in this category concern abstract representations of multi-agent autonomous
systems and provided efficient algorithms for parametric (formal) verification or state-space reduction tech-
niques [18, 22, 24, 120, 121, 123, 136, 137].
Several other case studies [19, 46–48, 138, 205] concern systems used in model checking tools such as Prism
[124] and FDR [85]. Another use of these case studies is to demonstrate usage of introduced tools such as APEX
[166] and MDE [148]. Differently, Dennis et el. [60, 62] focus on formalising and verifying ethical concerns in
BDI agents and provide corresponding small case studies. Aminof et al. [9] investigate the decidability problem
for parameterised grid sizes. In their case study, they found that restricting the grid size, results the problem
being solved in Pspace.
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Runtime monitoring In the only paper in this category, Desai, Tomasso, and Seshia [63] make use of an STL-based (signal temporal
logic) online monitoring system to ensure that the assumptions about the low-level controllers (discrete models)
used during model checking hold at runtime. They demonstrate the strategy in a surveillance application case
study.

Industrial
Simulation Zhou et al. [238] introduces a framework for virtual testing of advanced driver assistant systems that uses

real world measurements. Shah et al. [199] build a model of quadrotor with pixhawk controller in their newly
developed simulator, AirSim, that includes a physics engine and and supports real-time hardware-in-the-loop.
Schöner presents a simulation tool that is part of the (industrial) Pegasus framework [196]. It integrates sensors,
traffic and road models (in open-drive Format) into the simulation where different scenarios and situations are
executed. [186] demonstrate their validation framework for autonomous systems in a farming context with
simulations and field testing.
Uriagereka et al. [215] conduct simulation-assisted fault injection to assess safety and reliability of robotic
systems. The feasibility of their method is demonstrated by applying it to the design of a real-time cartesian
impedance control system. Manhaes and Rauschenbach [149] model the Sperre SF 30k ROV underwater robot
(RexROV) in the demonstration of the simulator for unmanned underwater vehicles. Verma et al. [216] present
a Flight Software simulator that is used to simulate MARS Rover missions. They demonstrate their approach
with a corresponding case study. AbdElSalam et al. [1] use Hardware Emulation-in-the-loop to verify Electronic
Control Units (ECUs) for ADAS systems.

MBT In the only industrial case study in this category, Abdessalem et al. [25] generate test cases for a system that
can visually detect pedestrians in the context of advanced driver assistance systems (ADAS).

Formal Verification Gainer et al. [77] conduct a case study in the context of verification of human-robot interaction using the
Care-O-Bot robotic assistant. Bhattacharyya et al. [31] apply formal verification methods to an autonomous
CoPilot agent.

Runtime monitoring Gladisch et al. [88] select case studies that use industrial automated driving (adaptive cruise control, lane
keeping, and steering control scenarios) to evaluate their search-based testing strategy.

Benchmarks
Simulation Several benchmark scale case studies can be found in this category. In what follows, we briefly discuss some

of them. Wigand et al. [225] have developed CoSiMA, which is an architecture for simulation, execution
and analysis of robotics system. They conduct experiments on the humanoid robot COMAN. Tosum et al.
[214] present a design framework that facilitates the rapid creation of configurations and behaviours for
modular robots. They’ve demonstrate their framework on the SMORES robot. Pereira et al. [173] employ
several small case studies in their attempt to couple two simulators, namely SUMO and USAR-Sim. Brambilla et
al. [37] model a probabilistic swarm that is checked in PRISM to evaluate their property-driven design method.
Bohlmann, Klinger, and Szczerbicka [36] automatically generate a model of a parallel delta robot on-the-fly.
Their method for model generation is based on machine learning and symbiotic simulation techniques. Mutter
et al. [162] also explore the simulation of UAV models in Simulink and discuss the results when combining
the platform and environment models. Bi et al. [32] present a deep Learning-based framework for traffic
simulation and execute several scenarios of intersections with and without pedestrians. D’Urso, Santoro,
and Santoro [67] simulate leader follower UAV scenarios in their framework. Their goal is to combine four
simulation environments: a 3D visualisation engine, a physics simulator, a flight control stack and a network
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simulator. Wang and Cheng [220] present a hardware-in-the-loop simulator for drones that can generate
synthetic images from the scene as datasets, detect and verify objects with a trained neural network, and
generate point cloud data for model validation. They simulate and conduct filed testing on a physical UAV.
Heitmeyer et al. [99] synthesise software cost-reduction models of multiple autonomous systems to be used in
a simulator integrated with the eBotworks simulation tool.

MBT Proetzsch et al. [177] use a designed DSL (graph-based models) to describe the system behaviour of the
autonomous off-road robot RAVON. The model is used is used as test model for generating test cases. Mullins
et al. [160] have developed a tool (RAPT - Range Adversarial Planning Tool) for generating test scenarios to be
employed on the System Under Test. Their tool is applied to realistic underwater missions. Furthermore, in
their case study, Araiza-Illan, Pipe and Eder [14] use BDI models and model checking of probabilistic timed
automata (in UPPAAL) to generate test sequences for human-robot collaboration tasks.

Formal Verification Here, we briefly discuss some of the benchmarks that involve formal verification. Halder et al. [95] use the
physical robot Kobuki as a case study, over which properties are automatically verified using the UPPAALmodel
checker. The focus of their approach is to model and verify ROS systems using real time properties. Brambilla
et al. [37] model a probabilistic swarm that is checked in PRISM to evaluate their property-driven design
method. Bicevskis, Gaujens, and Kalnins [33] develop models for the testing of UAV and UGV collaboration in
the Simulink environment. Althoff et al.
[6] propose a framework (IMPROV) for self-programming and self-verification for robots, which is demon-
strated on a physical robotic arm. Zhao et al. [235] model an unmanned aerial vehicle (UAV) inspection mission
on a wind farm and, via probabilistic model checking in PRISM, show how the battery features may affect verifi-
cation results. Gruber and Althoff [92] present a reachability analysis tool (Spot) that finds counter-example to
property violations. Their tool is evaluated using the CommonRoad benchmark PM1:MW1:DEU_Muc-3_1_T-1.

Runtime monitoring Pasareanu, Gopinath, and Yu [171] present a compositional approach for the verification of autonomous
systems and apply the technique on a neural network implementation of a controller for a collision avoidance
system on the ACAS Xu unmanned aircraft. Temporal properties are employed in Wang’s case study [221],
where the RoboticSpec specification language for robotic applications is translated into a framework for online
monitoring that also uses PLTL properties. Huang et al. conduct a case study using a model of the LandShark
UGV to demonstrate their tool, ROSRV [103], which is a runtime verification framework that that can be used
with ROS. In the context of obstacle avoidance, Luo et al. [141] employ JavaMOP in their case study to verify
that the robot does not behaves against requirements written in FSM and PTLT languages.

RQ1 By far quantitative testing techniques are the most widely researched strategies (this was also a common
observation for the domain and connectivity aspects).

RQ2 Among the measures used for evaluating interventions efficiency is most often used, with effectinvess being a
close second. Few interventions, however, were evaluated using a notion of coverage [14, 33, 94, 133, 144, 191, 192].
It is notable that, for runtime monitoring, only two publications [88, 103] employ an efficiency metric.

RQ3 There is a considerable lack of tools for model-based testing and runtime monitoring. For simulation and formal
verification, there seems to be some considerable strength in terms of tool support.

RQ4 Approximately 54% of the interventions used small-scale case studies for their evaluations, whilst only 10%
evaluated their strategy in an industrial context, indicating a clear gap.
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6.2 For researchers

Throughout the various categories we have coded in this case study, the most prominent gap is in the use of agreed-upon
rigorous measures to evaluate the efficiency and effectiveness of the interventions as well as real-world benchmarks
that can be used to evaluate such measures. As observed in the earlier sections, much of the measures of efficiency
and effectiveness measures are very generic and there is also a relative gap in domain-specific measures suitable for
the RAS sub-domains. A lack of domain-specific modelling languages and the limited number of runtime verification
approaches indicate that there is room for improvement in RAS testing strategies.

Another considerable gap is in the use of quantitative specification languages to specify the desired properties of
the system; due to the inherent heterogeneity of RAS, we need to have property languages that cover aspects such as
the combination of discrete and continuous dynamics as well as stochastic and epistemic aspects that may be used
to model the aspects of behaviour concerning the environment and the users. Connected to this point is the relative
gap in interventions that perform a quantitative analysis of the system and provide quantitative metrics of quality as
the outcome of the test. Some starting points in this direction are the use of quantitative properties that incorporate
probabilistic and stochastic- [37, 172], timed- [95, 166, 202], and continuous dynamical [63] aspects of RAS. We have also
noted the use of a specification language that caters for a combination of stochastic and continuous aspect of RAS [138].
On the contrary there is a relative strength in using qualitative models, including property specification languages as
predicate- [8] and temporal logics [19, 41, 75, 104, 108, 141, 171, 204], as well as epistemic extensions thereof [122, 135].
Also, there is a wealth of studies on the use of discrete relational [150], state-based [37, 47, 94, 141, 157, 229, 231] and
belief-based [13, 14, 108, 164] abstract models in testing and verification of RAS. Also several studies used informal
simulation models for simulation tools such as Gazebo and USARSim [13, 14, 42, 42, 51, 103, 128, 173]. A suitable
middle-ground may be the semi-formal and domain-specific models such as those built in Matlab/Simulink [25, 30, 162].

Regarding techniques, most of the techniques used so far in the literature have been formal verification techniques
applied (on relatively high-level) qualitative [8, 41, 71, 122, 135, 148, 188, 229, 231] or quantitative [12, 19, 33, 37, 47, 63,
74, 75, 95, 104, 108, 111, 138, 157, 166, 171, 172, 190, 202, 219, 226] models of RAS. There is also some strength in the
use of informal simulation techniques [37, 42, 127, 131, 132, 140, 157, 162, 173, 193, 233]. We have seen relatively few
model-based testing [10, 14, 25, 30, 94, 133, 164, 177, 192] and run-time verification [63, 103, 141, 171] techniques that
have been applied to (models of) complex and detailed RAS. We hence see a gap, and a trend towards closing this gap,
in dynamic and non-exhaustive testing of RAS techniques.

Finally, lack of public tooling is a major gap observed in the literature. They are very few techniques that are
accompanied by a tool and there are very few public tools for testing RAS [47, 71, 75, 103, 122, 140, 157, 219, 233].

6.3 For practitioners

The most significant gap is lack of industrial evaluation of existing interventions. There have been very few interventions
applied in an industrial context and to systems of industrial complexity [1, 2, 25, 31, 70, 77, 88, 106, 114, 149, 154, 186,
186, 195, 196, 198, 199, 209, 215, 216]

Unfortunately the number of interventions is too small to conclude any meaningful trend and indication of strong
evidence for applicability in the industrial setting. Among the propose interventions, most either concerned simulation-
based testing [149, 216] or connected the results of their verification to some simulation tool (mostly based on ROS-
Gazebo integration) [1, 70, 154]. Search-based testing [2, 25, 88] and interaction testing [2, 209] are two notable
techniques that have been used in industrial contexts. Among the models employed in the industrial context, variants
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of state machines [216] and fault trees [215] can be mentioned. A notable study in this regard [198] is a comparison of
supervisory-control, deductive- and inductive (model-checking) verification techniques in the industrial context.

The human- and information-source is another aspect of testing interventions that is a severely understudied. We
note a recent trend in combining user studies (in the sense of human-computer- and human-robot interactions) and
traditional testing, validation, and verification techniques [6, 151, 189].

Also there is a gap in defining and evaluating testing processes, particularly in industrial contexts.
The lack of industrial- and domain-expert input into the models and techniques is evident and has led to generic and

relatively simple modelling techniques and property languages being used for most intervention. Co-production with
industrial partners can enrich these aspects and lead to models that can deal with the heterogeneity and complexity of
industrial RAS.

7 CONCLUSION

We performed a systematic review of the interventions for testing robotics and autonomous systems in order to answer
the following research questions:

(1) What are the types of models used for testing RAS?
(2) Which efficiency and effectiveness measures were introduced or used to evaluate RAS testing interventions?
(3) What are the interventions supported by (publicly available) tools in this domain?
(4) Which interventions have evidence of applicability to large-scale and industrial systems?

To this end, we started off by performing a pilot study on a seed of 26 papers. Using this pilot study, we designed
and validated a search query, designed rigorous inclusion and exclusion criteria and developed an adaptation of the
SERP-Test taxonomy. Subsequently, we went through two phases of search, validation and coding, in total going through
a total of 10,534 papers. We finally coded the set of 192 included papers and analysed them to answer our research
questions.

A summary of the findings of the review with regards to our research questions is provided below:

(1) There is a wealth of formal and informal models used for testing RAS. In particular, there is a sizeable literature
on using generic property specification languages (such as linear temporal logic) and qualitative modelling
languages, such as variants of state machines, UML diagrams, Petri nets and process algebras. There is a clear
gap in quantitative modelling languages that can capture the complex and heterogeneous nature of RAS. There
is also a lack of domain-specific languages that can capture domain knowledge for various sub-domains of RAS.

(2) We observed a gap in rigorous and widely accepted metrics to measure effectiveness and efficiency, and adequacy
of testing interventions. Similar to the previous items, those measures used in the literature are very generic
and do not pertain to the domain specific aspects of RAS. Hence, there is a gap and a research opportunity for
defining and evaluating rigorous (domain-specific) measures for efficiency, effectiveness, and adequacy for RAS
testing interventions.

(3) There is a considerable number of intervention that rely on public tools to implement or evaluate their interven-
tions. However, there are very few which make their proposed / evaluated interventions available for public use
in terms of publicly available tools. There is hence a considerable gap in providing data-sets and public tools for
further development of the field.

(4) There are less than a handful of testing interventions that have been evaluated in an industrial context. There
have been some other interventions that used some real robots or autonomous systems, but in an academic
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context. This signifies the importance of future co-production between academia and industry in industrial
evaluation of testing interventions for RAS.
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