
Sound Test-Suites for Cyber-Physical Systems
Morteza Mohaqeqi

Department of Information Technology
Uppsala University, Sweden

Email: morteza.mohaqeqi@it.uu.se

Mohammad Reza Mousavi
Centre for Research on Embedded Systems,
School of IT, Halmstad University, Sweden

Email: m.r.mousavi@hh.se

Abstract—Conformance testing is a formal and structured
approach to verifying system correctness. We propose a con-
formance testing algorithm for cyber-physical systems, based on
the notion of hybrid conformance by Abbas and Fainekos. We
show how the dynamics of system specification and the sampling
rate play an essential role in making sound verdicts. We specify
and prove error bounds that lead to sound test-suites for a given
specification and a given sampling rate.

I. INTRODUCTION

A. Background

The idea of model-based testing (MBT) [1] is to systemati-
cally generate test-cases from a test model, i.e., a specification
of system’s correct behavior. A rigorous notion of MBT aims
at establishing a conformance relation by running a number of
such generated test-cases [2], [3], [4], [5], [6]. Conformance
relation is typically defined on a common semantic domain of
both the test model and the system under test. We refer to such
a mathematically-founded notion of MBT as conformance
testing. Figure 1 provides a schematic view of the notions
of conformance relation, conformance testing and the relation
between them.

The common semantic domain is used to facilitate spec-
ifying and reasoning about the conformance relation, but in
practice, one does not typically have access to such a rigorous
description of behavior, particularly of the system under test.
Hence, conformance testing should ideally precisely charac-
terize the conformance relation, denoted by the downward
and upward arrows in Figure 1 representing soundness and
exhaustiveness, respectively.

Some notions of conformance testing for ordinary reactive
systems are both sound and exhaustive [7], [8]. However,
for cyber-physical systems (CPSs), it is far from trivial to
come up with a sound and exhaustive, yet practical, notion
of conformance testing. Conformance testing of CPSs often
involves discrete sampling of continuous signals and hence,
for any realistic notion of conformance testing, error margins
should be accommodated to allow for slight deviations (e.g.,
measurement errors) in time and value [9], [2], [3]. The
interaction among the continuous dynamics, the sampling
rates and the error margins is an intricate one and if the
aforementioned parameters are not in sync, the resulting
conformance testing method can be unsound. Exhaustiveness
is even more intricate and requires detailed information about
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Fig. 1: Schematic View of Conformance Testing and Confor-
mance Relation

the continuous dynamics of the implementation under test
(as well as the specification); we only address exhaustiveness
briefly and in passing towards the end of this paper.

B. Problem definition

Given a specification and a sampling rate, we seek sufficient
conditions for a test-suite under which, conformance testing is
sound with respect to a given conformance relation. That is,
the test-suite only fails on non-conforming implementations.

To make this problem more specific, we take the notion of
hybrid conformance by Abbas and Fainekos [9], [2], [3] as
our conformance relation. We then define a straightforward
conformance testing algorithm based on this notion and study
its soundness. As it turns out, for all reasonable specifications
such a conformance testing algorithm may in general result
in unsound verdicts. Hence, we specify and prove soundness
criteria, based on the error margins (in time and value), the
properties of specification’s continuous dynamics, and the
sampling rate, that guarantee soundness of the test verdicts.

C. Running Example

To illustrate different notions, we consider the model of a
thermostat [6] as our running example. The thermostat has
two operation modes to control the temperature. In mode ON,
a heater is turned on in order to warm up the environment.



During the mode OFF, the heater is turned off, which leads to
a steady decrease in the environment temperature. There is a
threshold for the minimum environment temperature, which
triggers the thermostat to switch to mode ON. A similar
threshold exists for the maximum temperature which makes
the thermostat to switch to mode OFF.

D. Organization
The rest of this paper is organized as follows. In Section

II, we review some notions from the literature concerning hy-
brid system specification and hybrid conformance. In Section
III, we define our notion of conformance testing for hybrid
conformance. In Section IV, we first show that in all practical
cases, conformance testing can lead to unsound test verdicts
and subsequently, define sufficient conditions on test-suites to
produce sound verdicts. In Section V, we review the related
work. Finally, we conclude the paper and present the directions
of our ongoing research in Section VI.

II. PRELIMINARIES

In the remainder of this paper, N, R, and R+ denote the set
of non-negative integers, real numbers, and non-negative real-
numbers, respectively. Consider a set of real-valued variables
V . A valuation of V is a function of type V 7→ R, which
assigns a real number to each variable v ∈ V . The set of all
valuations of V is denoted by Val(V ). Further, the domain of
a function f is denoted by dom(f).

In the following subsections, we first formally specify the
notion of hybrid systems and the corresponding concepts.
Then, we elaborate a formal definition of a conformance
relation for hybrid systems.

A. Hybrid System Specifications
To specify test models for hybrid systems, we use the

Hybrid Automata formalism, defined below.

Definition 1 (Hybrid Automata [10]). A hybrid automaton is
defined as a tuple (Loc, V , (l0,v0), →, I , F ), where
• Loc is the finite set of locations;
• V = VI ] VO is the set of continuous variables, where
VI and VO denote the disjoint sets of input variables and
output variables, respectively;

• l0 denotes the initial location and v0 is an initial valua-
tion of V;

• →⊆ Loc ×B(V )× Reset(V )× Loc is the set of jumps
where:

– B(V ) ⊆ Val(V ) indicates the guards under which
the jump may be performed, and

– Reset(V ) =
⋃
V ′⊆V V al(V

′) is the set of value
assignments to the variables in V after the jump;

• I : Loc → B(V ) determines the allowed valuation of
variables in each location (called the invariant of the
location);

• F : Loc → B
(
V ∪ V̇

)
describes some constraints on

variables and their derivatives and specifies the allowed
continuous behavior in each location.

mode ON

ẋ(t) = −x(t) + u(t)

x(t) ≤ u(t)

mode OFF

ẋ(t) = −x(t) + u(t)

x(t) ≥ u(t)

x(t) ≤ 2

x(t) ≥ 18

(a) Hybrid automaton of the thermostat
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(b) A sample of the continuous dynamics of the system

Fig. 2: Thermostat example

We denote the set of all hybrid automata by H. We typically
write l

g,r−→ l′ to denote (l, g, r, l′) ∈→.

Example 1. Fig. 2a shows the hybrid automaton of the
thermostat described in Section I-C with VI = {u}, VO = {x},
and (l0, v0) = (ON , 5).

The evolution of a hybrid system is defined over a domain
of hybrid time, defined below.

Definition 2 (Hybrid Time Domain [9]). A hybrid time domain
E is a subset of R+ × N defined as

E =

J−1⋃
j=0

[tj , tj+1]× {j} (1)

where 0 = t0 ≤ t1 ≤ t2 ≤ ... ≤ tJ . We denote the set of all
hybrid time domains by T.

The hybrid time domain is used to model the evolution of
a hybrid system regarding both evolution of system dynamics
(using continuous time intervals [tj , tj+1]) and discrete jumps
(using integer numbers j).The following notion of solution
gives a semantics to hybrid automata using the notion of hybrid
time domain.

Definition 3 (Solution). A solution to a hybrid automaton
HA = (Loc, V , (l0, v0),→, I, F ) is a function s : T→ Loc×
V al(V ), where

• s(0, 0) = (l0, v0);
• for each (t, j) ∈ dom(s): x satisfies I(l) and F (l), where

(l, x) = s(t, j); and



• for each (tj , j) ∈ dom(s) with j > 0: there exists l
g,r−→

l′ such that x satisfies g and (x, x′) satisfies r, where
(l, x) = s(tj , j − 1) and (l′, x′) = s(tj , j).

In order to capture the evolution of system dynamics and
abstract away from the internal discrete states (i.e., locations),
we use the following notion of trajectory.

Definition 4 (Trajectory [9]1). Take a hybrid time domain E
and a set of variables V . A trajectory over E is a function
φ : E → Val(V ), where for every j, t 7→ φ(t, j) is absolutely
continuous in t over the interval Ij = {t|(t, j) ∈ E}. The set
of all trajectories defined over the variable set V is denoted
by Trajs(V ).

Definition 5 (Trajectory for Hybrid Automata). Given a
hybrid automaton HA, a trajectory φ : E → V al(V ) is a
trajectory for HA, if there exists some solution s to HA for
which ∀(t, j) ∈ E, ∃l ∈ Loc such that (l, φ(t, j)) = s(t, j).

To discriminate input trajectories from output trajectories in
a solution, the notion of solution pair is defined next. To this
aim, we first define the notion of trajectory restriction.

Definition 6 (Trajectory Restriction [5]). Consider a set of
variables V . The restriction of a valuation val ∈ Val(V ) to
V ′ ⊂ V , denoted by val ↓ V ′, is a valuation val ′ ∈ Val(V ′)
such that val ′ ↓ V ′(v) = val(v), ∀v ∈ V ′. Further, the
restriction of a trajectory φ : E → V al(V ) to V ′ ⊂ V is
a trajectory E → V al(V ′), denoted by φ ↓ V ′, for which
(φ ↓ V ′)(t, j) = φ(t, j) ↓ V ′, ∀(t, j) ∈ dom(φ).

Example 2. Figure 2b shows a trajectory to the thermostat hy-
brid automaton over a hybrid time domain of E = ([0, 2], 0)∪
([2, 4.2], 1)∪ ([4.2, 6.4], 2)∪ ([6.4, 8.6], 3)∪ ([8.6, 10], 4) after
restriction to {x} ⊂ V .

Definition 7 (Solution Pair [9]). Let u and y be two trajecto-
ries; (u, y) is a solution pair to a hybrid automaton H if

• dom(u) = dom(y), and
• there exists a trajectory φ to H such that dom(φ) =

dom(u), u = φ ↓ VI , and y = φ ↓ VO.

Note that by requiring dom(φ) = dom(u) = dom(y), we
make sure that the solution and its input and output pairs are
all defined on the same hybrid time domain.

For an example, consider a trajectory u over the hybrid
time domain specified in Example 2 where u(t, j) = 20 for
j ∈ {0, 2, 4} and u(t, j) = 0 for j ∈ {1, 3}. Also, let y be
the trajectory described in that example. then, the pair (u, y)
constitute a solution pair to the respective hybrid automaton.

To simplify the forthcoming developments in the current
work, we focus on deterministic hybrid automata, defined
below. The extension to the non-deterministic case is straight-
forward and requires iterating over all possible output solutions
for a given input. Some initial ideas to this effect are provided
in [3].

1In [9], the term Hybrid Arc is used to refer to a trajectory.

Definition 8 (Deterministic Hybrid Automata). A hybrid au-
tomaton H with the set of solution pairs Φ is deterministic
if

((u, y1) ∈ Φ and (u, y2) ∈ Φ)⇒ y1 = y2 (2)

In this case, we write y = outH(u) to denote (u, y) ∈ Φ.

B. Conformance Relation

To define a conformance relation, we assume that both the
specification and the purported underlying semantics of the
implementation can be captured by some hybrid automata.
We use the notion of (τ ,ε)-closeness, which is defined on
the continuous behavior (solution) associated to a hybrid
automaton. (We abstract away from the number of discrete
jumps, as we consider them irrelevant regarding the observable
behavior of the system.)

Definition 9 ((τ ,ε)-closeness [9]). Consider a test duration
T ∈ R+, a maximum number of jumps J ∈ N, and τ, ε > 0;
then two trajectories y1 and y2 are said to be (τ ,ε)-close,
denoted by y1 ≈(τ,ε) y2, if

1) for all (t, i) ∈ dom(y1) with t ≤ T, i ≤ J , there exists
(s, j) ∈ dom(y2) such that |t − s| ≤ τ and ‖y1(t, i) −
y2(s, j)‖ ≤ ε, and

2) for all (t, i) ∈ dom(y2) with t ≤ T, i ≤ J , there exists
(s, j) ∈ dom(y1) such that |t − s| ≤ τ and ‖y2(t, i) −
y1(s, j)‖ ≤ ε. 2

Definition 10 (Conformance Relation [9]). Consider two
hybrid automata H1 and H2. Given a test duration T ∈ R+, a
maximum number of jumps J ∈ N, and τ, ε > 0, H2 conforms
to H1, denoted by H2 ≈(τ,ε) H1, if and only if for all solution
pairs (u, y1) of H1, there exists a solution pair (u, y2) of H2

such that the corresponding output trajectories y1 and y2 are
(τ ,ε)-close.

III. CONFORMANCE TESTING

The conformance relation defined in the previous section
assumes access to the solutions of the hybrid automaton un-
derlying the implementation. This is not a realistic assumption
in practice. To remedy this, in this section, we define a notion
of conformance testing that instead uses sampling of the spec-
ification solution to test the implementation outputs at various
discrete points. Such a notion of conformance testing should
at least be sound with respect to the conformance relation and
ideally should coincide with (i.e., also be exhaustive).

To start with, we define below a sampling mechanism,
which involves sampled sequences of the continuous (output)
signals.

Definition 11 (Hybrid-Timed State Sequence (TSS) [2]). Let
N ∈ N and V be a set of variables. A hybrid-timed state
sequence (TSS) is defined as function x : R+ ×N→ Val(V ),
with dom(x) ∈ (R+ × N)N . The value of function x at a

2Unlike [9], here we allow different jump numbers (i.e. i 6= j) in the
definition of (τ ,ε)-closeness.



specific point (t, j) ∈ dom(x) is denoted by x(t, j). Also, we
denote the set of all TSSs defined over the set of variables V
by TSS(V ).

Definition 12 (Sampling Function). Consider N ∈ N. Any
P ∈ (R+ × N)N is called a set of sampling points. Take a
set of trajectories Y with a set of variables V . Given a set of
sampling points P , a sampling function over Y is defined as
πP : Y 7→ TSS(V ), for which, ys = πP (y) only if

• dom(ys) = dom(y) ∩ P
• ∀(t, j) ∈ dom(ys) : ys(t, j) = y(t, j)

A sampling function is periodic when its sampling points
are equally distanced. In other words, a sampling function with
the set of sampling points P is periodic with period p if and
only if ∀(t1, j), (t2, k) with t1 < t2, we have

(@(t, l) ∈ P : t1 < t < t2)⇒ t2 − t1 = p (3)

Further, in this situation, P is called a periodic set of sampling
points with period p.

Next we define the notions of test-suite and test-case. They
involve providing an input trajectory and a sampling function
and providing the expected output valuations at the specified
sampling points.

Definition 13 (Test-Suite and Test-Case). A test-suite is de-
fined as a finite set TS ⊂ Trajs(VI)× TSS(VO). A test-suite
TS is a valid one for a given hybrid automaton H only if,
for any (u, y) ∈ TS there exists a sampling point set P such
that y = πP (outH(u)). Each member of a valid test-suite is
called a test-case.

It is worth noting that in the above definition, we provide
continuous inputs and observe sampled (discrete) outputs. This
is because in practice, the system receives a continuous input.3

However, the output behavior of a system is usually observed
using a sampled signal [6], which provides a sequence of
values in a number of discrete instants.

Based on the definition of periodic sampling points, we
define a class of periodic test cases.

Definition 14 (Periodic Test-Case). A test-case (u, y) is pe-
riodic with period p if dom(y) is a periodic set of sampling
points with period p.

In this paper, we treat with periodic test-cases. However,
the presented results can be extended to the general case.

Execution of a test case tc = (u, y) ∈ TS on a system HI

consists of applying u to HI , obtaining the system output at
the same sampling points of the TSS y, and making a decision
on the correctness of HI .

Definition 15 (Test Verdict). For a given hybrid system HA
and a test-suite TS , a test verdict function is a mapping
(TS ,HA) 7→ {Pass,Fail}.

3Note that even in discrete-time systems (e.g. a system equipped with a
digital controller) a hold circuit is used [11], which leads to a continuous
input to the system.

A class of test verdict functions is defined by Algorithm
1. A test verdict function defined by this algorithm compares
the expected outcomes of TS with the solutions HI at the
sampling points of TS within the neighborhood of T and E
in time and value, respectively.

In a test verdict, Fail means that the system does not
conform to the specification, while Pass means that, using the
considered test-suite, no evidence has been found to conclude
that the system does not conform to the specification. We use
Algorithm 1 as the the test verdict for conformance testing of
cyber-physical systems.

Algorithm 1 Test Verdict

1: inputs: A test-suite TS ; A hybrid automaton HI ; Con-
formance parameters T,E

2: output: Pass or Fail
3: for each (u, y) ∈ TS do
4: yI ← outHI

(u)
5: P ← dom(y)
6: ysI ← πP (yI)
7: for each (t, j) ∈ dom(ysI ) do
8: It = [t− T, t+ T ] ∩ {t | ∃j : (t, j) ∈ dom(y) }
9: if ∃t′ ∈ It s.t. ‖y(t′, i)− ysI(t, k)‖ ≤ E then

10: continue;
11: else
12: return Fail
13: end if
14: end for
15: end for
16: return Pass

Definition 16 (Soundness). Considering a specification H, a
test-suite TS is sound under a specified test verdict algorithm
if the following proposition holds

∀HI :
(
HI ≈(τ,ε) H

)
⇒ HI passes TS (4)

IV. SOUND TEST-SUITES

The aim of this section is to establish the conditions under
which the soundness of a test-suite can be guaranteed when
Algorithm 1 is used as the test verdict.

A. Unsoundness result

A straightforward method for (τ, ε)-conformance testing is
to use Algorithm 1, considering τ and ε as the algorithm
parameters T and E, respectively. However, the problem with
this approach is that, for all practical specifications, it can
produce unsound results, irrespective of the sampling period
used in the test-suite. The following example illustrates this
problem.

Example 3. Consider the thermostat system described in
Example I-C, with the hybrid automaton given in Figure 2a as
its specification. Figure 3 shows an output trajectory obtained
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Fig. 3: The output trajectory of the thermostat specification
(y) and that of a sample implementation (yI )

from the specification (labeled as y), and an output trajectory
of a conforming implementation (labeled as yI ). The trajectory
yI has been obtained by shifting y to the right by 0.2 and to
the above by 4. Considering τ = 1 > 0.2 and ε = 4, it is seen
that yI satisfies the (τ, ε)-closeness condition. Assume that for
(τ, ε)-conformance testing of the implementation, Algorithm 1
is used with T = τ and E = ε. Also, assume a test-case
containing a TSS obtained from y by a sampling function
with sampling period of 0.03. If the set of sampling points
P is selected such that t = 2.2 ∈ P , then 2 /∈ P 4. However,
there is only one point in y, namely at time t = 2, which
satisfies the closeness condition specified in line 9 of Algorithm
1. But under the described sampling function, this point is not
included in the test-case; as a result, the implementation fails.

The following theorem generalizes the observation made
in Example 3 to a large class of specifications (covering all
thinkable practical cases). Namely, we define a general class of
specifications S such that for each H ∈ S, there is no sampling
period for which Algorithm 1 with parameter selection of
T = τ and E = ε is guaranteed to be sound for all (τ, ε)-
conforming implementations.

Theorem 1. For a given τ > 0, consider a class S of all
specifications that exhibit at least one output trajectory, y,
which satisfies the following property:
• There exists an interval I = [s− τ, s+ τ ] in which y has

a minimum (or maximum) at s and there are at most a
countable number of minima (maxima) points in I .

Also, for any H ∈ S, let TSH denote the set of all valid test
suits for H. Then, given τ, ε > 0, the following holds:

∀H ∈ S,∀TS ∈ TSH,∃HI such that :

HI ≈τ,ε H and HI fails TS

Proof. We present a proof by construction. The intuition is
based on a generalization of Example 3. Consider a test-suite
containing a test-case with a sampling period of p and let M
be the set of maxima (minima) described in the hypothesis of

4We omit the jump index from a hybrid time instance for notation brevity

the theorem. Take a sample implementation which is obtained
from y by shifting the values of its variables by ε to above
(below), and its hybrid time axis by δ ≤ τ to the right such
that

∀(t′, j) ∈M :
|t′ + δ − s|

p
/∈ N, (5)

As a result, when the sampling points are adjusted such that s
is a sampling point, none of the mentioned maxima (minima)
are included in the sampled TSS of the implementation output.
Hence, the implementation is failed, because only the points
in M could satisfy the closeness condition specified in line 9
of Algorithm 1. On the other hand, it can be easily seen that
the described implementation conforms to the specification,
which leads to the unsoundness of the test-suite.

B. Reinstating Soundness

As mentioned before, the goal of this section is to guar-
antee the soundness of test-suites. To this end, we define the
following measure on the specifications.

Definition 17 (Specification Maximum Change). Given a
specification H, a periodic test-case (u, y) for it with period
p > 0, and a test duration T , the maximum change of H with
respect to (u, y) and T is defined as ∆p = maxt∈T ∆p(t),
where

∆p(t) = max
s∈[t−p/2,t+p/2]

y(s)− min
s∈[t−p/2,t+p/2]

y(s).

The following lemma paves the way for the subsequent
soundness result. Namely, it states that if the maximum
changes of the specification are confined, then by extending
the error margins for output values, one can always obtain
sound results.

Lemma 1. Given p ≥ 0, a test duration T , a specification H,
and an arbitrary output trajectory y ∈ Y, we always have

∀ε > 0,∀c ∈ R,∀s2 > s1 ≥ 0 : if |s1 − s2| ≤ p then

(‖y(s1)− c‖ > ε+ ∆p and ‖y(s2)− c‖ > ε+ ∆p)⇒
∀s ∈ (s1, s2) : ‖y(s)− c‖ > ε (6)

Proof. The proof is by contradiction. Assume that the left side
of (6) holds, but the right side does not hold, namely ∃s ∈
(s1, s2) : ‖y(s)− c‖ ≤ ε, or equivalently,

−‖y(s)− c‖ ≥ −ε (7)

Summing up (7) with ‖y(s1)− c‖ > ε+ ∆p from (6) yields

‖y(s1)− c‖ − ‖y(s)− c‖ > ∆p (8)

Besides, using the general rule ‖a− b‖ ≥ ‖a‖ − ‖b‖, we can
conclude

‖y(s1)− y(s)‖ > ∆p (9)

which implies in a maximum change of y larger than ∆p in
an interval of smaller than p. But this is inconsistent with the
definition of ∆p, which contradicts the initial assumption.

Definition 18 (Robust Test-Suites). Given τ, ε > 0, assume
that we use Algorithm 1 with parameter assignment of T = τ



and E = ε+ ∆, where ∆ > 0. Then, given a specification H,
a test-case tc = (u, y) ∈ TS with a sampling period p is said
to be robust if

∆ ≥ ∆p, (10)

Theorem 2. A robust test-case is always sound, according to
the definition of soundness in Definition 16.

Proof. The proof is by contradiction. Assume the theorem
does not hold. Thus, there exists a system HI conforming
to a specification H which fails a robust test-case tc = (u, y)
with respect to a sampling period p. Let yI be the sampled
output trajectory of the system for the input u. Further, let
φ = outH(u). Based on the mentioned assumption, Algorithm
1 returns Fail for y and yI . As a result,

∃t ∈ dom(yI) such that ∀t′ ∈ [t− τ, t+ τ ] ∩ dom(y) :

‖yI(t)− y(t)‖ > ε+ ∆p (11)

(see lines 8-13 in Algorithm 1). According to Lemma 1, and
based on the definition of ∆p, (11) yields that

∀t′ ∈ [t− τ, t+ τ ] : ‖yI(t)− φ(t)‖ > ε (12)

which means that the implementation is not conforming to
the specification. However, this result is in conflict with our
assumption that HI conforms to the specification H, proving
the theorem.

It is worth noting that, in practice, an appropriate value for
∆p, and thus, for ∆ can be determined based on the formal
specification of the system. For instance, the evolution of the
system may be specified using a hybrid automaton with a
number of differential equations without a discrete jump in
the values. In this case, if such equations yield a bounded
derivative for the respective functions, then the maximum
value of the derivative can be used as a valid value for ∆p.

C. Towards Exhaustiveness

In order for a test-suite to be exhaustive, it should fail each
and every nonconforming implementation.

Definition 19 (Exhaustiveness). A test-suit TS is said to be
exhaustive if

∀HI :
(
HI 6≈(τ,ε) H

)
⇒ HI fails TS

To this end, an implementation must pass a test suit only if
it is conforming. However, the approach discussed up to now
has the following two shortcomings to achieve this goal.

First, according to Definition 9, two criteria must be satisfied
by an implementation to make sure that it conforms to the
specification. However, the test verdict algorithm only checks
one of them (lines 7 to 14 in Algorithm 1). In fact, for each
sampled point in the implementation, the method checks the
possibility of the satisfaction of the closeness condition, and
the implementation fails if such possibility is not established.
For an exhaustive test, however, we need to check also other
way around. For this goal, a similar information (namely
maximum change as defined in Definition 17) should be

available for the implementation trajectory. However, in this
manner, the conformance testing cannot be seen as a black
box technique any more and some inside information about
the implementation will be required.

Second, Definition 9 calls for the conditions over all points
in a continuous interval. However, it is not possible to con-
cretely check all the points as there are uncountably many
points in a given continuous interval. To resolve this issue,
we need to check a restrictive condition on the tested points
such that we can conclude some result for the other points
in their vicinity, including the untested ones. For this goal,
our conjecture is that, using Algorithm 1 with a parameter
assignment of T = τ − p/2 and E = ε − ∆p/2 provides an
exhaustive test verdict method. This is based on the following
observation.

Observation 1. Let y and yI be two trajectories. Then, the
following holds for any t ∈ dom(y):

if ‖yI(tI)− y(t)‖ ≤ ε−∆ p
2

for some tI ∈ [t− τ +
p

2
, t+ τ − p

2
],

then ∀t′ ∈ [t− p

2
, t+

p

2
] : ‖y(t′)− yI(tI)‖ ≤ ε

This observation states that if the two trajectories are suffi-
ciently close to each other in two points, then they would be
so for the other neighboring points (provided that the variation
of the dynamics in the implementation is bounded in the same
manner as the specification).

To summarize, once the two sets of criteria are met, we
require two runs of conformance testing (possibly run simul-
taneously) with two different bounds in the two respective
directions to guarantee soundness and completeness.

V. RELATED WORK

Conformance testing for cyber-physical systems has been
approached from different perspectives. We refer to [5], [12]
for comparisons of some of these approaches. Inspired by
the notion of input/output conformance relation (ioco) [13],
which is used for discrete-event systems, van Osch [14], [6]
proposed a notion of hybrid input output conformance (hioco).
He uses the hybrid labeled transition systems [15] formalism
in order to specify the hioco relation. Intuitively, a system
under test is conforming to a specification based on hioco if
all possible behaviors of the implementation is a subset of
behaviors allowed by the specification.

From a control-theoretic perspective, Abbas et al. proposed
a more practical notion of conformance relation for cyber-
physical systems [9], [2], which is used in this paper. Their
conformance relation is defined based on the notion of time
and value closeness. Their conformance relation allows for
the implementation to deviate from the specification behavior
to some extent, while it is still regarded as a conforming
implementation. In [16], we take the first step towards unifying
the approach of Abbas et al. with that of van Osch by
interpreting discrete actions in the framework of Abbas.



We are not aware of any study devoted to soundness (or
robustness) of test suites for the above-mentioned approximate
conformance relations. In a slightly different context, Fainekos
and Pappas [17] studied the robust sampling of a continuous
trajectory (called signal in that context). For this purpose, a
notion of robustness estimate is defined for a given signal in
[17]. In summary, for a given Metric Interval Temporal Logic
(MITL) formula and a given point in the signal, the robustness
estimate specifies how deeply the formula is satisfied by that
point. For example, consider the simple formula t < 10; then,
the robustness of a signal point with value 7 is 3. This is done
using the notions of depth and distance, already defined as
the distance between a point and the boundary of a given set.
Our soundness criteria bear close similarly to their notion of
robustness for MITL. We not only require bounds on the depth
of conformance at the sampling points, but also require them
in their vicinity (by assuming an upper bound on the signal
variation).

Different notions of robustness have been proposed within
the control theory, e.g., the notion of input to state stability
[18]; these notions have been recently considered in the
context of cyber-physical systems [19]. We would like to
study these notions of robustness and investigate their possible
application to our setting for generating sound test cases.

VI. CONCLUSIONS

In this paper, we have defined a straightforward notion of
conformance testing for cyber-physical systems. This notion is
supposed to capture the conformance relation proposed by Ab-
bas and Fainekos. To this end, we have formulated a soundness
requirement on test suites and we have shown that test suites
are not generally sound. To remedy this, we defined some
criteria on the test suite (relative to the sampling points and
the system dynamics around those sampling points) and have
proven that they indeed guarantee soundness. We have also
explored some preliminary ideas regarding exhaustiveness.

As a first immediate step, we would like to provide a
formal proof for our conjecture regarding exhaustiveness.
Subsequently, we would like to find practical ways of checking
our criteria (particularly regarding soundness) and implement
them in our prototype tool [20]. To this end, we may restrict
ourselves to a particular class of system dynamics and reduce
the criteria to syntactic checks (on the sampling rate and the
derivatives).
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