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ABSTRACT
The analysis of software product lines is challenging due to the
potentially large number of products, which grow exponentially in
terms of the number of features. Product sampling is a technique
used to avoid exhaustive testing, which is often infeasible. In this
paper, we propose a classification for product sampling techniques
and classify the existing literature accordingly. We distinguish the
important characteristics of such approaches based on the infor-
mation used for sampling, the kind of algorithm, and the achieved
coverage criteria. Furthermore, we give an overview on existing
tools and evaluations of product sampling techniques. We share
our insights on the state-of-the-art of product sampling and discuss
potential future work.
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1 INTRODUCTION
Software product lines (SPLs) have become common practice for
mass production and customization of software systems. In an SPL,
products are developed based on a common core. The main goal
of using SPLs is to enable systematic reuse in different phases of
development by considering the commonalities and variabilities
among the products in an SPL [50].

Testing and analysis of software product lines is known to be
challenging due to the sheer number of possible products, which
makes exhaustive testing and analysis practically impossible. To
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alleviate this problem, one may resort to product sampling tech-
niques [82] that provide a subset of all valid products. These prod-
ucts are supposed to collectively cover the behavior of the product
line and hence for example testing them should reveal most faults
in all other products.

Several approaches have been proposed for product sampling in
the context of software product lines, in order to search the vast
space of valid products [28, 56, 66]. For such approaches, a myriad
of search algorithms for finding a sample to cover a product line
have been proposed, wherethe notion of coverage may also vary
from one approach to another. Different algorithms use different
types of information sources to find a covering sample. Moreover,
the proposed algorithms have typically been evaluated with respect
to different criteria and with different degrees of tool support and
reproducibility.

We aim for bringing more structure onto the extensive literature
on product sampling. In contrast to existing surveys on product
sampling [49, 71] or product-line testing [56], we do not follow a
systematic process in which all interesting research questions is
defined up-front. In contrast, our goal is to provide more insights
for readers by means of a detailed classification of existing sampling
techniques. We envision that our insights can be used to have a
better understanding of such techniques for education and research
and also for recognizing their requirements and shortcomings to
apply such techniques in practice. To this end, we considered a
literature catalog with 48 publications [1–48]. We limited our search
to find studies that are focusing on new sampling algorithms [1–38]
or evaluations of existing ones [39–48].1

Our contributions are threefold. First, we propose a classification
for product sampling, involving input data used for sampling, the
actual algorithm and achieved coverage, as well as its evaluation (cf.
Section 3). Second, we surveyed and classified the literature with
respect to the classification (cf. Section 4–6). The list of studies and
their classification can be found online.2 We plan to update this list
in the future and welcome any pointers by the community. Third,
we identify underrepresented research areas to be addressed by
future work.

Our synthesis results indicate thatmost techniques used problem-
space input information, in terms of feature models in generating
product samples. Solution space information, such as test artifacts
or code coverage, has rarely been used and we think bridging this
gap may lead to novel research results. Regarding the developed
techniques and algorithms, greedy and evolutionary algorithms
have been developed most in this domain. Also, there are no tech-
niques that consider the history of feature models and evolution in
software product lines. Regarding evaluation, there are very few
1References are sorted by author names but grouped into proposed algorithms, evalu-
ations of sampling algorithms, and other references.
2http://thomas.xn--thm-ioa.de/sampling/

https://doi.org/10.1145/3233027.3233035
https://doi.org/10.1145/3233027.3233035
https://doi.org/10.1145/3233027.3233035
http://thomas.xn--thm-ioa.de/sampling/


SPLC ’18, September 10–14, 2018, Gothenburg, Sweden Varshosaz et al.

Elevator (e)

Modes (m)

CallButtons (c)

Sabbath (h) FIFO (f)

DirectedCall (d) UndirectedCall (u)Service (s)

Behavior (b)

Optional

Mandatory

Alternative

Requires

Figure 1: Elevator SPL feature diagram

evaluations on industrial-scale systems and there is a clear need for
a benchmark (with different types of information, including feature
models, test suites and test results) and agreed-upon metrics for
efficiency and effectiveness. We elaborate on these observations in
the remainder of the paper.

2 MOTIVATING EXAMPLE
In software product line engineering, the variabilities and common-
alities among the products are described in terms of features. A
feature is defined as a user-visible aspect or characteristic of a soft-
ware system [62]. Features in a product line have different relations
that can be described compactly by means of feature models [54],
which can be graphically represented as a feature diagram. As an ex-
ample, Fig. 1, represents the feature diagram of an Elevator product
line. (This is a simplified version of the example provided by Krieter
et al. in [64].) Each node in this diagram represents a feature. There
are some features in this diagram such as Behavior and Modes that
are mandatory. This means that any elevator in this product line
should include these features. There are also optional features such
as the feature Service, which is used to facilitate the maintainability
of the elevator, that are optional, which means that there can be
valid products with or without this feature. Additionally, there are
different types of relationships between sub-features. For example,
Sabbath and FIFO that are two possible modes for an elevator have
alternative relationship. This means an elevator in this product line
can only include one of these modes. Furthermore, a feature can
require or exclude other features. For example, in an elevator with
FIFO mode, there should be a button for the user inside the elevator
and in each floor. Hence, there is a requirement relation between
the CallButton and FIFO features. This relation is represented by
the dashed arrow in Fig. 1. The products in a product line can be
described as subsets of features. As an example the elevator product
line with feature diagram represented in Fig. 1, consists of 10 valid
products.

In Listing 1, we represent a part of the code related to the control
unit of the elevator product line. (The code is a very simplified
version of the one given in [72]. The code is in Java and prepro-
cessing directives are used to add variability.) In lines 2–11, a set of
variables are defined that are used by methods and based on the set
of selected features. In this code there is a main method, called run()
(lines 12–20 ), which triggers the execution of the functions that
embody the main parts of the functionality of an elevator. Based
on the code, in each step the next state of the elevator and its di-
rection is calculated based on the current state and the mode of

the elevator. This is done using methods calculateNextState() and
setDirection(). As shown in lines 21–31, the calculation of the next
state can be done in different ways based on the features included
in a product. The preprocessing directives are used to separate the
parts of the code related to each feature. The execution of these
parts is depending on the features included in a product.

Assume that the goal is to test the behavior of the products in the
elevator product line. A subset of these products is selected as a rep-
resentative to be tested. The products can be selected in a random
manner or with regards to a specific criteria. The quality of the se-
lected set can be specified considering different measures, e.g., code
coverage or the number of faults that are revealed by testing the sam-
ple set. Consider two sample sets S1 ={{e,b,m, c, s,h,d},{e,b,m, c, s,
h,u},{e,b,m, c, s, f ,d}}, and S2={{e,b,m,h, s},{e,b,m, f , c,d},{e,b,
m, f , c,u}}; the size of the two sets is the same but, testing the the
products in S2 results in revealing a compile error which is re-
sulted from interaction of two features FIFO and UndirectedCall.
This is due to the inclusion of a call in line 29, to a method which
is not included in the code in case that feature UndirectedCall is
selected (the implementation of the method in line 39 for this fea-
ture). As another example consider another possible sample set
S3 ={{e,b,m, s,h, },{e,b,m, c, s,h,u}}. Using S3 for testing will not
reveal the existing fault (null pointer reference) in line 8 in the code.
In order to reveal such a fault the feature DirectedCall should be
included at least in one of the products in the sample set.

3 CLASSIFICATION OF PRODUCT SAMPLING
In this section, we give an overview of our classification of product
sampling. The set of publications considered in this classification
has been reached after several iterations. We first performed a tar-
geted search and produced a sample of the key results in the field
and we started with an initial classification given our experience in
this area [2, 3, 39, 40, 81, 82] and adapted it in the process of study-
ing the literature. Consequently, we had to repeatedly reclassify
surveyed publications. Similarly, we expanded our studied litera-
ture using existing surveys [49, 56, 71]. We reached our literature
catalog with 48 publications [1–48] by filtering out irrelevant pub-
lications and adding others by means of snowballing. In particular,
we have limited our search to studies that are focusing on sampling
algorithms that incorporate a feature model or evaluations of exist-
ing algorithms. In order to give a structure to our classification, we
identified three research questions as follows.

(RQ1) What type of data is used as input for product sampling?
(RQ2) How are sample sets selected?
(RQ3) How are the sampling techniques evaluated?

Considering the above questions, we describe three main character-
istics of product sampling approaches, namely, input data, sampling
technique, and the evaluation. We refined these main characteristics
iteratively by investigating the more fine-grained characteristics of
the studied papers. The details about these three main characteris-
tics and inferred sub-characteristics are explained in the following.
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1 class ControlUnit {

2 Elevator elevator;

3 ElevatorState state, nextState;

4 //#if FIFO

5 Req req = new Req();

6 //#elif DirectedCall

7 Req req = new UndReq(this);

8 Req dreq = new DirReq(null);

9 //#else

10 Req req = new Req(this);

11 //#endif

12 void run() {

13 while (true) {

14 calculateNextState();

15 setDirection(nextState);

16 //#if DirectedCall

17 sortQueue();

18 //#endif

19 }

20 }

21 void calculateNextState() {

22 //#if Sabbath

23 if (sabbathNextState()) return;

24 //#endif

25 //#if Service

26 if (serviceNextState()) return;

27 //#endif

28 //#if FIFO

29 callButtonsNextState(dreq);

30 //#endif

31 }

32 //#if Service

33 boolean serviceNextState() {...}

34 //#endif

35 //#if Sabbath

36 boolean sabbathNextState() {...}

37 //#endif

38 //#if DirectedCall

39 void callButtonsNextState(Req d)

{...}

40 void sortQueue() {...}

41 //#endif

42 }

Listing 1: Simplified implementation for Elevator product line given in Fig. 1

3.1 Input Data for Product Sampling
The input data is one of the considered characteristics that is speci-
fied to address the types of input that sampling approaches exploit.

We consider two main sub-characteristics for input data, namely,
problem space and solution space. In general, the problem space con-
cerns the system requirements and specification handled during
the domain analysis and the solution space refers to the concrete
artifacts that are created through design and implementation pro-
cess. The problem space includes two sub-characteristics that are
feature model and expert knowledge. We also refine the solution space
characteristic into two sub-characteristics, namely, test artifacts and
implementation artifacts. These characteristics are represented in
Fig. 2 and are explained with more details in the following.

3.1.1 Feature Model. As mentioned in Section 2, feature mod-
els represent different relations among features in a product line.
Hence, feature models can be used to recognize valid products from
invalid ones throughout the sampling process. According to fea-
ture diagram in Fig. 1, a sample set that contains a configuration
including both features Sabbath and FIFO is not valid as these two
features are in an alternative relation. The feature model can be
also considered as a kind of expert knowledge, we separate this
sub-characteristic, as many studies use feature models as a part of
information that they use.

3.1.2 Expert Knowledge. In general, expert knowledge is the
knowledge about the characteristics of the environment that the
system operates in. Recognizing important feature interactions and
generation of products based on that can be considered as a case
for which expert knowledge is used. As an example, consider the
elevator product line given in Section 2. An expert might know that
the products that include a combination of features Sabbath, Service
and DirectedCall are more prevalent and in demand in the market.
Then the products containing combinations of these features can
be included in the sample set to make sure that they are analyzed.

Input Data

Solution SpaceProblem Space

Implementation
Artifacts

Expert
Knowledge

Feature
Model

Test
Artifacts

Figure 2: Input data for product sampling

3.1.3 Implementation Artifacts. This is another sub-characteristic
of input data used by some of the covered techniques during the
sampling process. Implementation artifacts, such as, source code
and models, can be used by sampling techniques in order to meet
one or more criteria that are considered during the sampling pro-
cess (e.g., a sample set guarantees a certain code coverage). For
example, the code given in Listing 1 is considered as a part of the
implementation artifacts for the elevator product line.

3.1.4 Test Artifacts. With test artifacts, we refer to all artifacts
that are developed and produced during different phases of the
testing process. (See the example given at the end of Section 2.)

3.2 Techniques for Product Sampling
While there are different inputs are necessary for sampling, there
are also different principal techniques for computing sample sets.
we distinguish four main sub-characteristics for the technique char-
acteristic, namely, automatic selection, semi-automatic selection,
manual selection and coverage, which are represented in Fig. 3 and
explained in the following.

3.2.1 Automatic Selection. We consider the two following gen-
eral types of automatic selection approaches:

Greedy: In greedy algorithms, a locally optimal choice is made
in each stage of the problem solving [59]. In these algorithms, in
each step, a new member is added to the sample set that is the best
choice considering the current sample set and the defined criteria for
sampling and the process continues with the resulting set. Consider
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the Elevator product line. Assume that in the current step the sample
set is {{e,b,m,h},{e,b,m,h, s}} and that the criterion considered
throughout the sampling process is feature interaction (Feature
interaction is a software engineering concept which addresses the
occurrence of changes in the behavior of the system related to
a feature in presence and absence of other features). Then, the
solution in the next step after applying a greedy algorithm can
be {{e,b,m,h},{e,b,m,h, s},{e,b,m, f ,d, c, s}} since a new set of
interactions among features f and d is covered.

Meta-Heuristic Search: The problem of finding a representative
subset of products in a product line can be formulated as an op-
timization problem. Meta-heuristic algorithms aim at selecting a
subset of products as an optimal solution for this problem using
computational search in a configuration space. The search space
can be potentially large due to high variability and complex feature
combinations in an SPL. Many meta-heuristic approaches have
been inspired by biological evolution [8]. Based on whether the
meta-heuristic searches operate on individual states or population
of states [11], the meta-heuristic approaches are divided into the
following: (a) Local search and (b) Population-Based Search.
(a) Local search: Such approaches start with a preliminary set of
products as a solution for the optimization problem and the search
algorithmwill gradually evolve the current set of products to reach a
near optimal solutions. Examples of such approaches are simulated
annealing and tabu search.
(b) Population-Based Search: Such approaches start with a prelimi-
nary set of sample sets (sets of products) and then the algorithm
will evolve the current sets of products to reach a final solutions.
Examples of such approaches are genetic algorithms and swarm
techniques. In such approaches the primary set of solutions are
mutated and recombined into new sets in order to find a near op-
timal solution. A fitness function is usually used as a measure for
evolving the set of solutions during the process. As a general ex-
ample consider the elevator product line and the code given in
Listing 1. Assume that in the current step of the sampling pro-
cess the generated solution consist of two sets, namely S1 and S2,
each with one member {S1 = {e,b,m,h}, S2 = {e,b,m, f }}. In the
next step the the intermediate solution can be evolved to {S1 =
{{e,b,m,h}, {e,b,m,h, s}}, S2 = {{e,b,m, f }, {e,b,m, f , c,d}}}. Con-
sidering different criteria one of these sets can be used to continue
the sampling based upon.

3.2.2 Semi-Automatic Selection. In semi-automatic selection,
different type of data such as the required number of products to
be generated, the time for sampling, and a degree for coverage e.g.,
coverage on feature interactions can be considered.

Greedy Code

1−wisePair−wiset−wise

Technique

Automatic Selection Coverage

Meta-Heuristic Feature Interaction

Local Search

Manual
Selection
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Search

Semi-Automatic
Selection

Figure 3: Technique of product sampling
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Figure 4: Evaluation of product sampling

Furthermore, in such techniques, the full sample set or a primary
set that is generated by other sampling techniques can be used as a
starting point for sampling. An expert can provide the set based on
information, such as feature model and domain knowledge.

3.2.3 Manual Selection. The set of products can be selected
manually. In this approach a set of products are selected by a do-
main expert and based on the knowledge that they have about the
possible and common feature combinations.

3.2.4 Coverage. Coverage criteria are often used to assure the
quality of product sampling. One widely used criterion is feature
interaction coverage. Considering this criterion, the main goal dur-
ing the sampling process is to provide coverage for different kinds
of feature interactions such as feature-wise (aka. 1-wise), pair-wise
(aka. 2-wise), and t-wise. As an example, when considering the
pair-wise coverage criterion, all the valid/possible pairs of features
should be covered by configurations in the sample set. A common
mean for extracting the sample set based on the feature interac-
tions is a covering array [19]. A t-wise covering array is a subset
of products that covers all the valid t-wise feature combinations in
the product line. A covering array is commonly represented using
a table where each row represents a feature and each column repre-
sents a product. As an example consider the elevator product line
given in Section 2. A sample set that fulfills the pair-wise criterion
for this example is {{e,b,m,h, s},{e,b,m,h, c,d},{e,b,m, s,h, c,u},
{e,b,m, f , s, c,d},{e,b,m, f , c,u}}.

Code coverage coverage. Considering this criteria, the code should
be covered with some percentage using the sample set. As an ex-
ample, consider the code for the elevator product line given in
Listing 1. One notion of code coverage could be that each ifdef
block should be included at least once as a part of the code of the
products in the sample set. As an example a sample set such as
{{e,b,m, f , c,d}, {e,b,m,h, s,u}} will cover all the ifdef blocks in
the implementation given in Listing 1 at least once.

Additionally, there are some techniques which do not consider
any notion of coverage during the sampling process. Hence, we
address this in the classification of the selected studies as well (not
as an explicit characteristic).

3.3 Evaluation of Product Sampling
Evaluation is another high-level characteristic in our classification.
This characteristic mainly addresses the artifacts and the process
taken to evaluate the sampling techniques. Furthermore, we refine
this characteristic into three sub-characteristics, namely, tool sup-
port, evaluation criteria, and subject system, which are represented in
Fig. 4, in addition to a set of sub-characteristics which are explained
in detail in the following.
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3.3.1 Evaluation Criteria. The evaluation of sampling techniques
is performed by considering several criteria. Two major criteria that
are recognized in our classification are efficiency and effectiveness.
By considering different experiments we observe that several inter-
pretations of efficiency and effectiveness are provided. As for the
efficiency, the criterion can be addressing the efficiency of the sam-
pling technique, which is related to the computation of the sample
set or the efficiency of the testing technique that is used combined
with the product sampling. An example of sampling efficiency is the
time to generate the sample set. Also, the efficiency of the testing
technique can be measured in terms of the sample size (the size
of the sample set can affect the required time for testing) and the
testing execution time. On the other hand, effectiveness addresses
the quality of the sample set mainly with regards to a notion of
coverage, e.g., fault coverage, feature interaction coverage.

3.3.2 Subject System. In this classification, we consider the sub-
ject systems and the case studies that are considered during the
evaluation of the sampling technique. The type of subject systems
can be an indication of the practicality and the scalability of the
technique. In our classification, we classify three types of subject
systems, namely artificially generated, which are subject systems
generated by random combination of a set of features or using a
program with regards to specific rules, academic, which are small
subject systems mostly used as examples in academic work and
provided by researchers, and real-world, which are systems that are
used in practice. As an example the elevator product line example
given in Section 2, can be considered as an academic subject system.
Furthermore, another factor that we consider about the subject
systems is the size of the corresponding feature model.

3.3.3 Tool Support. Another sub-characteristic in our classifi-
cation is the tool support, which we use to indicate whether the
sampling technique is supported by an implementation. We also
specify if the tool set is open source and/or available for public use.
We distinguish these characteristic since this type of information
can be useful for users who are interested in application of sampling
techniques in practice.

4 CLASSIFICATION BASED ON INPUT DATA
Before discussing how sampling techniques work internally, we
answer RQ1 by giving an overview which input these techniques
require to work (cf. Section 3.1). This input typically needs to be
available for them to work (e.g., provided by the user).

Feature Model. All sampling techniques that we surveyed take
the feature model as input, due to the scope of the survey. Sampling
techniques rely on the feature model to distinguish valid from
invalid configurations, as only valid configurations are desirable for
many applications of sampling. To check validity, feature models
are often translated to boolean satisfiability problems (e.g., [2, 21,
46, 78]) or to constraint satisfaction problems (e.g., [29, 46]) to make
use of dedicated and efficient solvers. In some cases, the feature
model is translated into the set of all valid configurations [5, 6, 26],
which does not scale to large product lines. There are also sampling
techniques that take advantage of the hierarchy in the feature
model (i.e., the feature diagram) [4, 14, 31, 35] or support numerical
attributes in feature models [12, 43]. In particular, Reuling et al.

and Arcaini et al. apply typical change operations on the hierarchy
to immitate faults introduced by domain engineers [4, 31]. If no
feature model is available, it is often sufficient to have the list of
features and take a tautology as input to the sampling algorithm,
which basically means that there are no constraints on the features.

Expert Knowledge. While feature models are a common input to
sampling, there are further sources of domain knowledge being used
as input. A largely manual, but quite common technique in practice
is to let domain experts identify a set of typical products manually.
For example, changes to the Linux kernel are typically sent to the
mailing list and a continuous integration server applies each patch
automatically to compile and test it with a set of ten pre-defined and
ten randomly selected products. Besides this continuous integration,
Linux developers often only test the kernel with the all-yes-config,
a configuration in which almost all features are selected [37, 60].
Many other product lines come with a default configuration being
sufficient for many users [24]. Default configuration and all-yes-
config are instances of single-configuration heuristics [24]. Multiple
pre-defined configurations are supported when compiling or testing
products in FeatureIDE [3, 72].

Oster et al. were the first to compute a sample based on a set
of pre-defined products [29]. That is, users provide some products
as input, which will be in the sample, and the sampling technique
extends this set towards a representative set of products. With
IncLing, Al-Hajjaji et al. presented a further technique for that
purpose [2]. However, those pre-defined products are optional for
both sampling techniques. Whereas all those discussed techniques
include pre-defined configurations, Johansen et al. allow to define
partial configurations (i.e., a subset of the product line) that are
used for two purposes [20]. First, to rule out configurations that
are valid according to the feature model but not expected for the
sample. Second, to assign weights to those partial configurations
to distinguish more relevant from less relevant configurations. En-
san et al. enable experts to also rule out certain configurations,
but in a much simpler manner. They let experts define a subset
of all features defined in the feature model, which is then used
for sampling [7]. Similarly, Kowal et al. propose to filter feature
models based on priorities assigned to features and known feature
interactions, such as shared resources and data [23]. Henard et al.
allow experts to specify test costs for each feature, which is then
used in the objective function to better estimate the testing effort
for specific configurations [17].

Implementation Artifacts. Whereas most sampling techniques
are only based on problem space information, there are a few in-
stances that also consider solution space information. Tartler et al.
propose a sampling technique for product lines implemented with
preprocessors [38]. They analyze the source code to ensure that
every lexical code fragment (i.e., #ifdef block) is included in at
least one sample product. This technique is also an instance of a
code-coverage heuristic [24]. In contrast, Shi et al. use control flow
graphs to identify which features can interact with each other [33].
An underlying and quite restrictive assumption of their work is that
each feature is implemented by a single method and this method is
called only once from a common code base. Whereas both sampling
techniques are rather different, both use implementation artifacts
as input to reduce the search space defined by the feature model.
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Test Artifacts. Similar to implementation artifacts, also test ar-
tifacts have been used as input for sampling [21, 22]. Kim et al.
proposed to exhaustively consider all configurations, for which a
unit test [21] or a runtime check [22] can lead to different results.
In particular, they use test and implementation artifacts to detect
which features can influence the result of the test. Then they pro-
duce a sample for each unit test or runtime check, which covers all
combinations of those features, whereas they exclude combinations
that are invalid according to the feature model. In contrast to all
other sampling techniques, which derive one sample for a product
line, Kim et al. derive a separate sample for each test.

Summary and Insights. Without even going into detail how the
sampling algorithms work, we have already noticed a large diver-
sity in terms of the input used for sampling. In Table 1, we give
an overview all surveyed algorithms and their classification. All
surveyed sampling techniques use the feature model to distinguish
valid from invalid configurations. Whereas feature models repre-
sented as propositional formulas are sufficient to feed them into a
SAT solver, there are recent approaches that also incorporate the
hierarchy in addition [4, 14, 31, 35]. Other sampling techniques can
incorporate further domain knowledge from experts in terms of pre-
defined or partial configurations [2, 3, 7, 17, 20, 23, 24, 29, 37, 38]. Be-
sides those inputs, domain knowledge has also been extracted from
implementation artifacts [21, 22, 33, 37, 38] and test artifacts [21, 22].
Input besides the feature model is typically used to further restrict
the set of valid configurations or derive more realistic samples.

While our survey identified numerous interesting inputs for sam-
pling, the vast majority of techniques only consumes the feature
model and cannot incorporate any further input. The advantage of
those sampling techniques is the better applicability. There is no
need to have further domain knowledge or access to implementa-
tion and tests. Also, those techniques are completely independent
of the variability mechanism used for domain artifacts and do not
require experts. However, from an algorithm point-of-view it is
possible that with more input, we can produce better samples with
fewer resources.

Here are some future research directions that we identified with
respect to further input. First, there is not a single technique incor-
porating the history of the product line. The history of the feature
model may reveal new features or combinations, whereas changes
to the pre-defined configurations or domain artifacts indicate what
should be covered. While there are numerous techniques for SPL
regression testing [56, 66], they typically take a fixed sample for all
versions or do not use sampling. There are even applications that
require the computation of samples being stable over the history.
For example, if we aim to analyze the performance of a product line
over time, we should probably not consider a completely different
sample for each revision. Second, already known feature interac-
tions derived with static analyses or even defects or vulnerabilities
occurred in the past (e.g., documented in issue trackers) may en-
hance samples even further. Third, we could try to include especially
those configurations that were outliers before (e.g., configurations
with most defects as well as fastest and slowest configurations).
Finally, requirements as well as informal or formal specifications
can be used as input for sampling.

Input Data Algorithm & Coverage Evaluation & Application
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[20]
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[23]
[24]
[24]
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[26]
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[28]
[28]
[29]
[30]
[31]
[32]
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[34]
[35]
[36]
[36]
[37]
[37]
[38]
[38]
[39]
[40]
[41]
[42]
[43]
[44]
[45]
[46]
[47]
[48]

Table 1: Overview on the literature on product sampling,
grouped into algorithms [1–38] and evaluations [39–48].

5 CLASSIFICATION BASED ON TECHNIQUE
To answer RQ2, we present in this section a classification of the
selected studies based on the technique used for product sampling.
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Greedy Techniques. Several greedy sampling algorithms have
been used to sample products in product lines [1–5, 7, 14, 18–24,
28, 29, 31, 33, 37]. In the following, we explain the main greedy
sampling techniques that are addressed in the above studies.

Chvatal is a greedy algorithm that has been proposed to gener-
ate a minimal set of configurations [18]. With Chvatal, the com-
binations of features are generated to be considered during the
sampling process. The configurations are added to the sample set
in a greedy manner and each newly added configuration should
cover at least an uncovered combination. Similarly, the ICPL algo-
rithm is introduced for generating covering arrays for large scale
feature models [19]. In fact, the ICPL algorithm is built upon the
Chvatal algorithm [18] with additional performance improvements,
such as parallelizing the sampling process. Similar to Chvatal, the
ICPL algorithm receives a feature model and a coverage strength
t as input. Then it generates a covering array that produces the
t-wise coverage as output. MoSo-PoLiTe (Model-based Software
Product Line Testing) is another greedy algorithm that has been
proposed to generate a set of products using feature models [29].
In MoSo-PoLiTe, the pair-wise combinations are extracted. The
algorithm starts with a pair of features and incrementally adds the
rest of pairs by applying forward checking to check whether the
selected pair can be combined with the remaining pairs of features
to generate valid products. Moreover, MoSo-PoLiTe considers the
pre-defined products in the sampling process. Al-Hajjaji et al. [2]
propose an algorithm, called IncLing, where the products are gen-
erated incrementally one at a time. Similar to MoSo-PoLiTe [29],
IncLing considers the set of products that are already selected and
tested. This algorithm aims to increase the diversity among selected
products by choosing dissimilar pair-wise feature combinations to
be covered in the next product in order to increase the possibility
of fault detection [2, 3].

A divide and conquer strategy is used in [30] to generate t-wise
combinations from a feature model. Using the divide and conquer
technique, a set of sub-problems is given to a constraint solver
which are then solved automatically instead. In this approach the
features in the feature models are translated to Alloy specifica-
tions [30]. A set of products then are generated using the resulting
model which provide t-wise coverage.

To select optimal products with respect to the non-functional
properties of product line, several approaches have been proposed [32,
34, 35, 35, 36]. For instance, Siegmund et al. [35] propose an ap-
proach that predicts footprint and main-memory consumption of
products. In their work, they generate a small set of products to
approximate the influence of features. In particular, they consider
feature-wise sampling, where a product for each feature is gener-
ated, tomeasure the influence of each feature separately, interaction-
wise sampling, where a product for each interacting features that
are given based on domain knowledge, is generated, to measure
the influence of feature interaction, and pair-wise sampling, where
a product for each pair of features is generated, to measure the
influence of the pair-wise feature interaction. In the same direction,
Sarkar et a. [32] predict the performance of configurable systems by
adapting sampling strategies that generate samples with the aim of
estimating the learning behavior of the prediction model as well as
the cost of building, training, and testing it. In particular, they adapt
progressive sampling strategy, where in each iteration a fixed set of

sample is added to the training set, and projective sampling strategy,
where the learning behavior is approximated using a minimal set
of initial samples. To do so, they exploit the feature frequencies
(i.e., how often the features appear in the current set of samples) to
generate the initial set of samples for both sampling strategies.

To reduce the number of products to be tested, several greedy
search-based reduction techniques have been proposed [7, 14, 20–
23, 33]. For instance, Kim et al. [21] propose a technique, where the
features that do not have any impact when the test is performed are
removed. Similarly, a compositional symbolic execution technique
has been proposed to reduce the number of generated products
by identifying the possible interaction between features [33]. An-
other algorithm is proposed where a product line is divided into
sub-product lines with weights given by domain experts [20]. Then,
the products that have more weights are selected to be tested first.
Similarly, Ensan et al. [7] propose to reduce the size of the sample
set by covering the most desirable features, which are usually given
by the domain experts. Haslinger et al. [14] propose reduction rules
based on the constraints in feature models, which applies during the
sampling and results in reducing the number of feature combina-
tions that are used to generate the set of configurations. In the same
direction, Kowal et al. [23] propose to cover only features that inter-
act with each other in the generated sample. They propose to model
the additional information about the interaction between features
into the feature models. Thus, the number of generated products
is reduced as a result of reducing the number of combinations of
features that are required to be covered.

The aforementioned greedy techniques sample products based
on different criteria, such as coverage [2, 19, 29]. However, addi-
tional sampling algorithms have been proposed [1, 3, 8, 15, 24, 37].
For instance, random sampling, which can be considered also a
greedy technique, generate a set of products randomly [3, 8, 15, 24].
In this technique the configurations that are not valid according to
the feature model are discarded. However, with random sampling,
no specific coverage criteria through the generation of products can
be guaranteed. Most-enabled-disabled (i.e., configurations where
most of features are enabled or disabled), all-most-enabled-disabled
(i.e., all possible configurations where most of features are enabled
or disabled), one-disabled (i.e., configurations where all features
are enabled except one), all-one-disabled (i.e., configurations where
one feature is disabled and the others are enabled), one-enabled
(i.e., configurations where all features are disabled except one), all-
one-enabled (i.e., configurations where one feature is enabled and
the others are disabled) are sampling techniques in which special
combinations of features are obtained by enabling/disabling fea-
tures [1]. The sample sets can be computed in a greedy manner
using these techniques. Several mutation-based approaches have
been exploited to sample products [4, 15, 31]. These approaches
aim to generate products that have a high probability of containing
faults.

Several meta-heuristic approaches have been proposed to sample
product lines [5, 6, 8–10, 15, 17, 25, 27]. In this subset of studies,
an initial set of products is selected randomly and then gradually
evolves by considering the constraints in the optimization problem.
Usually the size of the initial set is given by testers. Based on the
search process of finding solutions, we classify these approaches
into local search and population-based search (cf. Section 3)
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Local Search Techniques. Several local search techniques have
been proposed to sample products [5, 8, 11, 15, 16, 26]. For instance,
the 1+1 evolutionary algorithm has been used to sample prod-
ucts [15, 16]. With 1+1 evolutionary algorithm, the main evolution
operator is the mutation. In the fitness function, they consider the
similarity between products. Their goal is to generate products that
are dissimilar to each other with respect to the selected features
in each product [15]. CASA is a local search technique that uses
simulated annealing to generate a set of products, which achieves a
certain degree of t-wise coverage. In this approach, in the first step,
the number of configurations are minimized and in the next step it
is ensured that a certain degree of coverage is achieved [11]. Ensan
et al. [8] propose a meta-heuristic approach to generate optimal
products with respect to some criteria, such as feature coverage.
While it can be seen as a population-based technique as it considers
genetic algorithm, we consider it in this paper as a local search
technique, as it operates on individual states. Marijan et al. [26] pro-
pose an optimization technique to generate a set of products that
achieves pairwise coverage. In particular, the algorithm first, trans-
forms the feature models into an internal constraint model. This
model is expressed as a matrix, where columns represent features
and rows represent configurations. Given this matrix, an optimiza-
tion algorithm is proposed to generate a minimal set of products
for a given time.

Population-Based Techniques. Several population-based algorithms
have been used to sample products [6, 8–10, 17, 25, 27, 41]. Multi-
objective evolutionary optimization is recognized among evolu-
tionary approaches for sampling. In such approaches, the product
sampling is defined as a multi-objective optimization problem and
multi-objective algorithms are used for solving the problem [9]. In
such techniques, the objective function is usually defined based
on a coverage criteria [25, 27]. Genetic algorithms, which are ex-
tensively used, fall into evolutionary techniques category. These
algorithms form a correspondence between the genetic structure of
chromosomes and the representation of solutions in the optimiza-
tion problem [8, 17]. Considering this correspondence, the solutions
of the optimization problem (i.e., the set of configurations) are rep-
resented as chromosomes, and hence by using natural biological
evolution operators, such as mutation and crossover, a new near
optimal solution can be generated. The Multi-Objective Evolution-
ary Algorithm based on Decomposition (MOEA/D) [6] is another
evolutionary algorithm which decomposes a multi-objective opti-
mization problem into a set of scalable optimization sub-problems
and solves them simultaneously [6]. MOEA/D-DRA is an extension
of this algorithm that enables dynamic resource allocation [6].

Semi-Automatic Selection Techniques. Oster et al. [29] and Al-
Hajjaji et al. [2] consider pre-defined configurations, which can
be given by domain experts, in the sampling process. One semi-
automatic sampling technique is the single configuration technique
where a single configuration is selected as a representative for all the
products to be analyzed [24]. This configuration is typically selected
by a domain expert, where usually part of the sampling is performed
automatically, such as checking the satisfiability. One disadvantage
of this technique is thatmutually exclusive behavior/code can not be
covered by one selected configuration. Note that the other sampling

techniques, where the user can be involved in the sampling process,
can also be classified as semi-automatic techniques.

Manual Selection Techniques. Several approaches also support
manual sampling, where domain experts are usually generate prod-
ucts based on domain knowledge [3, 24, 37]. All-yes-config is a
sampling approach, where all the possible features are selected to
be included in a product [37, 38]. The main limitation of using this
approach is that the selected configuration can include alternative
behavior which is not valid according to the constraints between
features. Note that the generated all-yes-config may not be the
optimal configuration due to the dependencies between features
which may affect the sampling process. Another manual selection
approach , where a set of configurations in Linux is selected iter-
atively, is used [38]. In particular, they aim to add more blocks of
the code by additionally considering the constraints between the
blocks.

Feature Interaction and Coverage. Several greedy algorithms gen-
erate a set of products that guarantee a certain degree of cov-
erage. For instance, the following algorithms achieve 1-wise [3,
5, 32, 36]. While some of the algorithms achieve the pair-wise
coverage [2, 26, 29, 36], other techniques scale to t-wise inter-
action coverage [11, 14, 18, 19, 23, 30, 33]. Except for the work
of Garvin et al. [11], where they cover up-to 6-wise coverage,
most of the sampling techniques that consider meta-heuristic al-
gorithms do not guarantee 100% of a coverage degree [6, 8–10, 15–
17, 25, 27, 41]. Note that the random-based techniques [3, 8, 15, 24],
semi-automatic selection techniques [2, 24, 72], mutation-based
sampling [4, 15, 31], and some of the greedy techniques, such
as [7, 20], do not achieve degrees of coverage. Compared to the
feature interaction coverage, only a few studies consider the code
coverage [21, 22, 33, 38]. With these techniques, a minimal sample
set is selected such that every lexical code fragment of the whole
system code is covered by at least one product.

Summary and Insights. Based on our classification, we observe
that the greedy techniques [1–3, 7, 14, 18–24, 29, 31, 33, 37] and
meta-heuristic algorithms [5, 6, 8–10, 15, 17, 25–27, 41] are used
more often compared to other techniques (cf. Table 1). However,
other semi-automatic selection techniques have been also pro-
posed [2, 24, 29, 72], where the users have the ability to influence
the sampling process. Moreover, some of the greedy techniques aim
to generate a small set of configurations that achieves a degree of
feature interaction coverage (e.g., pair-wise coverage [2, 26, 29, 36]
and t-wise [11, 14, 18, 19, 23, 30]). However, the main limitation
of most of algorithms is that they do not scale to large product
lines [28]. Thus, several approaches have been proposed to improve
the scalability by reducing the configuration space [14, 21, 33]. Most
of these reduction techniques require more domain knowledge to
guide the sampling process.

As an alternative to the t-wise sampling techniques, meta-heuristic
algorithms have been proposed to sample products of product lines.
These meta-heuristic algorithms aim to handle many objectives
during the sampling, which is not the case with most of the greedy
algorithms, where only the coverage is often considered in the
sampling process. However, the limitation of these meta-heuristic
algorithms is that they are not deterministic, which may influence
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the testing badly, as they often cannot reproduce the same products
to check whether detected faults are fixed, especially when fea-
ture models of the corresponding product lines are modified. Other
greedy techniques (e.g., random sampling) are proposed, which
do not guarantee a certain degree of feature interaction coverage.
Moreover, we observed that only two greedy algorithms consider
the prioritization of the generated products [2, 29], while the or-
der in the other greedy algorithms are often influenced implicitly
by the coverage, as they try to cover as many of the uncovered
combinations as soon as possible.

In future, we argue that combining different techniques can
improve the testing effectiveness and efficiency by avoiding or di-
minishing the limitations of existing approaches and benefiting
from their advantages. For instance, combining the meta-heuristic
algorithms with the greedy ones may be helpful to avoid being
trapped in the local optima. Furthermore, we noticed that only a
few of the existing sampling algorithms consider the code cover-
age. Thus, sampling techniques that guarantee a degree of code
coverage are required, because most of the faults exist in the source
code [1]. Moreover, there are no sampling techniques that consider
the evolution of product lines, such as the history of existing sam-
ples. Taking the history of previous samples into consideration can
be used to increase the diversity to cover more interactions or to
reduce diversity over time for other applications.

6 CLASSIFICATION BASED ON EVALUATION
The techniques proposed in the literature have been evaluated for
different measures of efficiency and effectiveness, against various
subject systems, and using various types of tools. With respect to
RQ3, this section provides a synthesis of these aspects of evaluation
for the surveyed techniques.

Efficiency. Most of the analyzed sampling approaches have been
evaluated to assess some measure of efficiency. In two cases [3,
7], no evaluation was done. Regarding efficiency, we distinguish
between sampling and testing efficiency.
(a) Sampling efficiency. This notion measures the time (and possibly
memory and computational resources) to generate the sample. We
have identified several studies [2, 4, 5, 9, 11, 14–19, 21–26, 29, 31, 33,
38, 40, 42, 46] that evaluated the sampling efficiency by measuring
the execution time of the algorithms to generate the sample. Kowal
et al. [23] reduce the feature model to operate on smaller input data.
They compare the efficiency of their sampling approach against
existing ones by measuring the computation time. Other measures
of resource consumption such as (volatile or persistent) memory
consumption are also relevant in this respect, but none of these
studies evaluated any other measures of efficiency.
(b) Testing efficiency. Testing efficiency focuses on the resulting
sample, such as the number- and the size of configurations in the
sample set. There are studies evaluating the testing efficiency by
counting the number of generated configurations [1, 2, 4, 5, 7, 8, 10–
17, 19–32, 34–36, 40–48]. Henard et al. [17] also check the size of
the configurations to evaluate the testing efficiency. By the size of
a configuration, we mean the number of selected features of the
feature model. In all these papers, the problem space was evaluated
but not the solution space. Liebig et al. [24] used the solution space,
code artifacts besides the feature model, to evaluate the algorithm.

Testing efficiency was evaluated by measuring the analysis time,
i.e., the time required for type checking and data-flow analysis.

Effectiveness. By effectiveness, we mean the quality of the gener-
ated sample set and its capability in detecting faults. Effectiveness
typically measure some notion of coverage. We subdivided the
measurement of effectiveness into three types, such as (a) feature
(interaction) coverage, (b) fault coverage (also incarnated in mea-
sures such as mutation score), or (c) code coverage.
(a) Feature (interaction) coverage. The feature (interaction) coverage
was measured in [2, 6, 8–10, 17, 20, 25, 30, 42, 45] to rate the effec-
tiveness of algorithms. Johansen et al. [20] weighted the feature
interactions in the covering array. In a special case [16], the feature
coverage of the sample set is measured for a specific amount of time.
All of these approaches checked if a pairwise/t-wise feature cover-
age is achieved. This means, every pair (respectively, every t-wise
tuple) of features has to occur in at least one configuration. Here,
only the problem space is used in the evaluation. In some cases,
no 100% coverage is achieved because evolutionary algorithms are
used [6, 8, 42].
(b) Fault coverage. Other studies measured fault coverage [1, 4, 8,
28, 31, 37, 39, 42, 44], i.e., the capability of detecting certain faults.
Ensan et al. [8] and Tartler et al. [37] use a program which marks
those features or combinations that contain a fault. The evaluation
then analyzes if all errors are discovered by the configurations in
the sample. To discover features which contain an error, only the
specific feature has to be in a configuration, but to discover errors
stemming from feature interactions, all features of the correspond-
ing combination have to be in a configuration. Ferreira et al. [9],
Filho et al. [27], and Henard et al. [15] evaluate their approach using
a mutation score (i.e. the discovered mutants in a feature model).
Al-Hajjaji et al. [39, 40] introduce two prioritization approaches
but they also measure how effective the default order of sampling
algorithms is w.r.t. the fault detection rate. Al-Hajjaji et al. in [39]
use delta-modeling for the evaluation. They analyze differences
between products and select a sample based on these information.
Halin et al. [44] use a real subject system and associate test cases
to measure the fault coverage instead of only feature models. Abal
et al. [1] also detect real faults. They use the commit history of the
Linux kernel and map fixed bugs to features. Then, they evaluate if
their sampling approach covers these features to find the bug.
(c) Code coverage.We analyzed the studies based on which input
data they used for the evaluation. Most of them only use the feature
model, but two studies also use code as input [38, 40]. For example,
Tartler et al. [38] use code block coverage as an evaluation metric.

Siegmund et al. [34, 36, 47, 48], Grebhahn et al. [12, 43] and
Sarkar et al. [32] evaluate the effectiveness of sampling algorithms
in a different way. They use the sampling result to predict the
performance of products and compare against real performance
measurements. The prediction error for different sampling strate-
gies is evaluated. Siegmund et al. [35, 36] also used the approach to
predicted footprints of products.

Subject Systems. The subject systems used for evaluation vary
significantly. We distinguish between real [1, 2, 13, 16, 18–22, 24,
28, 30, 32, 34–38, 40, 41, 47, 48, 78], academic [2, 6, 8–10, 16, 17,
17, 19, 23, 26, 27, 32, 34–36, 39, 41, 44, 45, 47, 48, 78] and artifi-
cial [2, 4, 16, 29, 31, 40, 46] feature models used as subjects. As
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mentioned in Section 3, real feature models are models of existing
projects used in practice (e.g., in open source or industrial projects),
such as the Linux kernel. The difference between academic and
artificially-generated feature models is that academic feature mod-
els are created by researchers, while artificially-generated feature
models are constructed by a program according to some rules; in
other words, to generate artificial feature models no specific domain
knowledge and manual intervention is necessary. SPLOT [74] is a
popular tool for the generation of artificial feature models.

For example, Oster et al. in [29] use artificial feature models to
evaluate the algorithms. The feature model of the Linux kernel is
also used in many cases [1, 2, 16, 18, 19, 24, 37, 38, 40]. Furthermore,
the E-Shop is an example of an academic feature model which is
used in some studies for evaluations [6, 9, 10, 23].

The size of the feature models is distinguished in a range from
very small ones with fewer than 20 features to huge feature models
containing more than 10,000 features. We collected the size of all
evaluated feature models if it was specified by the authors. There-
fore, we can only present the lower bounds of the tested featuremod-
els. More than 1,000 feature models with less than 100 features were
evaluated [2, 4–6, 8–23, 26–36, 39–48]. We collected more than 100
feature models with a size between 100 and 500 features [2, 4, 11, 14–
16, 18, 19, 23, 28, 29, 31, 35, 36, 40, 46]. Bigger feature models are
less evaluated. In the considered studies approximately 15 models
with a size bigger than 5,000 [1, 2, 16, 18, 19, 24, 28, 38, 40, 78] are
evaluated. The biggest evaluated feature model of the Linux kernel
has 26,427 features [1, 28].

Tool support. Considering tool support, we observe that several
studies have an implementation [2–6, 8–22, 24–38, 40, 43, 45–48],
and some of these implementations are either open source or pub-
licly available [2, 3, 8, 11–13, 15, 17–20, 24, 25, 28, 32, 34–38, 40, 43].
The implementations are based on various programming languages.
The most reported programming language for implementations is
Java [8, 17, 19, 30]. There are implementations which cover a set of
algorithms, e.g., ICPL [19], and IncLing [2] are implemented in the
FeatureIDE framework [72].

Summary and Insights. Most papers evaluate one or more algo-
rithms using some measure of efficiency or effectiveness. Efficiency
mostly focuses on the time of sample generation or the size of the
sample [1, 2, 4, 5, 7–36, 38, 40–48], while effectiveness mostly ad-
dresses feature (interaction) coverage [2, 6, 8–10, 17, 20, 25, 30, 42,
45] and less prominently, fault coverage [1, 4, 8, 28, 31, 37, 39, 42, 44]
or code coverage [38, 40]. The used subject systems are equally dis-
tributed between real and academic feature models. Artificially
generated ones are less used. The size of the feature models also
ranges from small feature models with only a few features to very
large ones with almost 7,000 features to over 26,000 features. An-
other interesting point is that many authors do not name their tool.
Unique names would be helpful to distinguish implementations.

Regarding efficiency, measuring other resources such as mem-
ory consumption or amount of required storage are missing in the
literature. We also identified lack of evaluations using the solution
space. Most papers only use the feature model as input data in the
evaluation. For example, the evaluation of real faults in the code
are under-studied. More research seems to be necessary to estab-
lish a common measure of effectiveness in terms of fault coverage.

Comparing the different measures of effectiveness and studying
the compromise between efficiency (sampling and testing time and
resources) versus effectiveness in different domains seem to be
under-studied. Providing a common benchmark of subject systems
based on real examples from various domains will facilitate the
evaluation of different algorithms on a common ground. Further-
more, evaluation of sampling algorithms, which consider evolution
of product lines, could be an interesting topic for future work.

7 RELATEDWORK
There are numerous strategies to cope with many software products
during analysis and testing of software product lines [56, 81, 82].
Considering all products separately in an unoptimized product-
based analysis is typically not feasible [81]. In optimized product-
based analyses, the situation is improved by reducing the number
of products or by reducing the effort for each product. Product
sampling as discussed in this survey aims to reduce the number of
products and is also known as sample-based analysis [81] or simply
as sampling [82]. The effort for each product can be reduced by
applying regression techniques to software product lines [33, 55,
58, 68–70, 79]. As such regression-based analyses already assume
that a sufficiently small number of products is given, they are often
combined with product sampling.

In contrast to product-based analyses, a software product line
can also be analyzed in a feature-based or family-based fashion [81].
Feature-based means that the implementation of each feature is
analyzed separately without taking other features into account.
However, this way feature interactions are not covered by the anal-
yses [81]. Family-based analyses also consider domain artifacts
instead of generated products, but incorporate valid combinations
of features as defined in the feature model [56, 81]. Family-based
analyses have the inherent problem that they require special tools,
whereas product-based analyses can always use tools from single-
system engineering. Special tools are needed for the analysis itself or
at least to transform the product line into a metaproduct simulating
the behavior of all products [63, 75, 81, 83]. While the family-based
strategy has been extensively studied for static analyses [81] and is
known to outperform sample-based analyses [24, 51], recent appli-
cations to testing indicate that product sampling is still necessary
to complement family-based testing [63, 73, 76].

In principle, product sampling can have numerous applications,
but it is typically proposed in the context of product-line testing.
Consequently, existing surveys on product-line testing discuss prod-
uct sampling [56, 66], but not as detailed as we do. While our focus
is on sampling for product lines, the roots of this research area are
in combinatorial interaction testing [77]. In contrast to combina-
torial interaction testing, product sampling is specific to product
lines and is typically based on feature models. Ahmed et al. [49]
conducted a systematic literature study on interaction testing sup-
porting constraints. Their scope is different, as they also incorporate
constraints on input parameters for testing of single systems and
miss applications of product sampling beyond testing. Furthermore,
our classification is more detailed and gives more insights. Lopez-
Herrejon et al. [71] perform a systematic literature review about the
combinatorial interaction testing approaches in product lines. They
briefly classify the proposed techniques into different categories.
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In our classification, we provide more details about the discussed
techniques, such as the required input as well as the criteria that
are used to evaluate these techniques.

Johansen et al. [61] present a survey of empirics of product line
testing strategies. They report that only a few research conduct an
empirical study to evaluate the corresponding strategies. Lamancha
et al. [65] and Carmo Machado et al. [56] conducted a systematic
literature review, where sampling techniques have been discussed
as part of the approaches that have been proposed to select products
for testing. In this paper, we distinguish with more details between
the proposed approaches that sample products of product lines with
respect to many characteristics, such as the required information
for sampling, the considered criteria, and the tool support. Medeiros
et al. [28] present a comparative study of 10 sampling algorithms for
product lines with respect to the size of the generated samples and
the fault detection rate. In our work, we classify the state of the art
product sampling approaches with respect to many characteristics,
including the sample size and the rate of fault detection.

Numerous of the distinguished sampling approaches in this paper
have been used in the evaluation of the existing product prioritiza-
tion approaches [39, 67]. For instance, Al-Hajjaji et al. [39] aim to
find faults faster by prioritizing products based on their dissimilarity
with respect to solution artifacts. They evaluate their work against
the default order of the sampling algorithmMoSoPolite [29]. On the
contrary, Lity et al. [67] prioritize products based on their similarity
to reduce the effort during the incremental analysis by minimizing
the differences between the consecutive analyzed products.

Baller et al. [52] propose a multi-objective approach that consid-
ers test cases, test requirements, products, and their interrelations
with respect to the corresponding cost and profit of selecting them.
In particular, they use a mapping from requirements (i.e., test goals)
to test cases and a mapping from test cases to products as input.
They evaluate the effectiveness of their approach by measuring
the accuracy of selecting a set of products and test cases to test a
product line, with respect to certain restrictions, such as reducing
the cost as well as maximizing the profit of testing. While this ap-
proach is not mainly about sampling products, it involves selecting
products to be tested from a large set of products. In single-system
engineering, Yoo et al. [84] surveyed the efforts have been made to
select test cases. NIE et al. [77] discuss the combinatorial interaction
testing techniques with respect to their important issues, methods,
and applications. In this paper, most of the classified sample ap-
proaches are considered as instances of combinatorial interaction
testing approach.

8 CONCLUSION
In this paper, we presented an overview of the literature regarding
product sampling for efficient analysis of software product lines.
To this end, we classified the literature in terms of the type of in-
formation used in the technique, the algorithms employed, and
the methods and measures used to evaluate them. In each charac-
teristic, we identified the areas of strength and the understudied
areas, which can help researchers and practitioners to choose an
appropriate technique based on their constraints.

We gained numerous insights by means of this survey. A vast
majority of techniques only use feature models as input. However,

there are other types of input data that can be incorporated in
sampling which need more investigation in the future, such as
the product-line evolution, different forms of specification, known
feature interactions extracted using static analyses, as well as test
artifacts and implementation artifacts. Greedy and meta-heuristic
techniques are more commonly used among different techniques.
However, as scalability is the main issue in many sampling ap-
proaches, using semi-automatic selection techniques could help
with reducing the configuration space by incorporating the expert
knowledge. Moreover, techniques that consider code coverage or
notions of diversity seem to be understudied. Considering evalua-
tion, the efficiency, mostly measured by time of sample generation,
sample size, and the effectiveness, mostly measured by feature in-
teraction, are most commonly used. Further efficiency measures,
e.g., memory or storage consumption, as well as incorporating so-
lution space in evaluation need more investigation. Furthermore,
providing a benchmark of subject systems based on real examples
facilitates future evaluations.
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