
Hardness of deriving invertible sequences from
finite state machines

Robert M. Hierons1, Mohammad Reza Mousavi2, Michael Kirkedal Thomsen3,
and Uraz Cengiz Türker4

1 Department of Computer Science, Brunel University London, United Kingdom.
rob.hierons@brunel.ac.uk

2 Center for Research on Embedded Systems (CERES), School of IT, Halmstad
University, Halmstad, Sweden m.r.mousavi@hh.se

3 Department of Computer Science, University of Copenhagen, Denmark
m.kirkedal@di.ku.dk

4 Computer Engineering, Faculty of Engineering, Gebze Technical University,
Kocaeli, Turkey urazc@gtu.edu.tr

Abstract. Many test generation algorithms use unique input/output
sequences (UIOs) that identify states of the finite state machine spec-
ification M . However, it is known that UIO checking the existence of
UIO sequences is PSPACE-complete. As a result, some UIO generation
algorithms utilise what are called invertible sequences; these allow one
to construct additional UIOs once a UIO has been found. We consider
three optimisation problems associated with invertible sequences: decid-
ing whether there is a (proper) invertible sequence of length at least K;
deciding whether there is a set of invertible sequences for state set S′

that contains at most K input sequences; and deciding whether there is
a single input sequence that defines invertible sequences that take state
set S′′ to state set S′. We prove that the first two problems are NP-
complete and the third is PSPACE-complete. These results imply that
we should investigate heuristics for these problems.

1 Introduction

Software testing is an indispensable yet costly part of the development lifecycle
and this has led to interest in test automation. Model based testing (MBT) is
a high-profile approach to automation. It assumes the presence of a model that
represents the abstraction of some aspect of the expected behaviour of the system
under test (SUT). The model is usually represented as an extended finite state
machine, a finite state machine, or a labelled transition system.

In MBT, it is normal to generate test cases from a given model/specification
M . A test case is then applied to M and the response (the expected behaviour)
of M is recorded. The test case is then executed on the SUT N and the response
(observed behaviour) is recorded. If the expected behaviour and observed be-
haviour differ then the tester declares that the SUT failed the test. Otherwise,
the tester declares that the SUT passed the test case.
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A number of techniques have been developed for generating test cases from an
FSM, with this line of research dating back to the seminal papers of Moore [1] and
Hennie [2]. Although FSM-based test generation techniques vary, they typically
aim to test transitions, where a transition is a tuple (s, x, y, s′) specifying that if
M receives input x when in state s then it moves to s′ and outputs y. In order
to test a transition τ of SUT N , it is necessary to bring N to a state from which
τ can be executed, fire the transition, record its output and decide whether the
resultant state of the SUT is the expected state. Most such techniques use state
identification sequences for the last part of this procedure [2–8]. The most widely
used state identification sequences are distinguishing sequences (DSs) [9], unique
input output sequences (UIOs) [10] and characterising sets (CSs) [10].

There are two types of DSs. A Preset Distinguishing Sequence (PDS) and
an Adaptive Distinguishing Sequence (ADS) (also known as a Distinguishing
Set [11]). When applied, DSs lead to different output sequences from the different
states of M . One important property of DSs is that it has been known that it is
possible to construct test sequences in polynomial time [12].

However, it has been long known that an FSM need not have a DS and
instead one might use a UIO for a state s′: an input sequence that distinguishes
s′ from all other states of M but need not distinguish any other pairs of states of
M . Although not all FSMs have a UIO for every state, it has been reported that
in practice most FSMs do have such UIOs [3] and this has led to the development
of many FSM-based test generation methods that use UIOs [3, 13–20]. However,
the problem of checking the existence of a UIO is PSPACE-hard [21].

A CS is a set of input sequences that distinguish all pairs of states and it
has been shown that every minimum FSM has a CS [22, 4]. Another appealing
aspect of CSs is that one can compute a CS from a given FSM in polynomial
time [22, 4, 23]. However, experiments suggest that the use of CSs can lead to
relatively long tests [12].

1.1 Motivation and Problem Statement

When generating test cases from an FSM it is desirable to have techniques that
reduce the time spent on deriving state identification sequences and there has
thus been work on this problem [24, 6, 25, 12, 26]. One promising method is to
use invertible sequences5 [27, 28]. Despite this, to our knowledge there is no work
that investigates the problem of computing invertible sequences.

In this paper, we first extend the notion of invertibility to sets of states.
Then we introduce optimisation problems related to invertible sequences, with
these being motivated by a desire to reduce the cost of generating state identi-
fication sequences. Finally, we determine the computational complexity of these
problems.

5 An invertible sequence is a walk ρ with the property that if one determines the
ending state of ρ then one also determines the starting state of ρ. In the following
sections we formally define invertible sequences.
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1.2 Structure of the paper

This paper is organised as follows. Section 2 defines FSMs and the corresponding
notation, while Section 3 defines invertible sequences and the decision problems
in which we are interested. In Section 4, we derive the bounds for the three
decision problems considered. In Section 5, we draw conclusions and discuss
possible lines of future work.

2 Preliminaries

In this section, we introduce some terminology related to finite state machines.

Definition 1. A deterministic FSM is defined by a tuple M = (S, s0, X, Y, δ, λ),
where: S = {s1, s2, . . . , sn} is the finite set of states; s0 ∈ S is the initial state;
X = {x1, x2, . . . , xr} is the finite set of inputs; Y = {y1, y2, . . . , yv} is the finite
set of outputs (X is disjoint from Y ); δ : S ×X → S is the transition function;
and λ : S ×X → Y is the output function.

Throughout this paper, M = (S, s0, X, Y, δ, λ) denotes an FSM from which
test sequences are to be generated. At any given time, M is in a state from S
and accepts one input at a time. If an input x ∈ X is applied when M is in state
s then M changes its state to δ(s, x) and produces output λ(s, x). We say that
τ = (s, x, y, s′) is a transition of M with starting state s, ending state s′, and
label x/y. The label x/y has input portion (in(x/y)) x and output portion y.

Given sequences x̄ and x̄′, x̄x̄′ denotes the concatenation of x̄ and x̄′. We
use pre(.) (post(.)) to denote the set of prefixes (suffixes). Given input/output
pairs x1/y1, . . . , xk/yk we use x1/y1 . . . xk/yk and also x1x2 . . . xk/y1y2 . . . yk to
denote the corresponding input/output sequence. Further, we let x1 . . . xk and
y1 . . . yk denote the input portion (in(x1/y1 . . . xk/yk)) and the output portion
(out(x1/y1 . . . xk/yk)) of x1/y1 . . . xk/yk respectively.

The transition and output functions are extended to a sequence of inputs as
follows, where ε denotes the empty sequence. For x̄ ∈ X? and x ∈ X, δ(s, ε) = s,
δ(s, xx̄) = δ(δ(s, x), x̄), λ(s, ε) = ε, λ(s, xx̄) = λ(s, x)λ(δ(s, x), x̄).

An FSM can be represented by a directed graph. A vertex represents a state
and a directed edge with label x/y that goes from a vertex with label s to a
vertex with label s′ represents the transition τ = (s, x, y, s′).

Example 1. Figure 1 represents an FSM M1 with state set {s1, s2, s3, s4}, inputs
{x1, x2}, and outputs {y1, y2, y3}.

The behaviour of an FSM M is defined in terms of the labels of walks that
leave the initial state ofM . A walk ω ofM is a sequence of consecutive transitions
ω = (s1, x1, y1, s2)(s2, x2, y2, s3) . . . (sk−1, xk−1, yk−1, sk)(sk, xk, yk, sk+1). Walk
ω has starting state s1, ending state sk+1, and label x1/y1x2/y2 . . . xk/yk. Here
x1/y1x2/y2 . . . xk/yk is a trace of M .
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Fig. 1: An FSM M1

Example 2. For example ρ = (s4, x1, y2, s1)(s1, x1, y1, s1)(s1, x2, y2, s4) is a walk
ofM1. The walk ρ has starting state s4, ending state s2, and label x1/y2x1/y1x2/y2.
Here x1/y2x1/y1x2/y2 is a trace of M .

An FSM M defines the language LM of labels of walks with starting state
s0 and we will use LM (s) to denote the language defined by making s the initial
state of M . More formally, LM (s) = {x̄/ȳ|x̄ ∈ X∗ ∧ ȳ = λ(s, x̄)}. Clearly,
LM = LM (s0). Given S′ ⊆ S, we let LM (S′) denote the set of traces that can
be produced if the initial state of M is in S′, i.e., LM (S′) = ∪s∈S′LM (s).

States s and s′ of M are equivalent if LM (s) = LM (s′) and FSMs M and N
are equivalent if LM = LN . FSM M is minimal if there is no equivalent FSM that
has fewer states. FSM M is strongly connected if for every ordered pair (s, s′) of
states of M , there is a walk that has starting state s and ending state s′. Note
that a strongly connected FSM M is minimal if and only if LM (s) 6= LM (s′)
for all s, s′ ∈ S with s 6= s′. Throughout this paper we only consider minimal
FSMs. This is not a significant restriction since one can convert an FSM into an
equivalent minimal FSM in low order polynomial time [29].

Assumption 1 We are testing from a minimal FSM M = (S, s0, X, Y, δ, λ).

Many test generation techniques use input sequences that identify states.

Definition 2. An input sequence x̄ defines a unique input output sequence for
s if for all s′ ∈ S \ {s} we have that λ(s, x̄) 6= λ(s′, x̄). Further, x̄ defines a UIO
for state set S′ ⊆ S if x̄ defines a UIO for all s ∈ S′.

3 Invertible sequences

In this section, we first define invertible sequences. We then discuss optimisation
problems with potential impact on MBT related to invertible sequences.



5

3.1 Definitions

Due to their potential role in test generation, we are interested in walks that are
invertible. A walk ρ with input/output label x̄/ȳ that has ending state s is an
invertible sequence for s if no other walk with ending state s has label x̄/ȳ.

For testing purposes, we may want to find a set of invertible sequences with
a common input portion. Given a set Γ , of invertible sequences we use Γi (re-
spectively, Γo) to denote the set of input (respectively, output) portions of labels
of the walks in Γ . We use Γin (respectively, Γen) to denote the sets of initial
(ending) states of walks in Γ . Let us suppose that S′ is a set of states of M .
Then we say that Γ is an invertible sequence for S′ if Γi = {x̄}, S′ = Γen, and
all walks in Γ are invertible sequences. An invertible transition is an invertible
sequence of length one.

Let us assume that we are given an input sequence x̄ that defines an invertible
sequence for a set of states S′. Consider any partitioning of x̄ as x̄ = x̄′x̄′′x̄′′′

where x̄, x̄′, x̄′′, x̄′′′ ∈ X+. If x̄′x̄′′′ also defines an invertible sequence for S′ then
x̄ is called a redundant invertible sequence for S′. In this paper, we consider only
irredundant invertible sequences. If an invertible sequence is redundant, then it
can be replaced by a shorter irredundant invertible sequence.

It has been shown that a suffix of an invertible sequence might not be an
invertible sequence but a prefix is; this fact is formally state in the following
lemma [27].

Lemma 1. If ρ = ρ′ρ′′ is an invertible sequence, then ρ′ is an invertible sequence
but ρ′′ might not be an invertible sequence.

We now define what it means for an invertible sequence to be proper. We
say that invertible sequence ρ is a proper invertible sequence for s, if every suffix
ρ′ of ρ is also an invertible sequence for s. An immediate consequence of the
definition of an invertible and an proper invertible sequence is that every proper
invertible sequence is an invertible sequence but an invertible sequence need not
be proper.

3.2 Invertible sequences in test generation

It has been shown that invertible sequences can be used to extend the set of
UIOs [27].

Lemma 2. (From [27]) If x̄/ȳ is a UIO for state s and ρ = x̄′/ȳ′ is an invertible
sequence for s starting from s′ then x̄′x̄/ȳ′ȳ is a UIO for s′.

It should be noted that as every suffix of a proper invertible sequence ρ for s
is a proper invertible sequence for s, a UIO for s can be used to compute a UIO
for every state that a proper invertible sequence ρ visits.

Lemma 3. Let x̄/ȳ be a UIO for state s, ρ be a proper invertible sequence for
s and also let ψ = {(s′, ρ′)|s′ ∈ S, ρ′ ∈ post(ρ) and s′ is the initial state of ρ′}
be the set of pairs of suffixes of ρ and states from which they originate, then for
each pair (s′, ρ′) in ψ, in(ρ′)x̄/out(ρ′)ȳ is a UIO for s′.
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This result suggests that in computing UIOs, longer proper invertible se-
quences are desirable, because longer invertible sequence lead to the derivation
of more UIOs.6 Therefore we investigated the following problem.

Definition 3. Longest proper invertible sequence (LPIS): Let M be an
FSM and also let s be a state of M . The LPIS problem is to decide whether there
is a proper invertible sequence ρ for s such that |in(ρ)| ≥ K.

In the next section, we show that the LPIS problem is NP-complete.
Assume that for a given set of states S′, we have computed a state identifying

sequence and this time our aim is to derive state identification sequences for a
specific set of states S′′ without actually computing them. Due to Lemma 3,
this can be achieved by using invertible sequences. However in order to reduce
the memory/test cost spend on the test sequences, we want to compute a preset
input sequence that takes S′′ to S′. These requirements lead us to the following
problem definition.

Definition 4. Preset reaching set invertible sequence (PRSIS): Let M
be an FSM and also let S′ and S′′ be sets of states of M of cardinality K. The
PRSIS problem is to decide whether there are invertible sequences with common
input portion x̄ for S′ such that x̄ takes S′′ to S′.

In the next section we show that the PRSIS problem is PSPACE-complete.
The following problem is also motivated by the fact that in some cases we

want to derive as many state identification sequences as possible from those al-
ready computed. In other words, we would like to find a set of invertible sequences
to derive state identification sequences. However, considering the similar motiva-
tion as PRSIS problem, we are looking for invertible sequences with a minimum
number of input portions.7

Definition 5. Minimum spanning invertible sequence (MINSIS): Let
M be an FSM and also let S′ be a set of states of M . The MINSIS problem is
to decide whether there is a set Γ of invertible sequences for S′ where |Γi| ≤ K
such that for all s ∈ S \ S′ there exists an invertible sequence in Γ that takes s
to a state s′ ∈ S′.

We show that the MINSIS problem is NP-complete.

4 Complexity results

We show that the LPIS problem is NP-complete by providing a polynomial time
reduction from the longest path problem (LPP) [30] to the LPIS problem. An
instance of the LPP can be defined as follows, where a path8 (P) is said to visit
a vertex v, if v is the starting vertex or the ending vertex of an edge in the path
and the length of a path is the number of edges in the path.

6 Recall that we restrict attention to invertible sequences that are not redundant.
7 Recall that Γi is the set of input portions of labels of the walks in Γ .
8 A path is a sequence of consecutive edges that, between them, do not visit any vertex

more than once.
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Definition 6. Longest path problem (LPP) Consider a strongly connected
directed graph G = (V,E) with vertex set V = {v1, v2, . . . , vn}, edge set E =
{e1, e2, . . . , em} and a positive integer K < n. The longest path problem for
(G,K) is to decide whether there exists a path of G that visits at least K vertices.

Let out(v) be the number of outgoing edges of a vertex v. We let the out-
degree (Out(G)) of the graph G be the maximum value of out(v) for G i.e.,
Max({out(v)|v ∈ V }).

Given an instance of the LPP (G,K), we construct an FSM M(G) = (S, s0,
X, Y, δ, λ). Our aim is to arrange the transition structure of M(G) in such a way
that an invertible sequence of length K defines a solution to the LPP. We now
show how we construct M(G).

For each vertex of G we introduce a corresponding state of M(G) and we
copy over the edge structure; if there is an edge from vertex v, represented by
state s, to vertex v′, represented by state s′, then there is a transition from s
to s′. We also introduce an additional special state s?. Then for each transition,
we assign a unique integer i in the range [1, |E|] and use it as the output label
(yi) of the corresponding transition in M(G). In other words, the label of each
transition in M(G) will have a unique output portion.

The cardinality of the input alphabet of M(G) is Out(G), i.e., X = {x1, x2,
. . . , xOut(G)}, for some arbitrary, yet pairwise distinct, x1, x2, . . . , xOut(G). If s
is a state of FSM M(G) and the number of outgoing transitions is `, then for
each transition leaving s, we pick a unique element from the first ` elements of
X (i.e., we pick an element from {x1, x2, . . . , x`}) and assign this symbol as the
input label of the corresponding transition. Note that different states may have
different numbers of outgoing edges, therefore the constructed M(G) could be
partial. We complete the missing transitions of state si by adding transitions to
s? with output yi. We introduce a distinct input symbol ? such that from every
state si of M(G), there exists a transition to s? with common output yi (see
Figure 2). Finally, all transitions from s? are self-loop transitions with output 0.

We now show how the longest path for a connected graph G relates to the
LPIS problem for M(G).

Proposition 1. The longest path problem instance (G,K) has a solution if and
only if state s? of M(G) has a proper invertible sequence ρ of length K + 1.

Theorem 1. The LPIS problem is NP-complete.

We now show that MINSIS problem is NP-complete by a reduction from the
minimum covering problem (MCP) [30].

Definition 7. Minimum covering problem (MCP) Consider a set of ele-
ments U = {1, 2, . . . , u}, a set of sets of elements I = {I1, I2, . . . , II} (Ii ⊆ U
for all 1 ≤ i ≤ I), and an integer K. The minimum covering problem is to
decide whether there is a subset of I that contains at most K sets whose union
is U .
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(b) Constructed FSM M(G).

Fig. 2: Construction of an FSM from a given longest path problem instance.

We show how FSM M(U, I,K) can be constructed such that the MCP prob-
lem for (U, I,K) corresponds to the MINSIS problem for M(U, I,K). For every
Ii ∈ U , we introduce a single state si and, in addition, we introduce a special
state s?. For every set Ij in I, we introduce an input symbol xj and an output
symbol yj . We also introduce a distinct output 0. The transition and output
functions of M(U, I,K) are then defined as follows:

δ(si, xj) =

{
s?, if i ∈ Ij
si, otherwise

λ(si, xj) =

{
yi, if i ∈ Ij
0, otherwise

The construction ends by setting S′ = {s?}. Please see Figure 3 for an
example.

Proposition 2. The minimum covering problem instance (G, I,K) has a solu-
tion if and only if S′ = {s?} of M(U, I,K) has a minimum spanning invertible
sequence Γ with |Γi| ≤ K.

Theorem 2. The MINSIS problem is NP-complete.

We show that the PRSIS problem is PSPACE-complete by a reduction from
the finite automata intersection problem (FA INT), which was introduced by
Kozen [31]. In the FA INT problem we are given a set of regular automata with
a common alphabet and our aim is to decide whether the automata accept a
common word. A regular automaton is defined as follows.
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Fig. 3: Construction of a FSM M(U, I,K) from a given minimum covering problem
instance U = {1, 2, 3, 4, 5, 6}, I = {{1, 2, 4}, {3, 4, 6}, {1, 2, 5}} and K = 2.

Definition 8. A regular automaton is defined by 5-tuple A = (Q,Σ, h, 0A, F )
where Q,Σ, h are a finite set of states, a finite set of inputs and a transition func-
tion, respectively. 0A ∈ Q is the initial state and F ⊆ Q is the set of accepting
state. Automaton A accepts a word w ∈ Σ? if h(0A, w) ∈ F .

Definition 9. Let A = {A1, A2, . . . , Az} be a set of regular automata with a
common alphabet Σ. The FA INT problem is to determine whether there is a
word w such that w ∈ L(Ai) for all 1 ≤ i ≤ z.9

We show that the PRSIS problem is PSPACE-complete. We first show how
we construct an FSM from a given instance of the FA INT problem.

Without loss of generality, we assume that the finite automata in A have
disjoint sets of states. Given an instance of the FA INT problem defined by set
A = {A1, A2, . . . , Az} of finite automata on common finite alphabet Σ (Ai =
(Qi, Σ, hi, 0i, Fi)), we construct an FSM M(A) = (S, s0, X, Y, δ, λ) as follows.

We copy the states of each automaton Ai = (Qi, Σ, δi, 0i, Ci) and given qj ∈
Qi we let sj denote the corresponding state in S. For each Ai we also introduce
an additional state ?i. The input alphabet of the FSM is given by X = Σ∪{f, f ′}
and the output alphabet of the FSM is given by Y = {0, 1, 2, . . . , z}. The state
transitions of the finite automata in A are inherited: if a ∈ Σ and qj ∈ Qi for
1 ≤ i ≤ z and 1 ≤ j ≤ |Qi| then δ(sj , a) = sk if hi(qj , a) = qk. In a state of the
form ?i, an input from Σ leads to no change in state and output 0.

Each transition with input x ∈ Σ produces output 0. For each ?i, we intro-
duce a transition from ?i to 0i with label f/i; all other transitions with input f
have output 0. We also introduce states sF1 , s

F
2 , . . . , s

F
z and input f ′; the input

of f ′ in a state from Fi leads to state sFi and the input of f ′ when the FSM is
in a state from some Qi \ Fi leads to state ?1. The input of f ′ always leads to
output 0.

9 Note that in some cases the initial state of each automaton is an accepting state.
Clearly, for such cases an empty input sequence defines a solution to the FA INT
problem instance, hence we do not consider such cases.
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Finally we set S′′ = {?1, ?2, . . . , ?z} and S′ = {sF1 , sF2 , . . . , sFz }.

Theorem 3. PRSIS problem is PSPACE-complete.

5 Conclusion

Many algorithms for generating test sequences from FSMs use UIOs but UIO
existence is PSPACE-complete. As a result, UIO generation algorithms take
advantage of situations in which one can generate additional UIOs from a UIO
that has been found. The main such approach is to use invertible sequences [27,
28].

This paper has explored three optimisation problems associated with invert-
ible sequences: deciding whether there is a (proper) invertible sequence of length
at least K; deciding whether there is a set of invertible sequences, for state set
S′, that contains at most K input sequences; and deciding whether there is a
single input sequence that defines invertible sequences that take state set S′′ to
state set S′. We proved that the first two problems are NP-complete and the
third is PSPACE-complete.

There are several lines of future work. First, in practice we might have an
upper bound on the length of an invertible sequence that is of interest; there is the
problem of deciding whether the complexity results change if one incorporates
such an upper bound. It would also be interesting to use experiments to explore
properties of invertible sequences and UIOs. Finally, there is potential to use
invertible sequences in generating other types of tests that distinguish states of
an FSM. One might, for example, consider problems associated with generating
adaptive distinguishing sequences for an FSM or a given set of states of an FSM.
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Appendix

Lemma 3. Let x̄/ȳ be a UIO for state s, ρ be a proper invertible sequence for
s and also let ψ = {(s′, ρ′)|s′ ∈ S, ρ′ ∈ post(ρ) and s′ is the initial state of ρ′}
be the set of pairs of suffixes of ρ and states from which they originate, then for
each pair (s′, ρ′) in ψ, in(ρ′)x̄/out(ρ′)ȳ is a UIO for s′.

Proof. We use proof by contradiction. Let ψ be the set of pairs of suffixes and
states of some invertible sequence ρ for state s. Consider a pair (s′, ρ′) and let us
suppose that in(ρ′)x̄/out(ρ′)ȳ is not a UIO for s′. This implies that there exists
a state s′′ 6= s′ such that there exists a walk from s′′ labeled with input/output
sequence in(ρ′)x̄/out(ρ′)ȳ. Now consider the state s′′′ reached from s′′ with walk
in(ρ′)/out(ρ′). As the underlying FSM is deterministic we have two options:

– we have s′′′ = s,
– or we have s′′′ ∈ S \ {s}.

In the first case, ρ′ cannot be an invertible sequence. Otherwise, if the second
case holds, then x̄/ȳ cannot be a UIO for s. The result thus follows.

ut

Proposition 1. The longest path problem instance (G,K) has a solution if and
only if state s? of M(G) has a proper invertible sequence ρ of length K + 1.

Proof. First we prove that if G has a path P = e1e2 . . . eK of length K, then
M(G) has a proper invertible sequence for s? whose input portion has length
K + 1. First note that for every vertex and edge of G there exists a state and
a transition in M(G) respectively. Let ρ = x1/y1x2/y2 . . . xK/yK be the label
of the walk corresponding to P. Since every transition of M(G) is labelled with
unique input/output values, ρ = x1/y1x2/y2 . . . xK/yK defines an invertible se-
quence for a state of M(G). Finally, if we concatenate ρ with some ρ′ = ?/yj ,
which is the label of a walk that starts from the ending state of walk ρ, then
ρ′′ = ρρ′ defines an invertible sequence for s?.

Now assume that s? has a proper invertible sequence ρ = x1/y1x2/y2 . . .
xK+1/yK+1 of length K + 1 and we are required to prove that G has a path of
length K. Note that since ρ is an invertible sequence for s?, the last input/output
pair belongs to a transition that takes M(G) to state s?. Besides, since ρ is a
proper invertible sequence, the first K symbols of the input portion of ρ should
visit K+1 different states of M(G). Since for every state and transition of M(G),
there exists a corresponding vertex and edge in G, the first K inputs of ρ define
a path of G with length K. Thus the result follows.

ut

Theorem 1. The LPIS problem is NP-complete.

Proof. We first show that the LPIS problem is in NP. A non-deterministic Turing
machine can guess an input sequence x̄ of length K. It can then apply x̄ to every
state and record the resultant output sequence and state reached. Afterwards,
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it can compare the outputs to decide whether x̄ defines an invertible sequence
for a specific state s.

The problem is NP-hard due to Proposition 1 and the fact that the longest
path problem with directed graphs is NP-hard. Therefore the result follows.

ut

Proposition 2. The minimum covering problem instance (G, I,K) has a solu-
tion if and only if S′ = {s?} of M(U, I,K) has a minimum spanning invertible
sequence Γ with |Γi| ≤ K.

Proof. First we prove that if U, I,K has a minimum covering I ′ = {I1, I2, . . . , IK}
then M(U, I,K) has a set of invertible sequences Γ for S′ = {s?} such that
Γi = {x1, x2, . . . , xK}. Note that the transitions and output functions of the
FSM M(U, I,K) dictates that for a given input xi and output yj pair, there
exists at most one transition with ending state s? and label xi/yj . Therefore,
each transition with ending state s? is an invertible transition and hence there
is a set Γ of invertible sequences that take M from S \ {s?} to s?. Further,
for every set Ii in I there exists a single corresponding input symbol xi and so
Γi = {x1, . . . , xK}. Thus, Γ defines a spanning invertible sequence for S′ with
|Γi| = K as required.

Now we assume that S′ = {s?} has a maximum spanning invertible sequence
Γ such that |Γi| = K and we are required to prove that U has a minimum
covering with at most K sets. First note that as we only consider invertible
sequences that are not redundant, the length of each input sequence in set Γi is
one. Let Γi = {x̄1, x̄2, . . . , x̄K}. Therefore, there is a set I ′ = {I1, I2, . . . , IK} of
sets derived from ΓI . The result thus follows.

ut

Theorem 2. The MINSIS problem is NP-complete.

Proof. The proof of being in NP is almost similar to that of Theorem 1. However
this time Turing machine should guess at most K input sequences. The problem
is NP-harddue to Proposition 2, thus the result follows.

ut

Theorem 3. PRSIS problem is PSPACE-complete.

Proof. We first show that the PRSIS problem is in PSPACE. The working princi-
ple of the Turing machine for the PRSIS problem is as follows. First note that a
non-deterministic Turing machine T can take S′′ to S′ input by input as follows:
Let w be the sequences of inputs guessed by T so far, and T guesses an input
x. After this point T applies x to states δ(S′′, w). T should then check whether
a) δ(S′′, wx) = S′, and b) For all s ∈ S′′ and s′ ∈ S, if δ(s, wx) = δ(s′, wx) then
λ(s, wx) 6= λ(s′, wx) If these three conditions hold T returns at accepting state.
Otherwise it returns at rejecting state.

To achieve this T maintains (and updates on each iteration) the following
information (given input sequence w): 1) a partition D of S′′ saying which pairs
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of states from S′′ are not distinguished by w. 2) For each state s ∈ S′′, the pair
(s′, S′′′) where: s′ = δ(s, w) is the current state corresponding to s and S′′′ is
the set of current states from states in S \ S′′ that are not distinguished from s.
Thus S′′′ = {δ(s′′, w)|s′′ ∈ S \ S′′ ∧ λ(s, w) = λ(s′′, w)}

Clearly, it is straightforward to update this information if we extend w to
wx (guessing x). It is also easy to spot when one should not extend further by
x (either the current states reached from states of S′′ not distinguished by w
‘converge’ or there is some (s′, S′′′) such that s′ and a state from S′′′ ‘converge’).

The above can clearly be stored in polynomial space. In addition to the
terminating conditions mentioned above, T should terminate when the upper
bound is reached. First note that the number of possible values for a pair (s′, S′′′)
is bounded above by n.2n and so the number of possible such pairs is bounded
above by: (n2n)K = nK .2nK . Second, initially D contains K sets. The only way
we can change D is by merging two or more sets, with this reducing the number
of sets in D. Thus, the value of D can change at most K − 1 times.

Therefore the upper bound for the PRSIS is (K−1).nK .2(nK). Note that this
information can be stored in polynomial space, i.e. O(log((K − 1).nK .2(nK))) =
O(log(K − 1) +Klog(n) +nKlog(2)) space and the Turing machine T can hold
a counter and increment this by one after an input is guessed. Therefore when
the value stored in the counter exceeds the upper bound value, T terminates.

Therefore, the entire search in this way can be performed in NPSPACE. Based
on Savitch’s Theorem [32], the PRSIS problem is in PSPACE as required.

Now we prove that if the automata accept a common word w ∈ Σ then M(A)
has an invertible sequence that takes S′′ to S′. Clearly the application of fwf ′

from a state of S′′ brings M(A) to one of states in S′. As the output produced
as a response to input f is unique, fwf ′ is a PRSIS for S′ as required.

Now we assume that there are invertible sequences with common input se-
quence x̄ that take S′′ to S′ and we are required to prove that there is a common
element for the automata in A. Note since x̄ takes S′′ to S′, the input sequence
x̄ should contain at least one f and must end with f ′. Let x̄′f ′ be the suffix of
x̄ after the first input f . After the application of f , the FSM is in a state that
corresponds to an initial state of the corresponding automaton. Since x̄ takes S′′

to S′, x̄′f ′ must takes set δ(S′′, f) to S′ and so x̄ must take initial states of the
Ai to final states. The result thus follows setting w = x̄.

ut


