
Telling Lies in Process Algebra
Mohammad Reza Mousavi
University of Leicester, UK

Email: mm789@le.ac.uk

Mahsa Varshosaz
Halmstad University, Sweden

Email: mahsa.varshosaz@hh.se

Abstract—Epistemic logic is a powerful formalism for reason-
ing about communication protocols, particularly in the setting
with dishonest agents and lies. Operational frameworks such
as algebraic process calculi, on the other hand, are powerful
formalisms for specifying the narrations of communication pro-
tocols. We bridge these two powerful formalisms by presenting a
process calculus in which lies can be told. A lie in our framework
is a communicated message that is pretended to be a different
message (or nothing at all). In our formalism, we focus on what
credulous rational agents can infer about a particular run if
they know the protocol beforehand. We express the epistemic
properties of such specifications in a rich extension of modal
µ-calculus with the belief modality and define the semantics of
our operational models in the semantic domain of our logic. We
formulate and prove criteria that guarantee belief consistency
for credulous agents.

I. INTRODUCTION

Motivation. A lie is an intentional announcement of (believed-
to-be) incorrect information in order to deceive the audience
[8]. A lie is an action, while (untrue) belief is a possible
consequence of that action in agents’ states. The belief aspect,
i.e., epistemics, of lies is often captured by modeling the effect
of lies as belief revisions or updates. Modeling lies and their
epistemics have attracted substantial attention in the recent
literature concerning Dynamic Epistemic Logic (DEL, cf. [7],
[8], [11], [13], [19] for some recent examples; also see [18]
for applications of DEL in security).

Communication protocols are often described in an opera-
tional and narrative style, describing the possible sequences
of announcements (message exchanges) among the involved
principals. Yet correctness properties of such protocols are
often naturally expressed in terms of epistemic properties (e.g.,
whether a certain fact remains secret after running the proto-
col). Hence, it is beneficial to check epistemic properties on
operational models of protocol specification [14], particularly
in the presence of untruthful principals.

In this paper, we present an operational model in which
lies can be told, i.e., a message can be communicated but
announced to a certain audience as if something else (or
nothing at all) has been communicated. In this work we
improve the definition of the notion of communication com-
pared to our previous work [4], by allowing for actions to
have multiple appearances to different principals. A renaming
function specifies for each principal the observed action when
a communication happens. This notion is closely related to the
notion of function views used in [20] for hiding information
and also the notion of appearance in [23]. In our model, we

abstract away from the intention of the liar and focus on what
credulous rational agents (involved in the communication or
external observers) can infer about a particular execution of
the protocol, if they know the protocol beforehand. (Credulous
agents are those agents that are willing to accept what is being
told to them as long as it does not lead to any logical incon-
sistency with the rest of their belief.) We focus on two types
of logical properties: first, what an agent consistently believes
and second, whether an agent can detect a particular lie in the
course of a protocol execution. The first types of properties
are protocols-specific. We express these properties in a rich
extension of modal µ-calculus with Dynamic Epistemic Logic
constructs and define the semantics of our operational models
in the semantic domain of our logic. The second type, the so-
called belief properties, are meta-properties of the semantic
framework and were used as a yardstick to sanity check our
semantic definitions. Although these properties are relatively
simple, guaranteeing them in our framework is non-trivial and
involved several iteration over laborious proofs (with over
50 case distinctions) and several revisions in the epistemic
semantics of our framework.
Related work. This paper integrates process algebra [2] as
an operational framework and Temporal Dynamic Epistemic
Logic [1] as a logical framework. It builds upon the earlier
proposals [4], [5] (co-developed by the first author), in which
only knowledge (thus, no lies and untrue beliefs) were incor-
porated.

The closest frameworks to ours are those based on Dynamic
Epistemic Logic such as [7], [8], [13]. In the remainder, we
focus on [7] as the point of reference for our comparison,
because it is the most recent and the most developed example
of such frameworks. In a nutshell, compared to [7], we put
an emphasis on ease of modeling and provide a concrete and
generic syntax for specifying various types of announcements.
Our framework is much simpler than the action models of
agent announcements in [7] in that we only specify the
operational behavior of the protocol and derive the epistemic
models automatically. This simplicity comes at a cost, namely,
reduced expressiveness.

The semantics of our process algebra bears close resem-
blances to that of [7]. In [7, Section 3], a distinction has
been made between the belief update for the speaker and the
belief update for the addressee. We generalise our process
algebraic description of epistemic actions presented in [14].
There, an action could have two appearances: one for its
intended audience and another for the rest. However, in the



present paper, we generalise this to a function model, where
an action can have several different appearances for different
agents. In [5], we gave a translation from a similar process
algebraic framework (excluding the aspect of lying) to the
interpreted systems model [12], [16]. We expect a similar
translation to be possible in our extended settings with lies.

In [20], information hiding is modelled by a principal’s lack
of knowledge (partial view) of a function, called function view.
The system behavior is hence described in terms of functions
and then the information hiding properties are formulated as
different views of these functions. Our framework can be
differentiated from this work by allowing for the possibility of
passing lies (i.e., having inconsistent function views). In our
framework, we allow for non-deterministic behavior (for un-
certainty) and concealment (for information hiding). However,
a generalisation of the notion used in [20] allowing for lies can
be developed as future work and then compared to our existing
framework. In [23], a logic for describing and reasoning about
knowledge and the changes made in knowledge resulting from
communication in a multi-agent system is presented. Our
notion of renaming function in the decorated actions is closely
related to the notion of appearance by Sadrzadeh [23], which
is used for representing the information of the agents about
propositions. In [23], uncertainty is modeled in appearance
functions, while in our framework, we allow for nondeter-
minism in our process algebraic framework. Comparing and
consolidating these two aspects is an interesting avenue for
future work.
Running example. To illustrate various concepts, we use two
variants of the two-player Liar’s Dice game, which we call
Liar’s Coin, adopted from [8].

Example 1: Liar’s coin. The plot of the game is as follows:
two players, denoted by 1 and 2 play the following scenario:
• Player 1 bets on head and player 2 bets on tail, and stake

10 kronor,
• Player 1 tosses a coin secretly and regardless of the actual

outcome, nondeterministically announces head (h) or tail
(t),

• If player 1 announces t, she loses the stake, and the game
ends.

• If player 1 announces h, player 2 either passes (p), by
which she loses the stake, and the game ends, or

• Player 2 challenges (c), by which she adds another 10
kronor to the stake, and

• Player 1 reveals the coin, and the player with the right
bet wins the stake.

We specify both the usual model of the game, as well as
two variants: in the first variant, player 1 does not lie when
the outcome of the coin flip is a head (since there is no
incentive to lie in that case). In the second variant, player
2 only passes when she believes that the result of the coin flip
has been a head. Also to illustrate our approach, we specify
and analyze the following dynamic epistemic properties on
both specifications:
• After player 2 passes, she does not form any belief

regarding the coin flip.

• After player 2 challenges, she will believe the past result
of the coin flip.

• Player 1 can deceive player 2, i.e., player 1 may see a
head while player 2 believes she has seen a tail (or vice
versa).

Structure of the paper. The rest of this paper is structured as
follows. In Section II, we introduce the syntax of our process
algebraic formalism and our logical formalism for reasoning
about process algebraic specifications. Then, in Section III, we
define a semantics for both formalisms in a common semantic
domain. In Section IV, we extend our operational framework
by allowing for explicit specification of the interplay between
epistemic beliefs and operational actions, e.g., choosing among
future scenarios based on agents’ beliefs. In Section V, we
analyze the semantic properties of specifications mainly from
the viewpoint of detecting lies. In Section VI, we conclude
the paper and present some directions for future research.

II. SYNTAX

A. Operational framework

Our operational framework is based on Milner’s Calculus
of Communicating Systems (CCS) [15] and as such is a
common process algebra. It generalises our earlier process
algebra PAi [4], [5], by allowing for multiple appearances of
actions and its semantics by incorporating the concepts of lie
and concealment. The grammar for our syntax is given below.

Proc ::= 0 | D ;Proc | Proc+ Proc | Proc || Proc | X
D ::= (α, f) | (β, f)! | β?
f ∈ F α ∈ A, β ∈ A \ {τ}
In this grammar Proc represents the syntactic class of

processes, ranged over by p, q, p0, . . ., D represents the syn-
tactic class of decorated actions, ranged over by d, d0, . . .,
and α represents the class A of (atomic) actions, ranged
over by a, a0, . . .. F denotes the set of all functions such as
f : A × Id → A, where Id is a set of principal identifiers
ranged over by natural numbers in this paper. This function
denotes the different types of announcements (including lies
and concealments) that could be made throughout a proto-
col. A particular atomic action, designated with τ , denotes
internal actions, which are supposed to carry no information
(apart from unobservable evolution of the internal state of the
system). This particular action is used to model concealing
the occurrence of other atomic actions; this becomes clearer
in the remainder of our explanation below. In this section,
we do not impose further conditions on the function f in the
syntax, it can map any action to any other action (including
itself); however, as we show in Section V, for a protocol
to make intuitive sense, some sanity conditions should be
checked on the types of renamings defined by such functions
in the protocol.

A process can be the terminated process 0, or an action-
prefixed process d ; p, in which first d ∈ D takes place and
subsequently p takes over, or a nondeterministic choice p+ q
between p and q, in which the first action from p or q resolves



the choice, or a parallel composition p || q, in which p and q
can interleave their actions or synchronize on the dual send
and receive actions (see below). Moreover, recursive variables
can be used to specify infinite behavior; each recursive variable
is assumed to have a unique recursive equation of the form
X

.
= Proc.
A decorated action d is a pair (a, f), which comprises an

atomic action a, which is used to model communications and
internal actions in a protocol, and a renaming function f ,
which specifies the action that is perceived by each principal
when action a happens (This notion is inspired by the notion
of function views used in [20].)

Intuitively, in such decorated action, each principal i ∈ Id
will perceive the message carried in a as f(a, i). Particularly
for an action a, and a principal i ∈ Id such that f(a, i) = b
and b 6= a is deceived by observing b instead of a. In this case
if b = τ , then i does not notice any action while a has been
performed. For a decorated action (a, f), we say that I ⊆ Id
is the set of intended audience of the action, where I is the
maximal set satisfying ∀i∈I f(a, i) = a.

Atomic actions can be of the form (a, f)!, denoting sending
a, a?, denoting receiving a, or simply (a, f), denoting the
result of synchronization (handshake communication) on a.
The set |D| ⊆ D is the set of all actions that are the result of
a synchronization, i.e., are not followed by ? or !. As stated
before, τ ∈ A is designated as the unobservable action, which
in our framework models perfect information hiding. In other
words, if a decorated action is of the form (a, f) and for i ∈
Id , f(a, i) = τ then after performing a, it appears to the
principal i as if no action has taken place.

Note that we have consciously opted for a simple syntax
in which we do not code the intention of principals (e.g., the
identifier principal who tells a lie); in keeping with this choice,
we do not allow for explicit reasoning about the intentions
of principals. We consider the extension to the setting with
subject principals and their intentions among our directions
for future work.

Example 2: Liar’s Coin in process algebra. The following
specification models, in our syntax, the normal execution of
the Liar’s Coin game explained in Example 1. We assume A =
{h, t, p, c, kr−10, kr−20, kr10, kr20} is the set of actions and
that Id = {1, 2} denotes the set of players. (For the sake of
brevity, we have skipped the step of selecting the bet and
putting up the stake; we assume that player 1 bets on head
and player 2 bets on tail.)

Game1 =
(h, f) ;(((p, f) ;(kr−10, f))+
((c, f) ;(kr−20, f))) + (h, f ′) ;(kr10, f)+
(t, f) ;(kr10, f) + (t, f ′) ;(((p, f) ;(kr−10, f))+
((c, f) ;(kr20, f)))

∀a∈A,i∈Id f(a, i) = a
f ′(h, 1) = h ∧ f ′(t, 1) = t ∧
∀i∈Id i 6= 1⇒ f ′(h, i) = t ∧ f ′(t, i) = h

In this specification, action h or t is first performed by

principal 1, but nondeterministically, it is chosen whether the
truth or a lie is told to the rest. The Player 1 in all cases
sees the true result of the coin flip. Player 2, as well as other
principals in Id , observe the message announced by player
1, which may be the truth or a lie, represented by functions
f and f ′, respectively. It is important to note that for the
sake of brevity in the above-given specification, the act of
flipping a coin and telling the truth or lying have been merged
into one atomic action. A more elaborate specification could
separate them by firstly denoting the event of flipping a coin
and secondly making a decision to tell the truth or a lie.
Moreover, we assumed that the decision to pass or challenge
and the amount and the person who wins the stake are all
announced publicly.

The following specification is a variant of the game, where
player 1 does not lie when the result of the coin flip is head.
Note that in both cases player 1 does observe the actual result
of the coin flip (1 is among the intended audience of h and t
actions in all cases), but in some cases, she consciously decides
to lie.

BetterGame1 =
(h, f) ;(((p, f) ;(kr−10, f)) + ((c, f) ;(kr−20, f)))+
(t, f) ;(kr10, f) + (t, f ′) ;(((p, f) ;(kr−10, f))+
((c, f) ;(kr20, f)))

∀a∈A,i∈Id f(a, i) = a
f ′(t, 1) = t ∧ ∀i∈Id i 6= 1⇒ f ′(t, i) = h

B. Epistemic framework

Our logical framework is a natural combination of modal
µ-calculus with past, on the one hand, and epistemic logic (of
beliefs), on the other hand. The inclusion of past is crucial
in the applicability of our logic, since often belief concerns
actions in the past, e.g., after the completion of the protocol
an agent believes that a certain action has taken place in
the past. (For examples of such phenomena, we refer to the
forthcoming formalization of logical properties of Liar’s Coin
in the remainder of this section.) The grammar of logical
formulae is given below.

φ ::= > | Y |
∧
j∈J

φj | ¬φ | 〈α〉φ | 〈α〉φ | Biφ | νY.φ(Y )

(if Y occurs only positively in φ),

In the above-given grammar, logical connectives have their
traditional intuitive meanings; Y stands for the class of recur-
sive variables ranged over by x, y, x0, . . .; 〈a〉φ, means that it
is possible to perform an a-transition, after which formula φ
holds; 〈a〉φ, means that in the immediate past an a-transition
has been made, before which formula φ holds; Biφ means that
principal i believes in φ and νY.φ(Y ) denotes the maximal
fixed point of the equation Y = φ(Y ).



In order to facilitate the specification of logical properties,
we define and use the following acronyms:

[a]φ
.
= ¬〈a〉¬φ∨

j∈J φj
.
= ¬∧j∈J ¬φj

µY.φ
.
= ¬νY.¬φ with ¬Y = Y

AG φ
.
= νY.φ ∧ (

∧
a∈A〈a〉Y )

EF φ
.
= ¬AG¬φ

φ�
.
= µY.φ ∨ (

∨
a∈A 〈a〉Y )

To explain briefly, [a]φ means that after all a actions φ holds,
disjunction is known from propositional logic, µY.φ stands for
the minimal fixed point (often used to express that a formula
holds in after/before a finite path, see, e.g., the definition of
φ�), AG φ means that φ holds everywhere, EF φ means that
there is a finite run after which φ will eventually hold, and φ�

means that somewhere in the past φ held.
Example 3: Liar’s Coin’s logical properties. Below we give

a formalization of the logical properties stated in Example 1.

• After player 2 passes (p), she does not form any belief
regarding the coin flip.

AG [p](¬B2 (〈t〉>)�) ∧ (¬B2 (〈h〉>)�)

• After that player 2 challenges, she does form a belief
regarding the past result of the coin flip.

AG [c](B2 (〈t〉>)�) ∨ (B2 (〈h〉>)�)

• Player 1 can deceive player 2, i.e., player 1 may see a
head while player 2 believes it has been a tail (or vice
versa).

〈t〉 EF (B2 (〈h〉>)�) ∨ 〈h〉 EF (B2 (〈t〉>)�)

Similar properties could be specified from the view point of the
external observer 0, but due to space limitations we dispense
with those.

III. SEMANTICS

A. Operational semantics

The operational semantics of our process algebra is a slight
variation of the standard Plotkin-style semantics [17] for
process algebra [2] by including a sequence of past actions
(to build up the epistemic aspect).

Definition 4 (Structural operational semantics): Transition
relation d→ ⊆ (Proc×D∗)2 is the smallest relation satisfying
the following deduction rules (for the sake of brevity, we have
omitted the symmetric versions of deduction rules (n0), (p0),
and (p2)). Note that transition relation d→ is defined using the
auxiliary transition relation d⇒ . The main difference between
the two is that d⇒ allows for individual send and receive
actions to take place, while d→ enforces synchronization

by filtering out individual send and receive actions (due to
deduction rule (sync)).

(a)
(d ; p, π)

d⇒ (p, π _ d)
(n0)

(x0, π)
d⇒ (y0, π

′)

(x0 + x1, π)
d⇒ (y0, π

′)

(p0)
(x0, π)

d⇒ (y0, π
′)

(x0 ||x1, π) d⇒ (y0 ||x1, π′)
(sync)

(x, π)
(a,f)⇒ (y, π′)

(x, π)
(a,f)→ (y, π′)

(r)
(p[p/X], π)

d⇒ (y, π′)

(X,π)
d⇒ (y, π′)

X
.
= p

(p2)
(x0, π)

a?⇒ (y0, π
′) (x1, π)

(a,f)!⇒ (y1, π
′′)

(x0 ||x1, π)
(a,f)⇒ (y0 || y1, π _ (a, f))

a 6= τ

Where _ is the concatenation operator. Deduction rules
(a), (n0), and (p0) are self explanatory; deduction rule (r)
specify the behavior of a recursive variable X in terms of
the behavior of its definition p. Deduction rule (p2) specifies
the synchronization of a send and a receive action. We define
that the two synchronizing parties should not only synchronize
on the actual message, but also on the possible lie that is
to be told to the unintended recipients. In our framework,
since each action has a single appearance, defining other
semantics for synchronisation with respect to the appearance
would not be straightforward. For other semantic frameworks
that allow for combining appearance functions we refer to
[23]. Deduction rule (sync) specifies synchronization over
decorated actions. The operational semantics of a process is
the smallest transition relation

(a,f)→ satisfying the deduction
rules given above, with the pair of the process and the empty
history as the initial state. It is crucial to note that the transition
relation

(a,f)→ does not allow for individual (not synchronised)
send and receive to appear in the semantics of a process.

In order to develop the epistemic aspect of our operational
semantics, we start with defining an accessibility relation. This
relation specifies for each principal, which runs are suspected
to have happened after having seen a run of the protocol.

Definition 5 (Accessibility relation ): The accessibility re-
lation i ⊆ D∗ × D∗ is the smallest relation defined by the



(h, f) (t, f ′)

(t, f)(h, f ′)

{0, 1, 2}

{0, 1, 2} {1} {0, 1, 2} {1}

{0, 1, 2}

{0, 2}

{0, 2} {0, 2}

{1}
{1} {1}

{0, 2}
{0, 2}

∀a∈A,i∈Id · f(a, i) = a, f ′(h, 1) = h ∧ f ′(t, 1) = t ∧ ∀i∈Idi 6= 1⇒ f ′(h, i) = t ∧ f ′(t, i) = h

Fig. 1. First steps in the operational semantics of Game1 .

following deduction rules.

(ε)
ε

i
ε

(tru)
π

i
π′ f(a, i) = a

π _ (a, f)
i
π′ _ (a, f ′)

(lie)
π

i
π′ f(a, i) = b

π _ (a, f)
i
π′ _ (b, f ′)

(hid0)
π

i
π′ f(a, i) = τ

π _ (a, f)
i
π′

(hid1)
π

i
π′ f ′(a, i) = τ

π
i
π′ _ (a, f ′)

(hid2)
π

i
π′

π _ (τ, f)
i
π′

(hid3)
π

i
π′

π
i
π′ _ (τ, f ′)

Deduction rule (ε) is self-explanatory. Deduction rule (tru)
specifies that the intended audience of a decorated action
always observe it as it is and hence, they can only suspect
another run if it ends with the same observable action. There
is a built-in asymmetry in deduction rule (tru), namely, we
only require f(a, i) = a and not f ′(a, i) = a. The asymmetry
is introduced to model credulous agents that know the actual
protocol: the agents believe what is told to them (unless it
leads to contradiction) based on what they expect in a truthful
execution of the protocol. In other words, if they observe an
a, they believe they may be in a run of the protocol where
a actually happens regardless whether they may be told the
truth in that run or not (i.e., regardless whether f ′(a, i) = a
or not, respectively). Deduction rule (lie) specifies that an
action a may be pretended to have been a b, if the observing
agent is not among the intended audience of a and also
expects an observable b to happen in another plausible and
indistinguishable run. Note that since principals are assumed
to know the protocol beforehand, even if they do not observe
the other runs of the protocol, e.g., the run in which b happens,
they do know of its possibility and hence suspect it to lead to
the current state. Deduction rules (hid0) and (hid1) state that
an action a may be hidden from an agent that is not among its
intended audience, if the perceived appearance of the action
is τ , i.e., the unobservable action. Deduction rules (hid2)
and (hid3) state that unobservable actions in the protocol are
believed to be unobservable by all agents.

Definition 6 (Operational semantics of a process ): Given
a process p0 ∈ Proc, the indistinguishability relation i ⊆

(h, f) (t, f ′)

(t, f)

{0, 1, 2}

{0, 1, 2} {1}

{0, 2}

{1}

{0, 2}

(p, f) (p, f)

{1}

(kr10, f)

{0, 1, 2}{0, 1, 2}

{0, 1, 2}

(kr−10, f)

{1}

(kr−10, f)

{0, 1, 2}

{0, 2}

{0, 2}

{0, 1, 2}

(kr−20, f)

(c, f) (c, f)

(kr20, f)

{0, 2}{0, 1, 2}

{0, 1, 2}

{1}

{1}

∀a∈A,i∈Id · f(a, i) = a, f ′(t, 1) = t ∧ ∀i∈Idi 6= 1⇒ f ′(t, i) = h

Fig. 2. Operational semantics of BetterGame1 in Liar’s Coin example.

(Proc × D∗)2 for p0 is the smallest relation satisfying the
following deduction rule:

(ind)
(p0, ε)→ ∗(p, π) (p0, ε)→ ∗(p′, π′) π

i
π′

(p, π)
i

(p′, π′)

where → ∗ is the reflexive and transitive closure
⋃
d∈|D|

d→ .
The semantics of a process p0 ∈ Proc is defined as a

labeled transition relation with (p0, ε) as the initial state, and
(
⋃
d∈|D|

d→ ) ∪ (
⋃
i∈Id

i
) as its transition relations.

Example 7: Liar’s Coin’s logical properties. In Figures 1
and 2, respectively, the semantics of Game1 before and after
the first action of the protocol and the complete semantics of
BetterGame1 are depicted. In both figures, solid lines denote
the decorated actions and dashed lines denote the indistin-
guishability relation. In order not to clutter the figures, we
have left out the configurations of our operational semantics
and represented them by black dots.

B. Semantics of Epistemic Logic

The semantics of our epistemic logic follows the common
existing semantics and has no peculiarities. Namely, the se-
mantics is verified with respect to the labeled transition system
L for processes defined above and a given current state s. The
semantic definitions for various constructs of our logic are
given below.

L, s |= > iff true
L, s |= ∧

j∈J φj iff L, s |= φj for each j ∈ J
L, s |= ¬φ iff L, s |= φ is not true
L, s |= 〈a〉φ iff there is an s′ ∈ Proc ×D∗,

s
(a,f)→ s′ and L, s′ |= φ

L, s |= 〈a〉φ iff there is an s′ ∈ Proc ×D∗,
s′

(a,f)→ s and L, s′ |= φ
L, s |= Bi φ iff for all s′ ∈ Proc ×D∗ such that

s′
i
s it holds that L, s′ |= φ

L, s |= νX.φ(X) iff s ∈ ⋃{S′ ⊆ Proc ×D∗| ∀s′∈S′L,
s′ |= φ(X := S′)}



The semantics of >, conjunction, negation, and maximal
fixed point are standard. The semantics of 〈a〉φ specifies that
from the current state s an a-labeled transition (regardless of
its perceived action) emanates leading to a state s′ satisfying
φ. Dually, 〈a〉φ specifies that from the current state s an
incoming a-labeled transition can be rewound arriving in a
state s′ satisfying φ. The semantics of the belief operator
Bi φ specifies that for all indistinguishable states s′ (that are
reachable from the initial state), φ should hold.

Example 8: Checking the properties of BetterGame1 .
Consider the epistemic properties specified in Example 3 and
the operational semantics of process Better Game1 depicted
in Figure 2. Next, we briefly reason which properties hold for
the process.
• Consider the following property:

AG [p](¬B2 (〈t〉>)�) ∧ (¬B2 (〈h〉>)�)
In states without outgoing p transitions, the property
holds trivially. Hence, only the two states with an out-
going p transition are to be checked. In both cases, the
target of the p-labeled transitions are only related to the
state in which an h has actually happened in the past and
hence, principal 2 does believe that an h has happened in
the past. Thus, the property does not hold for the initial
state of BetterGame1 , i.e., after passing, principal 2 does
form a belief in this case.

• Regarding the second property:

AG [c](B2 (〈t〉>)�) ∨ (B2 (〈h〉>)�)
following a similar reasoning to the previous case, the
only accessible state from the targets of the two c-
labeled transitions is the leftmost state which has an h-
labeled transition in its past. Hence, after all c transitions,
principal 2 does believe that an h has happened. Note that
after revealing the coin and exchanging the stakes, if 2
receives kr20 (in the bottom rightmost state), then she
ceases to hold this belief.

• Finally, concerning the third property:

〈t〉 EF (B2 (〈h〉>)�) ∨ 〈h〉 EF (B2 (〈t〉>)�)
we have already seen in the previous two items that at
various states, namely the target states of p- and c-labeled
transitions in the leftmost branch, as well as the state
following the kr−10 principal 2 believes that an h has
happened in the past while actually a t has happened.

IV. MERGING THE TWO WORLDS

In this section, we lay the foundation of a framework in
which beliefs can integrated into the process language and
hence, influence the execution of a protocol. To this end, we
extend the syntax of our process algebra with a conditional
belief operator as follows.

Proc ::= 0 | Biψ ⇒ Proc | D ;Proc | Proc+ Proc |
Proc || Proc | X

ψ ::= > | X | ∧j∈J ψj | ¬ψ | 〈α〉ψ | νX.ψ(X)

The new piece of syntax, designated in bold, is Biψ ⇒
Proc, which reads “if principal i believes that ψ is the case,
then Proc follows (or otherwise the process deadlocks)”. Note
that we have restricted the syntax of the logical formula ψ to
only include past modalities. This is to exclude pathological
specifications such as the following: if i believes an a action
is disabled, then an a action should be performed. (Such
processes can be given an unambiguous semantics thanks to
approaches such as [3], [10], but we avoid them in order to
avoid the rather complicated semantic machinery required to
disambiguate such self-referential specifications.)

The semantics of our new operator is given below. (The rest
of the deduction rules for the operational semantics remain
intact.)

(belief)
L, (x, π) |= Bi ψ (x, π)

d⇒ (y, π′)

(Biψ⇒x, π) d⇒ (y, π′)

The above-given rule specifies that if formula Bi ψ holds
with respect to the current state (and the operational semantics
of the initial process), then the behavior of the argument
x determines the behavior of the conditional process term
Biψ⇒x.

This new piece of syntax allows for compositional specifi-
cations in which the components of a parallel process specify
each principal’s role in the protocol. The following example
illustrates this fact.

Example 9: Compositional Specification of Liar’s Coin. In
the following specification, we first decompose the specifi-
cation of Liar’s Coin into the specification of the scenarios
played by the two players. The specification of the game
is obtained by the parallel composition of the two player’s
scenarios.

Player1 = (h, f) ;((p? ;(kr−10, f)!) +
((c, f)! ; kr−20?)) + (t, f) ; kr10? +
(t, f ′) ;(((p, f)! ;(kr−10, f)!) + ((c, f)! ;(kr20, f)!))

Player2 = B2(〈h〉>)
� ⇒ (c? ; kr20?)+

(p? ; kr−10?)

Game = Player1 ||Player2

∀a∈A,i∈Id f(a, i) = a
f ′(t, 1) = t ∧ ∀i∈Id i 6= 1⇒ f ′(t, i) = h

In the above-given specification, Player1 plays the same
scenario as specified in BetterGame1 . However, Player2 is
only willing to accept the challenge if she believes that the
result of coin flip has been a head. Otherwise, Player2 is
always willing to accept the pass message.

To illustrate the role of our new belief operator, assume
that Player1 lies. This corresponds to the rightmost transition
in Figure 2 and the third summand of the process Player1
given above. (Since the behavior of Player1 is identical to



BetterGame1 , we can still refer to Figure 2 to explain the
initial steps of this example.) In this case, Player2 believes
that the result of the coin flip has been a head and hence,
accepts the challenge. Based on her earlier belief, she is
only willing to receive 20 kronor afterwards. In this scenario
Player1 has to accept that her lie has not been successful and
hence, pays 20 kronor to Player2 .

V. DETECTING LIES

In this section, we formulate two properties of processes,
called semantic consistency and syntactic consistency, that
guarantee the semantics of a process to satisfy the conditions
of a belief model (called KD45, cf. [9]). These two properties
characterise the set of protocols in which the agents can
consciously form a logically consistent belief after all runs
of such protocols. The conditions guaranteeing the properties
are sanity conditions of our framework, i.e., if they turn out
to be intuitive properties about protocols, then we have confi-
dence that the semantics of our indistinguishability relation is
intuitive correct.

The process of coming up with these conditions has been
very laborious and involved several iterations over the proofs
and the semantics. We first attempted a proof of these prop-
erties (involving more than 50 case distinctions) and gathered
all the conditions, hereafter called syntactic consistency, that
were necessary to make the proof go through. Analysed them
against our intuition of a consistent protocol. In case any
such condition could not be intuitively motivated, we analysed
their causes in terms of the semantics of indistinguisability
relation, revised the semantics and re-did the proof. This
process led to the existing semantics and the proofs (omitted
in the conference publication, due to space limitation). Finally,
we gathered all the semantic conditions and summarised them
in terms of an easy-to-check and intuitive sufficient condition,
called strict syntactic consistency. The latter could be easily
built into an automatic type-checking system for protocols to
check whether that the agents involved in the protocol can
form a logically consistent belief in all its runs.

Semantic consistency is an essential condition which re-
quires that each observed (partial) run of the protocol has a
corresponding possible trace in the specification according to
each and every principal.

Definition 10 (Semantic consistency): A process p0 is se-
mantically consistent when for each (p, π) ∈ Proc × D∗

and each i ∈ Id such that (p0, ε)→ ∗(p, π), there exists
a (p′, π′) ∈ Proc × D∗ such that (p0, ε)→ ∗(p′, π′) and
(p, π)

i
(p′, π′).

For example, neither processes Game1 , nor BetterGame1
is semantically consistent. In both games, if the result of the
coin flip for player 1 is tail, but she announces head and
player 2 challenges, then she cannot have a consistent belief
about the announcements made so far (and hence, detects that
an untruthful announcement has been made). However, if the
leftmost (kr−20, f) transition is removed from process Better
Game1 , it becomes a consistent process. (After having made

this change, for any arbitrary principal, each run of the system
has at least one corresponding run in the model.)

Syntactic consistency is another important condition to
identify those models of our process algebra that satisfy the
properties of a belief model. This property consists of a set
of syntactic constraints, which are necessary for a process to
satisfy conditions of a belief model.

Definition 11 (Syntactic consistency): A process p, with the
set of decorated actions D, is syntactically consistent when it
satisfies the following syntactic constraints:

(C1): ∀(a,f), (a,f ′), (b,f ′′)∈D f(a, i) = a ∧
f ′(a, i) = b ⇒ (a = b) ∨ (a = τ ∧ f ′′(b, i) = τ)

(C2): ∀(a,f), (a,f ′)∈D f(a, i) = a ∧ f ′(a, i) = τ
⇒ a = τ

(C3): ∀(a,f), (b,f ′), (c,f ′′)∈D f(a, i) = b ∧
f ′(b, i) = c ⇒ (b = c) ∨ (b = τ ∧ f ′′(c, i) = τ)

(C4): ∀(a,f), (b,f ′)∈D f(a, i) = b ∧ f ′(b, i) = τ
⇒ (a = τ) ∨ (b = τ)

(C5): ∀(τ,f)∈D f(τ, i) = b ⇒ (b = τ) ∨ (f ′(b, i) = τ)

(C6): ∀(a,f), (a,f ′), (a,f ′′)∈D f(a, i) = a⇒
(f ′(a, i) = a) ∨ (a = τ) ∨ (f ′(a, i) = τ ∧ f ′′(a, i) = τ)

(C7): ∀(a,f), (b,f ′), (b,f ′′)∈D f(a, i) = b ⇒
(f ′(b, i) = b) ∨ (f ′(b, i) = τ ∧ f ′′(b, i) = τ) ∨ (b = τ)

These items are obtained by trying to prove semantic consis-
tency using the deduction rules of the Definition 5. By and
large, these items constrain the possibility of telling different
lies or telling lies about lies. For example constraint C1 states
that if a principal observes the truth about an action, then
she is not lied about it anywhere else in the protocol; the
only possibility is that the same actions may be concealed.
Constraint C3 states that if two lies are told about an action
to a principal, then either the lies are identical, or one of the
lies is just a concealment and any other lie about the same
action is a concealment as well. Constraint C4 states that if a
lie is told about an action to a principal and the lie is concealed
somewhere in the principal’s communications, then either the
action is unobservable or the lie has been a concealment. The
rest of the constraints can be interpreted similarly.

Although these constraints are intuitively easy to under-
stand, they can be collectively expressed in terms of a stronger
sufficient condition for consistency, called strict syntactic
consistency, defined below.

Definition 12 ( Strict syntactic consistency): A process p,
with the set of decorated actions D, is strictly syntactically
consistent when it satisfies the following syntactic constraint:

(C0) : ∀(a,f), (b,f ′)∈D f(a, i) = b ⇒ f ′(b, i) = b ∧
a = τ ⇒ b = τ



The following lemma states paves the way for using syn-
tactic consistency instead of semantic consistency in protocol
analysis.

Lemma 13: A strictly syntactically consistent process is also
syntactically consistent.
(The proof of the lemma is included in the appendix.)

Next, we recall the following basic concept from the theory
of epistemic reasoning.

Definition 14 (Belief properties): For a set A, the relation
R ⊆ A × A satisfies the belief properties, also called KD45,
when it is:

1) Transitive: for each a, b, c ∈ A, if (a, b) ∈ R and (b, c) ∈
R, then (a, c) ∈ R, and

2) Euclidean: for each a, b, c ∈ A, if (a, b) ∈ R and (a, c) ∈
R, then (b, c) ∈ R, and

3) Serial: for each a, there exists a b such that (a, b) ∈ R.
The above-mentioned belief properties can be intuitively

explained as follows (for a more formal discussion of these
properties, we refer to [9, Chapter 3]). Transitivity implies that
if a principal believes that φ holds, then she is also conscious
of this believe (i.e., she believes that she believes in φ).
Euclidean property can be considered as the dual to transitivity,
namely it implies that if principal i does not believe in φ, then
she is conscious about this lack of belief (i.e., she believes
that she does not believe in φ). The serial property implies
consistency in belief, i.e., one does not believe in falsity.

The following theorem states that semantic consistency
and syntactic consistency are sufficient for satisfying belief
properties.

Theorem 15: For each semantically consistent and syntacti-
cally consistent process p, and each i ∈ Id , where Id denotes
the set of principal identifiers, relation i induced by the
semantics of p satisfies the belief properties.
(The proof of the theorem is included in the appendix)

Given Lemma 13, it follows from the proof of the above
theorem that each semantically consistent and strictly syntac-
tically consistent process also satisfies the belief properties.

VI. CONCLUSIONS

In this paper, we presented a process algebraic formalism for
specifying protocols in which untruthful announcements can
be made. We provided the semantics of this process algebra
in terms of a combination of labeled transition systems and
pointed Kripke structures. We showed how a combination of
modal µ-calculus and dynamic epistemic logic can be used
to reason about the correctness of such protocols. We also
defined conditions, called semantic consistency and syntactic
consistency, that make the semantics of a process qualify as a
belief model.

As suggested by its name, semantic consistency is a seman-
tic property, while syntactic constancy is a syntactic condition.
We are currently investigating sufficient syntactic conditions
that imply semantic consistency. Defining a suitable notion of
bisimulation and axiomatizing the process algebra are among
our other future research directions.

A translation between the public announcement subset of
our framework and that of [13], [7] is worth further inves-
tigating. This can be achieved by considering an existing
translation of labeled transition systems to Kripke structure
such as the one proposed in [6]. It then remains to lift the
translation into a translation from labeled transition systems to
pointed Kripke structures. Making the intentions of principals
explicit and reasoning about them is another area of future
research. Finally, we would like to compare the expressiveness
of our operational framework with and without the belief
operator.

REFERENCES

[1] A. Baltag, L.S. Moss, and S. Solecki. The Logic of Public Announce-
ments, Common Knowledge and Private Suspicions. Proc. of TARK’98,
43–56. Morgan Kaufmann, 1998.

[2] J.C.M. Baeten, T. Basten, and M.A. Reniers. Process Algebra:
Equational Theories of Communicating Processes, Cambridge, 2010.

[3] R. Bol and J.F. Groote. The Meaning of Negative Premises in Transition
System Specifications, J. ACM 43(5):863–914, 1996.

[4] F. Dechesne, M.R. Mousavi, and S. Orzan, Operational and Epistemic
Approaches to Protocol Analysis: Bridging the Gap. Proc. of LPAR’07,
226–241. LNCS 4790, Springer, 2007.

[5] F. Dechesne and M.R. Mousavi. Interpreted Systems Semantics for
Process Algebra with Identity Annotations. In Proc. of TbiLLC’11, 182–
205. LNCS 7758, Springer, 2013.

[6] R. De Nicola and F.W. Vaandrager. Action versus State based Logics
for Transition Systems. Semantics of Systems of Concurrent Processes,
407–419, LNCS 469, Springer, 1990.

[7] H.P. van Ditmarsch. Dynamics of lying, Synthese 191: 745–777, 2014.
[8] H.P. van Ditmarsch, J. van Eijck, F. Sietsma, and Y. Wang, On the

logic of lying . In GASS, pages 41-72. LNCS 7010, Springer, 2012.
[9] R. Fagin, J.Y. Halpern, Y. Moses, and M.Y. Vardi. Reasoning About

Knowledge. MIT Press, 2004
[10] R.J. van Glabbeek. The Meaning of Negative Premises in Transition

System Specifications II. JLAP 60-61:229–258, 2004.
[11] M. Guzman, S. Haar, S. Perchy, C. Rueda, and F, Valencia. Belief,

Knowledge, Lies and Other Utterances in an Algebra for Space and
Extrusion. JLAMP, 86(1): 107-133, 2017

[12] J.Y. Halpern and Y. Moses. Knowledge and Common Knowledge in
a distributed environment. J. ACM, 37(3):549–587, 1990

[13] B. Kooi and B. Renne. Arrow Update Logic. The Review of Symbolic
Logic 4(4):536–559, 2011.

[14] S. Knight, C. Palamidessi, P. Panangaden, and F.D. Valencia: Spatial
and Epistemic Modalities in Constraint-Based Process Calculi. In Proc.
of CONCUR’12, 317–332, LNCS 7454, Springer, 2012.

[15] R. Milner. A Calculus of Communicating Systems. LNCS 92, Springer,
1980.

[16] R. Parikh and R. Ramanujam. Distributed processes and the logic
of knowledge. Proc. of CLP’85, volume 193 of LNCS, pages 256–268.
Springer, 1985.

[17] G.D. Plotkin. A structural approach to operational semantics. JLAP
60:17–139, 2004.

[18] R. Pucella. Knowledge and Security, CoRR abs/1305.0876, 2013.
Available from http://arxiv.org/abs/1305.0876.

[19] C. Sakama. Logical Definitions of Lying. Proc. of TRUST’11, 2011.
[20] D. Hughes and V. Shmatikov. Information hiding, anonymity and

privacy: A modular approach. Journal of Computer Security, 12(1):3–36,
2004.

[21] M. Clavel and F. Durán and S. Eker and P. Lincoln and N. Martí-Oliet
and J. Meseguer and J. Quesada. Maude: Specification and Programming
in Rewriting Logic, SRI International, 285(2):187 - 243, 1999.

[22] A. Lomuscio, H. Qu, F. Raimondi, A. Bouajjani, O. Maler. MCMAS:
A Model Checker for the Verification of Multi-Agent Systems, Proc. of
CAV’21, 682–688, Springer, 2009.

[23] M. Sadrzadeh. Actions and Resources in Epistemic Logic, PhD Thesis,
2006.


