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Abstract
Trust is a multi-faceted phenomenon traditionally studied in human relations and more recently in human-machine interactions.
In the context of AI-enabled systems, trust is about the belief of the user that in a given scenario the system is going to be
helpful and safe. The system-side counterpart to trust is trustworthiness. When trust and trustworthiness are aligned with each
other, there is calibrated trust. Trust, trustworthiness, and calibrated trust are all dynamic phenomena, evolving throughout
the history and evolution of user beliefs, systems, and their interaction.
In this paper, we review the basic concepts of trust, trustworthiness and calibrated trust and provide definitions for them. We
discuss their various metrics used in the literature, and the causes that may affect their dynamics, particularly in the context
of AI-enabled systems. We discuss the implications of the discussed concepts for various types of stakeholders and suggest
some challenges for future research.

Keywords Trust, Trustworthiness, Calibrated Trust, AI-Enabled Systems

1 Introduction
Trust [MDS95,Gam88,Har06,MTP00] is a user-centred
multi-faceted notion, which has been traditionally studied
in social sciences in human-human interactions. With the
advent of human-machine interactions and more recently au-
tonomous and AI-enabled systems trust has gained renewed
interest [GAB+21,HB15,LS04]. This has been particularly

Ellen Enkel
University of Duisburg-Essen
E-mail: ellen.enkel@uni-due.de

Effie L. Law
Durham University
E-mail: lai-chong.law@durham.ac.uk

Magnus Liebherr
University of Duisburg-Essen
E-mail: magnus.liebherr@uni-due.de

Mohammad Reza Mousavi
King’s College Lonon
E-mail: mohammad.mousavi@kcl.ac.uk

Matteo Sammartino
Royal Holloway, University of London
E-mail: matteo.sammartino@rhul.ac.uk
Philipp Sieberg
Schotte Automotive Gmbh & Co.KG
E-mail: philipp.sieberg@schotteautomotive.de

driven by the increasing deployment of AI in high-stakes do-
mains such as healthcare, finance, and autonomous driving,
where trust directly impacts adoption, interaction quality,
and safety. As AI systems take on more autonomous and
decision-critical roles, ensuring appropriate levels of trust has
become a central concern. In this context, many recent studies
have focussed on defining [LS04] and measuring [ALCL23,
BNR19,KdVW+21,RF23] trust in human-machine inter-
actions. Users’ trust in machines is not always justified
[DVPJ+20]: under-trust in a system that is not trustworthy
can lead to reduced benefit for users, and over-trust can lead
to harm. Calibrated trust [DVPJ+20] happens when trust
of users and trustworthiness of systems [NW10,KURD22,
Jon12,Car23] meet. All these notions are parametric to users
(personas and groups) and scenarios in which the system is
used.

In this paper, we provide an overview of existing results,
open challenges, potential solutions regarding trust and trust-
worthiness in data-driven AI-enabled systems. A common
feature of many such systems is that there is typically little
specification available and hence, establishing trustworthi-
ness and calibrating trust are significant challenges. Our target
audience is researchers, particularly those starting a research
career in Trust(worthiness) for AI, and practitioners using
such systems. We present the definitions and results in such a
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way that they are also accessible for practitioners and policy
makers. For this audience, we present rigorous definitions
and an overview of available metrics and causes; we also
reflect on the possible applications and consequences, and
open issues for future research.

The contributions of this paper can be summarized as
follows:

– An overview of definitions, assessment models, and
factors of trust, trustworthiness and their calibration.

– A framework, based on the provided definitions, ac-
counting for the dynamic interaction among trust,
trustworthiness and their interactions.

– A reflection on the implication of these issues. We derive
recommendations for system developers, policy makers,
users and companies on how to deal with the levels of
trust/trustworthiness.

The remainder of this paper is organized as follows. In
Section 2, we review the different facets and definitions of
trust, trustworthiness and calibrated trust and produce our
definitions. In Section 3, we present the state of the art in
assessing these concepts and the open challenges involved
in their assessment. In Section 4, we discuss the factors
that may have a positive or negative causal influence on
trust and trustworthiness (and hence, their calibration) and
discuss the dynamics of trust and trustworthiness in this
context. Section 5 discusses the ongoing work embodying
the implication of this research, e.g., in terms of standards
and guidelines. Section 6 concludes the paper and presents
an overview of the future road-map. We provide a glossary
of terms as an appendix to help our readers navigate through
the wealth of terminology and concepts.

2 Definitions
2.1 Trust
Defining trust. Trust stands as a foundational element
within interpersonal relationships and is generally defined as
“the willingness of a party to be vulnerable to the actions of
another party based on the expectation that the other will per-
form a particular action important to the trustor, irrespective
of the ability to monitor or control that other party” [MDS95].
Mayer et al.’s (1995) model expands on this definition by
identifying three key dimensions that shape the trustor’s per-
ception of trustworthiness, namely ability, benevolence, and
integrity. This perception of trustworthiness influences trust,
which in turn impacts the trustor’s willingness to take risks.
The extent to which trust translates into risk-taking is mod-
erated by perceived risk, meaning that trust only becomes
relevant in situations where vulnerability exists. Additionally,
trustor’s propensity—a general tendency to trust others based
on personality or past experiences—acts as an antecedent,

shaping initial trust levels before direct interactions with the
trustee occur [MDS95]. In addition to considering risk as
a moderator, other perspectives on trust place significantly
greater emphasis on perceived risk as a central component.
[Gam88,Har06,MTP00]. The perception of risk has to do
with the epistemic state of each user. Although risk is inher-
ent in trust, it does not negate the value of trust. Rather, it
is the willingness to trust despite potential risks that makes
trust a powerful and transformative force in interpersonal
relationships, group dynamics, civic engagement and society
as a whole [Rob16]. However, trust is not limited to the in-
terpersonal domain. It also describes the way people interact
with technology. In particular, the field of trust in AI has gar-
nered significant attention in recent times [GAB+21,YW22,
KKOT23].

To our current understanding, it is evident that interper-
sonal trust and trust in AI-based systems entail reliance on
an external entity; however, the underpinnings and dynamics
of trust exhibit notable distinctions between human interac-
tions and engagement with AI-based systems, particularly
concerning the dynamics of trust calibration with respect
to the trustworthiness of the AI-enabled system. Currently,
multiple competing definitions of trust in AI-based systems
exist, and consensus on a specific definition has not been
reached. In accordance with previous work in the area of
trust and new technologies/AI applications [GAB+21,HB15,
LS04], we define trust in AI-based systems as follows.

Trust is defined as the user’s (u) epistemic state that
the system (s) is going to behave (b) as expected in a
scenario (r) characterized by a certain level of risk and
uncertainty.

Much like in interpersonal relationships, trust is about the
state of people’s minds and it significantly influences people’s
readiness to depend on AI-based systems. Below we list some
of the factors contributing to trust, with a focus on trust in
AI-based systems.

Cognitive trust vs. Emotional trust. Trust can be
grounded in both affect, involving emotional aspects,
and rational thinking, encompassing cognitive evaluations
[McA95]. [MDS95] hinted at the potential emergence of an
emotional connection in a trusting relationship. However,
their model did not fully incorporate emotion. Instead, the
influential factors have been construed through a cognitive
lens, wherein trust is logically assessed by the trusting party
based on trusting beliefs [LMT15,MCTC11]. Cognitive trust
is rooted in logical reasoning and evidence, involving assess-
ments that individuals make about the reliability, competence,
and predictability of another party [SMD07]. This evalua-
tion extends beyond human interactions, recognizing trust
as a key factor in human relations with non-humans [HB15,
PR97]. Researchers studying cognitive trust in AI describe
it by the users’ willingness to act on factual information or
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advice and their perception of the technology’s helpfulness,
competence, or usefulness [HBS+11,HB15,LS04]. It’s im-
portant to acknowledge that cognitive trust might also be
influenced by factors like emotions and mood, and that emo-
tional trust may mediate users’ decisions to adopt a specific
technology [KB06]. Although we know that emotions are the
primary determinant of trusting behavior, the concept of emo-
tional trust is under-explored and deserve further research in
the context of human interactions with technology [HB15,
LS04]. Generally, emotional trust is described by the sense
of security individuals experience within emotional connec-
tions with others [GAB+21,JG05,LW85]. In the utilization of
AI-based systems, tangibility has proven to be of significant
importance, as well as the empathy and compassion exhibited
by the AI towards users [GW20,LYQ+22,YW22]. [GW20],
through their review of literature on human trust in AI, iden-
tified three forms of AI representations (robotic, virtual, and
embedded) and their corresponding paths of cognitive and
emotional trust. Overall, due to the information asymmetry
between an AI system and its users, building cognitive trust
proves to be challenging without a thorough understanding
of how the system operates. Consequently, users often rely
on emotional trust [KK22].

Theoretical models for trust in AI. A particularly rele-
vant extension of trust models to human-machine interactions
was introduced by [LM92] and later refined by [LS04]. Their
work translated Mayer et al.’s [MDS95] interpersonal trust
dimensions—ability, benevolence, and integrity—into the
automation context, framing trust as a user’s perception of
a system’s performance (ability), intent (benevolence), and
predictability (integrity/reliability). This adaptation laid the
groundwork for understanding trust in AI, as it emphasizes
how users develop expectations about system behavior based
on cognitive evaluations of these dimensions. Building on
these insights, trust has been recognized as a pivotal factor
shaping users’ behavioral intentions towards the utilization
of AI-based systems, consequently impacting adoption and
diffusion in diverse domains [GAB+21,YW22]. In a recent
review, encompassing diverse industrial areas, trust is eluci-
dated as a substantial and affirmative predictor of intention,
willingness, and usage behavior related to AI [KKOT23].
The importance of trust becomes also evident in both classic
and modified iterations of key theories on new technology
adoption (also applicable to the domain of AI-based sys-
tems), by including trust indirectly (Theory of Reasoned
Action; Theory of Planned Behavior; Technology Accep-
tance Model) or directly (modified versions of the Technology
Acceptance Model) within the models [Ajz91,Dav85,FA77,
GKS03]. These frameworks also underscore the dynamic na-
ture of trust in technology adoption processes, a concept that
has been explicitly explored in additional theories. Dynamic
trust models have been reported in various contexts such as

the Internet of things [WCZ+20] algorithmic advice [DO22,
HB15] or B2C Cross-Border E-Commerce [DWC22]. The
prevailing consensus consolidates trust as an emergent phe-
nomenon rather than a static state [Woo09]. In Explainable
AI (XAI) a notional view of how trust could morph has been
proposed, showing that users start cautiously or skeptically
but become more trusting when provided with an effective
initial explanation, leading to a state of justified trust; how-
ever, continued interaction with the XAI system may lead to
instances of automation surprise [HMKL21].

2.2 Trustworthiness
Defining trustworthiness Trustworthiness has been used
in various fields of social sciences such as Philosophy [Jon12,
KS23,Car23], Psychology [Rot80,CDv+10], Political Econ-
omy [Har02], and outside social sciences in Neuroscience
[DPJ12] and Computer Science and Engineering [NW10,
KURD22]. It is noteworthy that trustworthiness is an under-
researched concept, particularly when compared with trust
[Har02]. The semantics of trustworthiness varies across dif-
ferent fields and there are even debates about how to define it
within a field of study. For example, Hardin [Har02] defines
trustworthiness as the “capacity to judge one’s interest in
fulfilling the trust”. In much of the social sciences literature,
trustworthiness is defined in terms of perceived trust. An im-
portant aspect of many earlier definitions of trustworthiness
is its contextualization in terms of the subject (the asses-
sor of trustworthiness), the object (the trustee), and the task
(the scenario in which the interaction is supposed to hap-
pen) [Jon12,Car23]. We would like to provide a definition
of trustworthiness that can be formalized and can provide
a basis for quantitative measurement on the system and its
properties. This will further enable quantifying the dynamic
calibration between trust (using the metrics surveyed before)
and trustworthiness (through the forthcoming definition). It
is worth noting that trustworthiness is dynamic and subject
to change during the system life cycle due to the continu-
ous changes (e.g., due to changes and repair and also due
to ageing of sensors and hardware). As a consequence, we
define trustworthiness to be a property of the object of trust,
given a specification of requirements provided by the user,
as well as the scenario in which trustworthiness is defined.
It is therefore inspired by the earlier contextualization of
trustworthiness in earlier definitions [Jon12,KS23].

Trustworthiness: We call a system (s) trustworthy in a
scenario (r), when it satisfies the user’s (u) requirements
(reqs) for the scenario. A system is trustworthy when it is
trustworthy in all scenarios within its operational design
domain.
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Principles of Trustworthiness. Several organizations
have proposed principles for trustworthy AI, including ma-
jor tech companies such as Google, OpenAI, Microsoft, and
IBM. These principles coalesce around the key requirements
set out by the EU Commission in 2019 [(AI19]:

1. Human agency and oversight: AI should support human
agency, safeguard fundamental rights of users and include
oversight mechanisms.

2. Technical robustness and safety: AI systems must ex-
hibit resilience, safety and security. Additionally, they
should prioritize accuracy, reliability, and reproducibility.
Contingency plans should be in place.

3. Privacy and data governance: AI systems should guaran-
tee privacy and data protection, ensure the quality and
integrity of data, and support data access protocols.

4. Transparency: AI systems should be properly documented
to allow for traceability, with technical and decision-
making processes that are explainable. Users should be
made aware of the systems’ capabilities and limitations.

5. Diversity, non-discrimination and fairness: AI systems
should avoid unfair bias, be accessible, and engage
pertinent stakeholders at every stage of their life cycle.

6. Societal and environmental sustainability: AI systems
should contribute to the well-being of individuals, prior-
itize sustainability and environmental friendliness, and
undergo thorough assessments for their societal impact.

7. Accountability: AI systems should incorporate mecha-
nisms to guarantee responsibility and accountability. The
algorithms, data, and design processes should facilitate
auditability, with established measures for redress.

The EU definition is not the final word on defining
trustworthiness, but it gives a comprehensive template for
assessing trustworthiness on an abstract level. The princi-
ples put forward by the EU can further be used as metrics to
characterize the requirements for different scenarios in differ-
ent application domains. Moreover, such requirements can be
turned into formal contracts between AI system providers and
users to enforce the trustworthiness of the system [JMMG21].

There are published critiques of this definition [SC25,
Kus24,SARH+21], some of which note that the EU guide-
lines are primarily based on ethical rather than legal
principles, making their implementation challenging in
specific contexts such as corporate governance, where harmo-
nization with relevant regulations and governance principles
is necessary [HP21]. Although other frameworks exist, there
is considerable consensus on the key principles (see [Inn23,
pag.13] for a comparison table).

2.3 Calibrated trust
Defining calibration. Trust and trustworthiness are sup-
posed to mirror each other: trust is the belief of the user

about the system matching their expectations, while trust-
worthiness is the property of the system that satisfies the
requirements aligned with user needs, which, in turn, cap-
ture users’ expectations. Trust is a personal and user-specific
notion, while trustworthiness, in our definition, is objective
and generalizable to a group, community or society [Sif12,
SH23]. Calibrated trust, defined below, is when for a given
user, the levels of trust and trustworthiness match, i.e., trust is
placed on a system that is trustworthy in the given scenario:

Calibrated trust: Trust of a user (u) in a system (s) in a
scenario (r) is called calibrated when it matches the actual
level of trustworthiness of the system for this scenario.
Trust in a system is calibrated when it is calibrated for
all users and all scenarios.

Calibration of trust is a dynamic process; typically the
user builds an instantaneous trust when confronted by an AI-
based system. Instantaneous trust may be informed by prior
knowledge, by the guarantor of the system and the guarantees
provided, as well as other cognitive and emotional factors
briefly discussed in Section 2.1 and elaborated in Section 4.
Both instantaneous trust and the dynamic changes of trust
can lead to overtrust and distrust in AI-based systems. Below
we briefly discuss the issues of overtrust and distrust. See
Figure 1 [DVPJ+20] for a depiction of how calibration is
determined by actual and perceived trustworthiness.

Under-trust/distrust. Under-trust in AI technology can
have multifaceted consequences, manifesting in various ways
[DVPJ+20]. Firstly, the failure to harness the full potential
of Trustworthy Autonomous Systems (TAS) is a signifi-
cant drawback. Underestimating or hesitating to rely on
the capabilities of AI systems leads to missed opportuni-
ties for enhanced efficiency and effectiveness. Additionally,
under-trust can result in suboptimal solutions or performance
[DVPJ+20]. Doubting the capabilities of AI technology may
lead to conservative decision-making, preventing the real-
ization of optimal outcomes that could be achieved through
a more confident integration of AI tools. Communication
breakdowns can also arise as a consequence of under-trust.
When humans lack confidence in AI systems, effective com-
munication channels may be hindered, impeding the seamless
collaboration between human operators and autonomous
technologies [LRFI23,OY20]. Moreover, under-trust con-
tributes to an increased workload on both human operators
and TAS [FLC+23]. Human operators may feel compelled to
overcompensate for perceived deficiencies in AI, leading to
heavier cognitive load. Simultaneously, AI systems may not
be utilized to their full potential, resulting in a suboptimal
distribution of tasks and responsibilities. Lastly, under-trust
can lead to a state of disuse or micromanagement. Human
operators, due to a lack of trust in AI, may either refrain from
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Fig. 1 Trust calibration [DVPJ+20] p. 462

using the technology altogether or micromanage its func-
tions, undermining the purpose of employing autonomous
systems for efficiency and autonomy [DVPJ+20,FLC+23].

Over-trust. Over-trust in AI presents serious challenges,
often culminating in harmful outcomes. This unwarranted
confidence in AI systems can be particularly perilous when
the technology is not infallible or fully capable of performing
a given task [ADBD+21]. The danger lies in relying exces-
sively on AI without recognizing its limitations, potentially
leading to critical errors or misinterpretations [DVPJ+20,
GW20]. In instances where over-trust prevails, there is a con-
cerning lack of guidance and control mechanisms. Users may
neglect to provide adequate oversight or interventions, as-
suming that AI is entirely reliable [UBD21]. This absence of
vigilant monitoring can exacerbate the risks associated with
over-trust, as it fails to account for unexpected variables or
evolving scenarios. Consequently, over-trust not only ampli-
fies the potential for disastrous outcomes but also highlights
the need for robust guidance and control measures to ensure
the responsible and effective deployment of AI technologies
in various contexts [GW20,UBD21].

Trust in AI-powered agents undergoes continuous cali-
bration over time, particularly in prolonged collaborations
between humans and agents [DVPJ+20]. User trust adapts
dynamically based on the performance of the agent. Trust in-
creases with positive interaction (matching the mental model
of the user with the interaction with the AI based system)
and trust can decrease when the expectation from the user
is not matched with by the system (e.g. because the system
has the wrong mental model of the user, overestimating the
user’s trust). In [WKM23a] comprehensive review of trust

calibrations for automated systems, distinct patterns related
to trust fluctuations and recovery, or resilience, were iden-
tified. Notably, some studies revealed that users were more
responsive to declines in the agent’s reliability than to im-
provements. The decline in trust was more pronounced than
the increase, despite comparable changes in reliability in
either direction [WRZ01]. Users were inclined to trust the
agent even more after recovering from minor and brief reli-
ability lapses, but not for significant and short ones [LS19].
Additionally, the nature of the error leading to reliability
changes could significantly impact trust calibration; for ex-
ample, false alarms were observed to diminish trust more
than misses [CMH21]. However, these intriguing phenom-
ena have primarily been analysed from cognitive rather than
affective processes (i.e. cognitive rather than emotional trust),
as [WKM23a] reported that only a few studies have explored
the emotion-trust relationship in the context of automated
systems [FKJ+21].

2.4 Summary
In this section, we provided three formal definitions for the
three concepts of trust, trustworthiness, and calibrated trust.
All three definitions are parameterized in terms of a user (u),
a system (s), and a scenario (r). Trust is about the user’s state
(e.g., beliefs and emotions) concerning the system in a given
scenario. Trustworthiness is about systems’ properties with
respect to users’ requirements in a given scenario. Calibration
is about the conformance of the earlier two notions. For each
of the three concepts, we provided some aspects of the concept
discussed in earlier research to motivate and contextualize
our definitions. Table 1 summarizes the concepts, as well as
the definitions, and aspects of each concept discussed in this
section.

3 Assessment
3.1 Measures of trust
The varied conceptualizations and subsequent operational-
izations of trust have given rise to a multitude of trust
measures [ALCL23,BNR19,KdVW+21,RF23]. They can be
categorized as either direct or indirect methods. Direct assess-
ment involves self-report/subjective measures, while indirect
evaluation utilizes behavioral/performance-based as well as
physiological measures.

Self-report/subjective measures. These measures en-
tail individuals providing information regarding their
thoughts, feelings, attitudes, or behaviors. They rely on in-
dividuals’ self-disclosure and are typically obtained through
surveys, questionnaires, interviews, or other means where
individuals report on their own experiences or perceptions.
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Table 1 Summary of concepts, definitions, and discussed topics for:
trust, trustworthiness, and calibrated trust

Concept Definition Discussed top-
ics

Trust We define trust in AI-
based systems as the users
(u) epistemic state that the
system (s) is going to be-
have (b) as expected in a
scenario (r) characterized
by a certain level of risk
and uncertainty.

Cognitive and
emotional trust,
Expectations,
Theories of trust.

Trustworthiness We call a system (s)
trustworthy in a scenario
(r), when it satisfies the
user’s (u) requirements
for the scenario. A system
is trustworthy when it is
trustworthy in all scenar-
ios within its operational
design domain.

Agency and
oversight, Pri-
vacy and data
governance,
Robustness and
safety, Fairness,
Sustainability,
Accountability.

Calibrated trust Trust of a user (u) in a sys-
tem (s) in a scenario (r) is
called calibrated when it
matches the actual level
of trustworthiness of the
system for this scenario.
Trust in a system is cal-
ibrated when it is cali-
brated for all users and all
scenarios.

Calibrated trust,
instantaneous
trust, overtrust,
distrust.

Self-report measures are most commonly used to assess hu-
man trust due to the ease of use and implementation in
tasks or contexts [JBD00,Kör19,MG00,Sch16,WPTL+20].
We provide a summary of such measures in Table 2.

Utilizing a text analysis approach, [ALCL23] identified
differences and similarities across the most used trust ques-
tionnaires, subsequently providing guidelines for its selection.
In the context of AI, the following two specific questionnaires
are most commonly used:

– Trust in Artificial Intelligent Agents Questionnaire
[AGC21]; and

– TXAI Questionnaire [HMKL23].

In addition to employing specific questionnaires, general trust
assessments or modified versions adapted from other contexts
are also utilized to measure trust in AI. Furthermore, studies
on trust in AI-based systems frequently incorporate custom
measures, such as non-validated scales or individual items.
In Table 2, we provide a concise overview of the self-report/
subjective measures of trust.

Behavioral/performance-based measures. These
measures assess trust based on observable actions, re-
sponses, or behaviors exhibited by individuals in a given
context. These measures focus on tangible and external

manifestations of trust, providing insights into how individ-
uals interact with or rely on a particular entity, system, or
situation. Examples of behavioral measures in the context of
trust might include:
– Compliance and Agreement Rate [VDVM13]
– Decision Time [YCC17]
– Reliance [PM10]
– Response Time [KPB18]

The determination of the parameter used as a behavior-related
measure for evaluating trust depends on the system or AI
technologies considered. For instance, in the integration of
AI-based technologies in driving, reaction time serves as a
valuable metric for gaining insight into trust in the system
[KPB18]; however, it offers limited insights or may not be
relevant to conversational AI applications. Unlike self-report
measures that rely on individuals’ subjective perceptions,
behavioral measures offer an objective and tangible way to
assess trust by examining actual behaviors and actions in real-
world or simulated scenarios. These measures are particularly
valuable for understanding trust dynamics in situations where
individuals may not accurately or completely express their
trust through self-reporting.

Physiological measures. These measures capture bio-
logical responses within the human body as indicators of trust
in a given situation. Certain physiological reactions such as
changes in heart rate, skin conductance or brain activity,
which reflect emotional and cognitive states, are used to draw
conclusions about changes in trust. Typical measures are:
– Heart rate variability [WN14] - Electrodermal activity or

galvanic skin response [KZCM15]
– Neural measures [GPC+16,HBB+14,JDL19]
– Eye gaze tracking [GKH+15,HLVK16]

Physiological measures enhance our understanding of un-
derlying processes associated with trust (see Table 3). In order
to draw conclusions, it is necessary to link physiological mea-
sures to context. Just as behavioral measures are selected, the
choice of a metric is contingent upon the specific AI tech-
nology under consideration, taking into account factors such
as the environment (e.g., natural environment), the situation
(e.g., any kind of movement included), and individual aspects
(e.g., clinical history).

To date, several systematic literature reviews on human
trust in technologies provide further insights into related
measures [ASL20,ALCL23,BKH+22,BNR19,KdVW+21,
RF23]; integrating such reviews can chart a landscape of
existing methods and tools for measuring trust in AI-based
systems. In the future, it is crucial to consolidate the sub-
stantial variability in metrics employed for evaluating human
trust in AI and to establish consensus on the adoption of
standardized methods [GW20]. Furthermore, when employ-
ing trust measures in the realm of new technologies and
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Table 2 Summary of self-reported / subjective measure of trust.

Questionnaire Number of
items

Subscales Likert-scale Example Context Psychometric character-
istics

Trust Between Peo-
ple and Automation
[JBD00]

12 - 1-7 “The system is
deceptive.”

Automated
system

Reliability ↑ [JBD00,
RF23] Reliability of scale
structure ↓ [WPTL+20]

Human-computer
trust questionnaire
[MG00]

25 Perceived Reliabil-
ity, Perceived Techni-
cal Competence, Per-
ceived Understand-
ability, Faith, Per-
sonal Attachment

1-7 “The system per-
forms reliably.”

subjective
measure of
“cognition
based” and
“affective-
based”
trust

Reliability, Validity ↑
[MG00], Reliability ↑,
Construct validity ↓
[DKKT17]

TiA scale [Kör19] 19 Reliability/Competence,
Understand-
ing/Predictability,
Familiarity, Inten-
tion of Developers,
Propensity to Trust,
Trust in Automation

1-5 “The system
works reliably.”

Reliability, validity ↑
[Kör19,RF23]

Trust Perception
Scale for Human-
Robot Interactions
[Sch16]

40 (and
14 item
sub-scale)

- 0%-100% “What percent of
the time will this
robot be respon-
sible?”

Human-
Robot-
Interaction

Reliability ↑, validity ↓
[RF23]

Propensity to Trust
Scale [Mer11]

6 - 1-5 “I usually trust
machines until
there is a reason
not to.”

Propensity
to trust,
not specific
technology

Reliability ↑ [Mer11]

HCTM [GSL19] 12 - 1-5 “I believe that
there could be
negative conse-
quences when
using (—).”

Reliability ↑ [GSL19]

[MCK02] 16 Trusting beliefs ,
Trusting intention

1-7 “I can always
rely on Legal-
Advice.com in a
tough legal situ-
ation.”

Reliability ↑ [MCK02]

TAIA (Trust in
Artificial Intelligent
Agents; [AGC21])

12 Predictability, Con-
sistency, Utility,
Faith, Dependability,
Understanding

1-7 Not included Reliability, Validity and
internal consistency ↑
[AGC21]

TXAI [HMKL23] 8 - 1-5 “I am confident
in the [tool]. I
feel that it works
well.”

XAI Reliability ↑ [HMKL23]

AI systems, it is essential to consider the various phases of
usage. Subjective measures are most effectively utilized in
the pre- and post-technology use phases, as integrating them
into the actual usage phase is difficult and can potentially
disrupt individuals. In contrast, behavioral measures can be
solely applied during the actual usage phase, as they offer
data derived from interactions with the system or technology.
Physiological measures are also commonly employed during
the usage phase. However, to continuously track the progres-
sion of trust from pre-use to post-use and gain insights into
specific situations, such as initial encounters with the tech-
nology, physiological measures can provide a more detailed
understanding (Figure 2).

3.2 Trustworthiness
It follows from our definition (see Section 2.2) that trust-
worthiness can be put on a formal ground, for a given set of
scenarios, if the expected behaviors of the system in those
scenarios are formalized. The level of confidence and the pre-
cision of the measured trustworthiness are then proportional
to the details made available in the requirement specification
for the given set of scenarios.

A number of assessment frameworks are available. The
FAIE-H toolkit designed by the Open Roboethics Institute
[Ope20] aims to perform ethics assessment of healthcare AI
projects, mainly focusing on the development and deployment
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Table 3 Summary of physiological measures of trust.

Parameter Explanations
Heart rate variability Describes the fluctuations in the time in-

terval between successive heartbeats and
can be indicative of the autonomic ner-
vous system’s activity, providing insights
into emotional responses and potential
trust-related states [WN14]

Electrodermal activ-
ity

This is measured using electrodes in con-
tact with the skin, detecting changes in
ionic activity influenced by sweat [BL00,
Cri02]. Changes can signify emotional
arousal, potentially reflecting trust or anx-
iety [KZCM15]

Neural measures Neural measures involve the examina-
tion of brain activity patterns to gain
insights into cognitive processes related
to trust. Techniques such as functional
magnetic resonance imaging (fMRI), func-
tional near-infrared spectroscopy (fNIRS),
or electroencephalography (EEG) are em-
ployed to capture neural responses. These
measures provide direct information about
how the brain responds to trust-related
stimuli, offering valuable data on the cog-
nitive aspects of trust perception. Neural
measures enhance our understanding of the
underlying neurological processes associ-
ated with trust in various contexts, includ-
ing human interactions with technology or
AI [GPC+16,HBB+14,JDL19].

Eye gaze tracking Involves monitoring the direction and dura-
tion of an individual’s eye movements. By
analyzing where a person directs their gaze,
researchers can gain insights into visual at-
tention patterns and cognitive processing
related to trust. For instance, prolonged
gaze at certain stimuli may indicate height-
ened interest or trust, while quick shifts in
gaze may suggest uncertainty or scepticism
[GKH+15,HLVK16].

Fig. 2 Allocation of measurement methods according to their primary
temporal use in the process of interaction with AI systems.

stages. The Assessment List for Trustworthy AI (ALTAI)
[(AI20] is an online tool that prompts users with a set of
questions related to the dimensions of trustworthiness. The
outcomes are subsequently visualized in a spider diagram.
A recent example is the Z-Inspection toolkit [ZBB+21], a
holistic approach which aims to orchestrate assessments from
a team of multi-disciplinary experts, and can be applied at any
stage of the AI system lifetime. Due to this multidisciplinary
and multifaceted nature of trustworthiness, in the remainder
of this section, we provide an overview of some of the key
aspects of trustworthiness, as exemplified in the EU Guideline
for Trustworthy AI [(AI19], and provide respective metrics
to measure them.

Human Oversight and Agency. The degree of human
agency and oversight in relation to an AI system is in direct
correlation with the perceived level of risk associated with the
scenario. This relationship has been categorized in [(AI19]
into three distinct paradigms: human-in-the-loop, human-
on-the-loop, and human-in-command. Other works [AF22]
emphasize the need for a more nuanced understanding of
these different levels of human interaction with AI systems.
We may quantify the appropriate level of agency/oversight by
carrying out a risk assessment in different scenarios, using
one of the frameworks recently proposed (e.g., [oST23]),
and comparing the result with the expected level of agen-
cy/oversight in each scenario. It is widely acknowledged that
higher-risk AI necessitates more rigorous oversight to ensure
responsible development, deployment, and operation.

Technical Robustness / Safety. Assessing technical ro-
bustness and safety can be achieved by evaluating compliance
with established guidelines, such as those outlined by the UK
NCSC [Nat23], and adherence to standards such as ISO 10218
[fSI11], and the IEEE P7009 standard for fail-safe design of
autonomous and semi-autonomous systems [oEI24]. More
rigorous approaches within formal methods offer greater abil-
ity to quantify properties. Exact (complete) approaches for
deep neural networks include:

– Encoding natural networks and safety properties as con-
straints satisfaction problems. This approach ensures that
the system operates within certain safety bounds [Ehl17,
KHI+19]; and

– Assessing resilience against deliberate attempts to manip-
ulate its behavior, known as adversarial attacks [HPG+17,
NKR+18]. There are approaches to find “nearest”
(with respect to specific metrics) adversarial examples
[BIL+16,TXT17].

To mitigate complexity, incomplete approaches are avail-
able, based on abstract interpretation [GMDC+18,SGM+18],
simulation [XTJ18], and approximation [WZC+18].
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Table 4 Summary of measures of privacy as a part of trustworthiness
metrics: differential privacy and informational leakage.

Measure Explanations
Differential privacy Two parameters 𝜀 and 𝛿 represent the

privacy guarantee, i.e., the probability
an attacker might guess whether an in-
dividual’s data was in the training set,
and the probability this guarantee may
not hold, respectively [DKM+06]. Recent
work by Jayaraman and Evans [JE19] in-
vestigates the practical challenges of using
differentially private machine learning. Es-
timation methods for privacy guarantees
are presented in [ZBWT+23].

Information leakage The amount of information about an in-
dividual leaked by an AI system. Work
by Hannun et al. [HGvdM22] explores
using a specific measure (Fisher informa-
tion) for quantifying leakage. Information
leakage can also be measured by evaluat-
ing how effective certain attacks are. For
instance, membership inference attacks al-
low attackers to potentially learn if a data
point was used to train the model (see, e.g.,
[HSS+22])

Although less studied, approaches for other models exist,
such as support vector machines [RZ19], and for identify-
ing nearest adversarial examples in decision tree ensembles
[KTJ16,CZS+19].

Privacy and Data Governance. Data ownership, ac-
countability, and management are crucial aspects of data
governance [KB10]. Assessing them involves evaluating the
clarity and comprehensiveness of roles and responsibilities,
and a rigorous evaluation of implemented measures, ensuring
they meet the compliance and quality standards established
by regulations such as GDPR. For instance, Privacy Impact
Assessments (PIA) and Data Protection Impact Assessments
(DPIA) should be carried out in certain cases. Other standards
include ISO 31700 Privacy by Design Standard, KMPG’s
Privacy by Design Assessment Framework, ISO 27001.

The literature on assessing the privacy of AI systems
provides some concrete measures listed in Table 4.

Diversity and Fairness. Given two groups of agents that
differ only in a number of protected characteristics, an AI-
enabled system is fair when the outcome of the system does
not change significantly for similar inputs only differing on
legally protected or diversity-related characteristics. Fairness
is typically categorized into two broad categories: group and
individual fairness. Group fairness refers to guaranteeing
a statistical notion of similarity of outcomes across differ-
ent groups of the society characterized by their sensitive
attributes. Individual fairness requires the outcomes of an
AI-enabled system to be identical (or similar with respect to a

distance measure) for individuals that only differ with respect
to their sensitive attribute (or are similar, again with respect
to a distance measure on their other features). There are dif-
ferent metrics for measuring the change of outcomes and
similar inputs. We refer to recent textbooks [BHN23,KR19]
and surveys [MMS+21,PS22] on the definitions of fairness
for machine learning and AI systems. In the remainder of this
section, we provide only some examples of such metrics and
how they can be used to measure fairness. We conclude by
reviewing some of the shortcomings of using these metrics
as well as mentioning some other diversity-related metrics
that can be measured on AI-enabled systems.

Some commonly used metrics for measuring fairness
include: statistical parity difference (SPD), equal oppor-
tunity difference (EOD), average odds difference (AOD)
and disparate impact (DI). Their definitions are provided
in Table 5.

Despite the rich literature on quantitative metrics of
fairness and diversity, researchers in this area find that opti-
mizing for specific metrics can result in more unfair systems
[CGN+23]. Also such metrics can be gamed and the powerful
actors in an ecosystem may use the metric that works best
for them or optimize for the commonly-used metrics without
providing genuine support for fairness or diversity [Nar22].

Societal and environmental sustainability. To assess
the societal impact of AI systems, Algorithm Impact As-
sessment tools have been proposed, such as the one from
the AI Now Institute [RSCW18], which targets public agen-
cies. With the advent of generative AI, impact assessment has
become more challenging, as contextual factors, human inter-
actions, and the combination of modalities (e.g., text, images,
videos) have become increasingly relevant [WRM+23]. It is
crucial to measure impact across several dimensions, some
of which apply differently to various modalities [STA+23].

Measuring the precise environmental impact can be dif-
ficult, as most AI systems are deployed in the cloud, where
the majority of carbon emissions stem from construction,
infrastructure, and hardware manufacturing [GKL+22].

When considering AI algorithms in isolation, most energy
consumption occurs during the training phase, which can
last for months. Tools for measuring the carbon footprint
are available, such as the “Machine Learning Emissions
Calculator” [LLSD19] and the“Carbon Tracker” [AKS20].

Accountability. The main challenge regarding the account-
ability of AI systems is the lack of comprehensive “internal
auditing”, i.e., auditing processes that should be applied
before deployment by companies designing such systems,
rather than after deployment, when issues have already
arisen [RSW+20].
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Table 5 Summary of four common metrics for fairness as a part of trustworthiness: statistical parity difference (SPD), equal opportunity difference
(EOD), Average Odds Difference (AOD), and disparate impact (DI).

Fairness Metric Intuition Formalization Explanation
Statistical Parity Dif-
ference (SPD)

Equal rate of favorable outcomes be-
tween majority and minority

SPD = 𝑃 [𝑌pred = 1 |𝐴 = 1] −
𝑃 [𝑌pred = 1 |𝐴 = 0]

The difference of conditional probabil-
ity for predicting favorable outcomes
between the majority and minority
conditions. Non-zero values will clas-
sify the amount of bias.

Disparate Impact
(DI)

Similar to SPD, only the difference is
replaced with the ratio

DI = P[Y=1 | A=1] / P[Y=1 | A = 0] The ratio of conditional probability
for predicting favorable outcomes be-
tween the majority and minority con-
ditions. Non-zero values will classify
the amount of bias.

Equal Opportunity
(EOD)

Equal rate of true (justified) favor-
able outcomes between majority and
minority

EOD = 𝑃 [𝑌pred = 1 |𝐴 = 1, 𝑌 = 1] −
𝑃 [𝑌pred = 1 |𝐴 = 0, 𝑌 = 1]

The difference of conditional probabil-
ity for predicting true positive (favor-
able) outcomes between the majority
and minority conditions. Non-zero
values will classify the amount of bias.

Average Odd Differ-
ence (AOD)

Average of differences for false (un-
justified) and true favorable outcomes
between the majority and minority

AOD = avg𝑖𝑖𝑛{0,1} (.5 ∗ (𝑃 [𝑌pred =

1 |𝐴 = 1, 𝑌 = 𝑖 ] − 𝑃[𝑌pred = 1 |𝐴 =

0, 𝑌 = 𝑖 ] ) )

The difference of conditional probabil-
ity for predicting true positive (favor-
able) outcomes between the majority
and minority conditions. Non-zero
values will classify the amount of bias
in both cases.

To quantify accountability, organizations need to formalize
ethical principles guiding development and measure com-
pliance at each stage. Outcomes should be documented, and
proactive risk analysis should be conducted [RSW+20]. Key
Performance Indicators can also be used to better measure
accountability [PDSdG21].

3.3 Calibrated trust
Trust calibration is typically assessed through one of the fol-
lowing three methods (we refer to the survey by Wischnewski
et al. [WKM23b] for a more detailed overview):

1. Relative measures: comparing perceived trustworthiness
among different groups and systems, e.g., systems with
high and low trustworthiness; the relative differences
can be used to establish calibration of trust among user
groups;

2. Correlative measure: estimating the correlation between
the dynamics of trust and trustworthiness, for instance by
measuring how trust changes as trustworthiness evolves
(“trust sensitivity”); and

3. Behavioral measures: measuring the deviation from
“ideal” user behavior (e.g., response time) under differ-
ent circumstances (e.g., in scenarios featuring different
trustworthiness levels).

Given its ease of integration, the first method is most
frequently employed in studies evaluating trust calibration.
In the context of XAI, Naiseh et al. [NAJA23] used the
cognitive-based trust scale introduced by Madsen and Gregor
[MG00], which measures how effectively the XAI interface

aids users in comprehending, relying on and perceiving the
technical proficiency of the AI. Furthermore, the authors
examined behavioral markers of trust calibration, leveraging
an objective metric proposed by Wang et al. [WYAL19],
which assesses the accuracy of participants’ decisions. In
addition to the advantages of this method, Wischnewski and
colleagues [WKM23b] mention that the method doesn’t in-
dicate whether a system with lower capabilities might be
seen as overly trustworthy or untrustworthy, leading to over-
trust or under-trust. Similarly, a high-capability system might
cause either excessive or insufficient perceived trustworthi-
ness, resulting in overtrust or undertrust. Many interventions
are possible to calibrate trust, including 1) providing prior
information about the system’s trustworthiness factors, 2)
providing run-time information about the systems decisions
and their underlying causes, and 3) receiving and providing
feedback after interactions [WKM23b].

4 Causes and Correlations
4.1 Trust Factors
When considering antecedents of trust in AI, again we need
to apply them to the broad variety of AI-based systems (e.g.,
algorithms, automated vehicles, chatbots, and robots), result-
ing in a wide range of factors that can impact trust. Previous
works propose a categorization of trust antecedents in AI-
based systems into three overarching groups relating to the
human trustor, the technology trustee, and shared contextual
factors [KKBH23]. In the spectrum of AI-based systems,
factors within the human trustor category underscore the
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Fig. 3 Antecedents of trust in AI-enabled systems.

significance of ability-based elements (Competency/Under-
standing and Expertise) and along with characteristics-based
factors (Culture, Gender, and Personality traits). In the realm
of the technology trustee category, performance-based fac-
tors (Performance and Reliability) along with attribute-based
factors (e.g., AI Personality, Anthropomorphism, Behavior,
Reputation, and Transparency) are identified to be relevant.
Additionally, within the third category team-related (Commu-
nication) and task-related factors (Risk) have been reported
to be relevant [HBS+11,HKK+21,HB15,KKBH23,YW22].

Regarding trustee-related factors, we would like to em-
phasize the role of anthorpomorphism and more generally,
embodiment. In interpersonal relationships trust is notably
contingent upon the physical attributes of the trusted indi-
vidual [CH09,DSY12]. In AI-based systems there is a great
variety of embodiment forms, which means that the degree
of physical appearance varies greatly: as a physical robot, as
a virtual agent or bot, or in forms that are invisible to the user,
embedded in a computer or another tool. Current empirical
data indicate that the extent and nature of embodiment, cou-
pled with the degree of machine intelligence integrated into
the technology, have considerable implications for the trust
exhibited by users[GW20].

Figure 3 describes the relationship of AI-relevant measure
of trust (see Section 3.1, the color coding describes the
category to which those factors belong), assessed before,
during and after interacting with the AI system as well as the
influencing factors on building trust, derived from the three
categories human trustee, technology trustee and contextual
factors. In order to influence trust, a feedback loop from the
measures to the influencing factors indicates the possibility of
strengthening certain factors to enhance trust in the AI-based
system.

4.2 Trustworthiness Factors
The principles of trustworthiness, covered in Section 2.2, can
be incorporated into the requirement specification and system
design, and can be guaranteed by construction. Examples of
such trustworthy-by-construction techniques include privacy-
preserving architectures for AI [ACG+16] and AI-enabled
systems [HRC20]; certified (adversarial) robustness for AI

[CRK19,LCWC19]; and inherently explainable AI models
[NATJA21].

However, not all components of an AI-enabled system
are designed based on the trustworthiness principles and
some are obtained as third-party off-the-shelf components.
In such cases, in order to ensure trustworthiness, a rigorous
specification of trustworthiness requirements [ABC+23] and
structured validation and verification techniques [MCF+23]
are needed. The techniques involved in validation and ver-
ification include: formal verification (including theorem
proving and model checking), various forms of testing (in-
cluding model-based testing and falsification), and various
forms of user studies [AMV23].

When shortcomings in trustworthiness principles are
detected, those can be remedied by deploying fixes, re-
synthesizing and re-training parts of the system, and /
or developing and deploying complementary components
and wrappers to ensure the trustworthiness requirements
[APN+20].

4.3 Calibration and Interplay
Trustworthiness of the AI-based system and human trust will
change during the course of interaction between the human
and the system. Based on the mental model of the human
(how the system will behave in certain situations or given
certain commands, trust is gained when the system behaves
accordingly, trust is lost if the system reacts unexpectedly.
How easy trust is lost or gained depends on the previous
“trust level” caused by the influencing factors described in
Section 4.1. If human trust is low, measured in an initial
assessment before interacting with the system, the system
needs to communicate or display its trustworthiness more
openly and clearly than if human trust is initially high.

However, during the interaction between the human and
system, human trust will be influenced. If the human gains
more trust (adapting their mental model), the system can
reduce its explanation and the human is willing to reduce
the control over the system (e.g. from human-in-control to
human-in-the-loop). In order to seamlessly adapt the config-
uration of the system towards the level of human trust/mental
model assessed, the system needs to integrate certain trust
measurements to adapt automatically its explanations or, if
not possible, to describe which level of trust is needed to
successfully use the system (often generally indicated as
“beginner” or “expert level” user).

5 Implications for Stakeholders
The description of trust, trustworthiness, and their interac-
tions cannot be uniform for all stakeholders. It is evident that
the general public does not have the same level of under-
standing of AI as a programmer or certifier. Therefore, the
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public may need additional explanations that are apparent
to developers. The following distinguishes between various
stakeholders, including the wider public, certification bodies,
investigators, expert witnesses, and lawyers.

5.1 Implications for the General Public
Artificial intelligence is transforming society in numerous
ways. It is crucial that individuals possess an understanding
of how these systems operate when working with or utilizing
them in public. To fully harness the potential of the tech-
nology, trust and trustworthiness in AI need to be aligned to
create calibrated trust. One way to achieve this could be the
education of the general public about the opportunities and
risks of using AI transparently, and how over- or under- trust
can affect both the environment and the society. To achieve
this goal, discussion panels should facilitate open dialogue,
supported by easily understandable media that are accessible
to the general public through mass media such as TV, news-
papers and social media. However, this approach may be too
simplistic. It could be argued that the burden of understand-
ing these complex systems should not fall solely on end users
[Rya20]. An alternative option would be to design systems
and contexts in which trustworthy technologies are the norm,
and to develop strategies to ensure that only reliable systems
are deployed. Furthermore, the development of AI systems
could be informed by the understanding that these systems
adapt to the trust level of users and provide clear signals
when they are over- or under-trusted. This would shift the
responsibility for ensuring the trustworthiness of AI systems
from the general public to the developers and deployers of
these technologies.

5.2 Implications for Certification Authorities
and Assessors
In the context of certifying AI systems, independent certifi-
cation bodies should have a calibrated trust in the technology.
Over- or under -trust would be fatal, especially in the case of
system safety acceptance. Depending on how safety-critical
a system is, it must meet different safety requirements. The
safety requirements for an AI system for automated driving
are significantly higher than for an AI system for creative
image creation. An error in automated driving can have fatal
consequences, whereas an error in the second example only
produces undesirable results. Certification bodies must be
able to verify that AI developers have thoroughly tested and
checked their systems to achieve a trustworthy AI system.
Depending on the safety requirements, the developers will
need to provide the technical description of the system, the
source code, and information about how and with which data
the AI has been trained.

5.3 Implications for Investigators, Expert
Witnesses and Lawyers
To ensure a fair judgement or appropriate compensation in
the event of a dispute or accident, investigators, lawyers or
other experts require access to reliable information. This
information should be provided by those responsible for
the safety and inspection of the AI. It is also important
that lawyers, investigators and experts can comprehend the
causes and consequences of the situation. Over- or under-
trust is not acceptable in this role. To achieve reliable trust
in AI, lawyers, investigators and experts must also consider
the attributes of the developers. This includes fundamental
aspects such as the implementation of quality assurance and
a data security strategy. Certification of these aspects, for
example, in accordance with [fSI15] or [fSI01] and TISAX,
enhances trustworthiness.

6 Conclusions
This paper explores trust and trustworthiness in AI systems,
and proposes a formalization that relies on the system, the
scenario, and the user, highlighting the highly contextual na-
ture of these concepts. Alignment of trust and trustworthiness
is essential to achieve calibrated trust, i.e., a state in which
the user’s trust reflects the actual level of trustworthiness
for a specific scenario. Calibration is a dynamic process, as
the user acquires experience and their expectations adapt.
Under-trust or over-trust may occur when the alignment is
not achieved, and both can have detrimental effects on the
effectiveness and safety of AI systems.

As formalization requires quantifying trust and trustwor-
thiness, we review a range of approaches to measure trust,
from subjective self-reports to objective behavioral assess-
ments, and approaches to measure trustworthiness, detailing
methods for assessing a variety of dimensions, as well as
methods to measure trust calibration.

We analyze factors that can impact these concepts. For
trust, the impacts stem from a combination of human fac-
tors, technology attributes, and contextual influences. For
trustworthiness, we describe ways in which its principles can
be integrated into AI system design, highlighting the need
for validation and verification. For calibrated trust, effective
communication about the AI system’s behavior and capabil-
ities can help the user adjust their trust levels appropriately.
Finally, we discuss the incarnation of (calibrated) trust and
trustworthiness in a range of contexts, emphasizing the need
for tailored explanations about the system to different stake-
holders. However, several significant challenges remain. One
major challenge is the dynamic calibration of trust over time.
Trust levels are not static; they fluctuate based on system
performance and user experiences, and current systems lack

Springer



Dynamic Calibration of Trust and Trustworthiness in AI-Enabled Systems 13

the adaptability to manage these fluctuations effectively. Fur-
thermore, balancing cognitive and emotional trust presents
a complex issue. While AI systems can support cognitive
trust by offering transparency and logical reasoning, fos-
tering emotional trust—rooted in feelings of security and
connection—requires further attention.

Assessing trustworthiness also remains problematic, es-
pecially across diverse scenarios and use cases. Many AI
systems still lack the transparency and robustness necessary
for users to gauge their reliability confidently. This is com-
pounded by the dual issue of overtrust and distrust, where
users either rely too heavily on systems or fail to utilize them
fully, both of which can lead to suboptimal or even dangerous
outcomes.

Additionally, while there is growing research on trust in
AI, much of it focuses on short-term interactions. Little is
understood about the dynamics of trust in long-term engage-
ments, which are critical for many real-world applications.
Ethical concerns and fairness in AI systems also pose ongo-
ing challenges. Ensuring that AI operates in a way that is both
transparent and fair while maintaining performance requires
more sophisticated solutions than currently available.

Trust calibration becomes particularly difficult in high-
risk domains, such as healthcare or autonomous driving,
where system failures can have severe consequences. In these
areas, achieving calibrated trust is essential, yet it remains
one of the most pressing challenges. Finally, addressing these
issues will require stronger cross-disciplinary collaboration,
integrating insights from fields such as cognitive psychology,
computer science, and ethics to develop more comprehensive
frameworks for trust and trustworthiness in AI.

Future research must focus on overcoming these chal-
lenges by refining the methods used to assess trust, designing
systems that can adapt to trust dynamics in real time, and
ensuring that AI systems adhere to ethical and fairness stan-
dards. Only through this approach can we build AI systems
that are not only effective but also trustworthy, ensuring their
safe and beneficial integration into society.
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A Glossary of Terms
– Trust: A user-centered concept, referring to the epistemic state

that the system is going to behave as expected in a given situation,
characterized by a certain level of risk and uncertainty.

– Trustworthiness: A property of a system where it satisfies the
user’s requirements in a specific scenario. A system is considered
trustworthy if it consistently meets these expectations across various
scenarios.

– Calibrated Trust: Trust of a user in a system that matches the actual
level of trustworthiness for a given scenario. Calibration is con-
sidered dynamic, where trust adapts based on ongoing interaction
with the system.

– Cognitive trust: Trust of a user in a system that matches the actual
level of trustworthiness for a given scenario. Calibration is con-
sidered dynamic, where trust adapts based on ongoing interaction
with the system.

– Emotional trust: Trust that emerges from emotional connections,
often involving the feeling of security users experience during
interactions with the system.

– Overtrust: A situation where a user places too much trust in a
system, exceeding the system’s actual trustworthiness, potentially
leading to harmful outcomes.

– Distrust: A scenario where a user’s level of trust in a system is
lower than the system’s actual trustworthiness, which can lead to
underuse of the system’s capabilities.

– Human-in-the-loop: A control paradigm where human operators
are actively involved in the decision-making processes of the system.

– Human-on-the-loop: A control paradigm where human operators
monitor and oversee the system’s operations but intervene only
when necessary.

– Human-in-command: A control paradigm where human operators
have overarching control over the system, including both decision-
making and oversight capabilities.

– Adversarial Attacks: Deliberate manipulations aimed at exploiting
the weaknesses of AI systems, often to produce erroneous outputs.

– Differential Privacy: A technique used to protect individuals’
privacy by introducing randomness into the data analysis process,
ensuring the data output is indistinguishable from queries with or
without a particular individual’s data.

– Statistical Parity: A fairness metric ensuring that the rate of
favorable outcomes is the same across majority and minority groups.

– Explainability (XAI): The degree to which a human user can
understand the reasons behind an AI system’s decisions or actions.
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