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Abstract. We propose a multi-objective strategy for finding effective
inputs for fault detection in Cyber Physical Systems (CPSs). The main
goal is to provide input signals for a system in such a way that they
maximise the distance between the system’s output and an ideal tar-
get, thus leading the system towards a fault; this is based on Genetic
Algorithm and Simulated Annealing heuristics. Additionally, we take
into consideration the discrete locations (of hybrid system models) and a
notion of input diversity to increase coverage. We implement our strategy
and present an empirical analysis to estimate its effectiveness.

Keywords: Cyber-Physical Systems, Search Based, Input Selection

1 Introduction

Cyber-Physical Systems (CPSs) integrate computational systems into their phys-
ical environments; components for products such as automobiles and airplanes
[32] are examples of modern CPSs. In order to model the continuous and discrete
dynamics often present in CPSs, hybrid models have been extensively used [6].
A typical type of CPS is a system where sensors feed input signals to a digi-
tal controller (discrete component) attached to physical actuators (continuous
component) and also outputs continuous signals.

Such systems are complex since their design is typically multidisciplinary.
It is not uncommon for a system component to deal with aspects of different
subject areas such as computer science, physics and control engineering [21]. The
importance of safety and reliability in such complex and heterogeneous systems
warrant the need for further research into their verification.

Model-Based Testing techniques (MBT) can play an important role in the
verification of these systems by providing precise mathematical assurances [38].
Particularly, one can design a test strategy based on a mathematical relation
that decides whether the System Under Test (SUT) behaves as expected, with
respect to a given specification; this is also known as a conformance relation [23].

However, finding effective inputs for detecting faults, i.e., witnesses for non-
conformance, in a continuous system is not a straightforward task. Typically, one
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needs a search algorithm optimised for the continuous domain in order to select
values to maximise the goal, e.g., a witness to a conformance relation violation.

In the present work, we adopt the (τ ,ε)-conformance notion [1,2]. Briefly
speaking, under the same input stimuli, that are given for both specification and
implementation models, the difference in the output behaviour of both systems
is analysed and a distance metric is used to verify if the output behaviours of the
specification and the implementation models are close enough to each other. We
propose a multi-objective search for selecting inputs that violate this relation.

Our first search objective is defined as the observed distance between the
output of the model and the ideal output. By maximising the distance between
the outputs (of the system under test model and those of the ideal target), we can
steer the system towards a fault or, more precisely, towards a challenging situation
that maximises the possibility of a non-conforming verdict during conformance
testing.

As for the second objective, we make use of the control elements found in
hybrid system models to achieve structural coverage. Particularly, we consider
the locations in a Hybrid Automata [20] model as a measure for coverage.

Finally, we propose a diversity notion as our third objective. We adopt a
distance-based diversity metric that computes the Euclidean distance of previously
generated inputs to generate new diverse inputs. We also make use of change
point analysis in our diversity computation, so that we generate inputs that cover
different areas and behave in different shapes.

The contributions of this work can be summarised as follows. We propose a
multi-objective search strategy for input selection that (i) maximises the distance
between the system’s output and its ideal target, (ii) makes use of the control
elements found in hybrid system models to achieve structural coverage, and (iii)
employs a diversity metric to generate additional tests covering different areas
and shapes. Furthermore, another important contribution is (iv) the empirical
evaluation of these objectives in producing effective and efficient tests. We contrast
our results against related approaches using examples from the literature. The
formulation of the first and third objective in our context is, to the best of our
knowledge, novel. Additionally, their combined usage in multi-objective search-
based heuristics, and the particular way we use them for increased fault detection,
is novel as well.

Section 2 considers related work. Section 3 provides the necessary background.
Section 4 presents our strategy for finding inputs. Section 5 presents a case study
and the results of the experiment we have performed. Finally, Section 6 gives a
summary of our results and presents the next steps in our research agenda.

2 Related Work

In the literature, we can find several strategies for input selection for both
discrete and continuous systems separately. For instance, discrete systems can be
covered using structural notions such as node, edge and path coverage [9]. As for
continuous systems, generating test data can usually be seen as an optimisation
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problem, which can be solved using search techniques [39]. However, in the case
of hybrid systems, which involve both discrete and continuous behaviour, only a
few approaches have been proposed, and are discussed in the sequel.

One class of approaches is called property falsification, exemplified by tools
such as Breach [16] and S-Taliro [10]. S-Taliro is a tool that offers an alternative
solution for conformance testing of hybrid systems. Temporal verification is
used to prove or falsify temporal logic properties of the system by searching
for system behaviours that falsify the specification, i.e., counterexamples to
Metric Temporal Logic (MTL) properties. Its conformance testing component
uses the (τ, ε)-conformance notion [1,2], which is proposed by the same authors.
As for input selection, it uses randomised testing based on stochastic optimisation
techniques, such as Simulated Annealing [24], Genetic Algorithm [30], Ant Colony
Optimisation [17] and Cross Entropy [37]. In our work, even though we offer
fewer search-based techniques (Simulated Annealing and Genetic Algorithm),
the modular structure of our solution allows for additional heuristics to be
implemented. The main difference, however, is that our search is multi-objective;
we consider 3 search objectives simultaneously: (i) maximising output distance
from an ideal target, (ii) discrete coverage, and (iii) diversity.

A strategy that uses a notion of test diversity [28,29] for test suite generation
and selection can be seen as complementary work. It uses a search algorithm, based
on Hill-Climbing, that is guided to produce test outputs exhibiting a diverse set
of signal features. Their approach outperforms Simulink Design Verifier (SLDV)
and random test generation. Later, the same authors refined the strategy into
one that considers output diversity (distance and feature based) as search criteria
[27]. Unlike their strategy, we do not focus only on Simulink models nor only on
outputs. We employ diversity in the input space as search criteria and consider a
notion of distance from an ideal target for outputs. Moreover, we make use of
change point analysis to achieve different shapes for the inputs.

As for coverage, a framework for conformance testing of hybrid systems has
been proposed [14] to guide a test generation process. It focuses on state space
coverage and how much of the reachable sets of the system are covered, using
a notion called star discrepancy, which indicates how uniformly distributed are
a set of testing points in the state space. As an extension [3], a coverage-based
falsification strategy is presented. Instead of focusing on state coverage, a new
strategy is developed based on input space coverage. The new strategy sub-divides
the search space and takes random samples from these sub-regions, prioritising
the ones with low robustness, where negative robustness indicates a property
violation. We adopt a structural coverage as our main notion. However, the
coverage of the input space is further emphasised by our diversity metric, which
helps covering areas of the input space distant from the ones already covered.

3 Preliminaires

Cyber-Physical Systems [7] feature a tight integration of discrete and continuous
dynamics; the semantics of CPSs can be suitably modelled as hybrid systems [15].
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Here, we use hybrid automata [8] to model CPSs since it is a well-established
and solid formalism, with an intuitive semantics, besides having tools supporting
different analyses [10,13,18,35].

We use hybrid automata to capture the desired behaviour at a higher-level
of abstraction, to make the input generation feasible. Our approach imposes no
constraints on the concrete design or implementation of CPSs. Moreover, the
semantics of many formalisms can be expressed in terms of hybrid automata [5];
hence, our approach can be applied to such formalisms as well.

3.1 Analysis of cyber-physical systems

We first consider a running example. Then we introduce a formal definition of
hybrid automata, and finally we present a relation that captures a conformance
notion of an implementation with respect to a specification.

Running example - DC-DC boost converter A DC-DC boost converter
boosts the input voltage E to a higher output voltage. Figure 1 depicts the basic
schematic of a boost converter. The system works by increasing and decreasing the
inductor current. For that, the system has a switch that can be opened or closed.
While the switch is closed, the current flows through the inductor generating a
magnetic field. Once the switch is opened, the magnetic field is destroyed and
the current must flow through the diode, transferring the accumulated energy
into the capacitor. Since power must be conserved (P = VI ), the decrease in the
current means an increase in the voltage. This cycle is then repeated. Note that
the control element of the boost converter transforms the otherwise continuous
system into a hybrid one. For more details, see [21].

Fig. 1: DC-DC boost converter [21].

Hybrid automata Hybrid automata, defined below, can be seen as an extension
of finite and timed automata. Guards, reset maps, invariants and specific dynamics
for each location are added to these models, in order to allow the specification of
continuous dynamics.
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In the remainder of this paper, N, R, and R+ denote the set of non-negative
integers, real numbers, and non-negative real-numbers, respectively. Consider a
set of real-valued variables V . A valuation of V is a function of type V → R,
which assigns a real number to each variable v ∈ V . The set of all valuations of
V is denoted by V al(V ). Furthermore, the domain of a function f is denoted by
dom(f ).

Definition 1 (Hybrid Automata [20]). A hybrid automaton is defined as a
tuple (Loc, V , (l0,v0), →, I , F ), where

– Loc is the finite set of locations;

– V = VI ]VO is the set of continuous variables, where VI and VO denote
the disjoint sets of input and output variables, respectively;

– l0 denotes the initial location and v0 is an initial valuation of V;

– →⊆ Loc×B(V )×Reset(V )× Loc is the set of jumps, where:

• B(V ) ⊆ V al(V ) indicates the guards under which the jump may be
performed, and

• Reset(V ) =
⋃

V ′⊆V Val(V ′) is the set of value assignments to the vari-
ables in V after the jump;

– I : Loc→ B(V ) determines the allowed valuation of variables in each location
(called the invariant of the location); and

– F : Loc → B
(

V ∪ V̇
)

describes some constraints on variables and their

derivatives and specifies the allowed continuous behaviour in each location.

Locations are discrete states where each one can be viewed as a purely
continuous system. Furthermore, the continuous behaviour of the entire hybrid
system is captured by the valuation of a set V of continuous variables. We
assume that V is partitioned into disjoint sets of input variables, denoted by
VI , and output variables, denoted by VO . A jump represents a change in the
current operating location. To perform a jump, the transition guard has to hold.
Moreover, a jump is an immediate action, which does not require time to pass.
During a jump event, the valuation of the continuous variables can be reset.
Each location also contains a set of differential equations to describe how the
continuous variables evolve in that location.

Fig. 2 shows the hybrid automaton of our running example. The four discrete
states of the system are dependent on the switch (S) and diode (D) modes. The
switch can be open or closed while the diode can be blocking or conducting. For
instance, modes 1 and 3 represent the system state where the switch is open;
in modes 2 and 4, the switch is closed. Analogously, the diode is conducting in
modes 3 and 4 and blocking in modes 1 and 2. The inputs for the system are the
switch S , the current I240 and the voltage V24. The output parameters are the
current I24 and the boosted output voltage V240. Furthermore, Φ is the magnetic
flux produced by the inductor, L is the inductance, q is the electric charge and
C represents the capacitance.
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Fig. 2: Hybrid automaton of the DC-DC boost converter [4].

Hybrid conformance As previously mentioned, the authors of [1,2] propose a
conformance relation based on the output behaviour of a system specification and
implementation models. This is formalised in a closeness relation (see Definition
2). This section is based on the theory presented in [2].

In practice, due to un-modelled physical occurrences such as noise and delays,
the implementation behaviour often deviates in time and value with respect to the
model [1]. The absence of margins of error can lead to undesired non-conforming
verdicts due to intrinsic imprecision in measurement devices and calibration of
the implementation and testing infrastructure. Hence, in the (τ, ε)-conformance
relation, a maximum temporal error of τ and spatial error of ε are allowed between
the output signals (of the implementation and specification).

In the following definition, a trajectory captures the dynamical evolution of the
system, representing its valuation through time. The notion of trajectory abstracts
away from discrete locations. A trajectory y is a mapping y : E → Val(V ), where
Val(V ) denotes the valuation of a set of variables V , and E represents a set of
the Hybrid Time Domain, which is a subset of R+×N. A Hybrid Time is a tuple
(t , j ) corresponding to the point t in time and the number j of jumps. The set of
all trajectories for a hybrid automata HA is denoted by Trajs(HA).

Definition 2 ((τ ,ε)-closeness). Consider a test duration T ∈ R+, a maximum
number of jumps J ∈ N, and τ, ε > 0; then two trajectories y1 and y2 are said to
be (τ ,ε)-close, denoted by y1 ≈(τ,ε) y2, if 1 and 2 below hold.
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1.∀ t : R+; i : N | (t , i) ∈ dom(y1) ∧ t ≤ T ∧ i ≤ J •
∃ s : R+; j : N | (s, j ) ∈ dom(y2) •
| t − s |≤ τ∧ || y1(t , i)− y2(s, j ) ||≤ ε.

2.∀ t : R+; i : N | (t , i) ∈ dom(y2) ∧ t ≤ T ∧ i ≤ J •
∃ s : R+; j : N | (s, j ) ∈ dom(y1) •
| t − s |≤ τ∧ || y2(t , i)− y1(s, j ) ||≤ ε.

The notation | e | stands for the absolute value of e, whilst || a − b || stands
for the (Euclidean) distance between a and b. A solution for a HA is a function
s : E → Loc×Val(V ), which yields a location and a valuation given a Hybrid
Time [2].

Definition 3 (Solution Pair). Let u and y be two trajectories of types E →
Val(VI ) and E → Val(VO), respectively; (u, y) is a solution pair to a hybrid
automaton HA if

– dom(u) = dom(y), and
– ∃φ : E → Val(V ) | φ ∈Trajs(HA) • dom(φ) = dom(u) ∧ u = φ ↓ VI ∧ y =
φ ↓ VO , where y ↓ V stands for the restriction of trajectory y to the set of
variables V

The notion of solution pair is necessary in order to abstract away from
locations and distinguish between input and output trajectories. Two trajectories
are considered a solution pair for a hybrid automata HA, if there exists a
trajectory for HA that captures the behaviour of both trajectories when it is
restricted to input and output variables. We denote by Sols(HA) the set of all
Solution Pairs for HA. Definition 4 formalises the (τ, ε)-conformance relation.

Definition 4 (Conformance Relation). Consider two hybrid automata HA1

and HA2. Given a test duration T ∈ R+, a maximum number of jumps J ∈ N,
and τ, ε > 0, HA2 conforms to HA1, denoted by HA2 ≈(τ,ε) HA1, if and only if

∀ u : E → Val(VI ); y1 : E → Val(VO) | (u, y1) ∈ Sols(HA1) •
∃ y2 : E → Val(VO) | (u, y2) ∈ Sols(HA2) • y1 ≈(τ,ε) y2

In the above definition, T and J are implicitly used in the expression y1 ≈(τ,ε) y2.

4 Finding Inputs via search-based heuristics

In this section, we present our strategy for input selection: a modular and scalable
process for finding inputs that are directed towards detecting non-conformance.

The main motivation behind our strategy is an efficient way to generate inputs
that not only provide structural coverage and maximise diversity metrics but also
maximise the possibility of finding faults. Particularly, we consider a notion called
critical epsilon, which is related to the distance between two trajectories, e.g.,
ouptut and reference signals. Our search is performed in such a way to maximise
the critical epsilon, thus, also maximising the chances to detect non-conformance.
We emphasise that this particular combination is novel in this domain and our
experiments (see Section 5) show that it can lead to effective test cases.
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4.1 Search based inputs and critical epsilon

Given two (reference and output) signals in the specification and a fixed τ , we
denote by critical epsilon the smallest ε that makes the two signals (τ ,ε)-close.
We formally define it as follows.

Definition 5 (Critical Epsilon). Consider two trajectories y1 and y2, a test
duration T ∈ R+, a maximum number of jumps J ∈ N, then, the critical epsilon
for y1, y2 and a given τ > 0 is

ce(τ, y1, y2) = min{ε : R+ | y1 ≈(τ,ε) y2 • ε}

Thus, by fixing the temporal margins, it is possible to build a function that
computes the critical epsilon. We use this function to select the input points
that generate the highest critical epsilon (see Definition 6); such inputs steer the
implementation towards the area in which it is more likely to show deviating
behaviour and thus a non-conforming verdict.

Definition 6 (Highest Critical Epsilon). Consider two hybrid automata
HA1 and HA2, a set of inputs U : E → Val(VI ) and outputs yu

1 , y
u
2 : E →

Val(VO) | (u, y1) ∈ Sols(HA1) ∧ (u, y2) ∈ Sols(HA2) ∧ u ∈ U , then, the highest
critical epsilon for U , HA1 and HA2 and a given τ > 0 is:

hce(τ,U ,HA1,HA2) = max{u : U • ce(τ, yu
1 , y

u
2 )}

In summary, our strategy consists of searching for inputs that yield a greater
spatial distance between the reference and the system output.

However, since continuous input spaces are infinite by definition, it is not
feasible to consider every possible input. A search must be performed, which
reduces test-case generation into a global optimisation problem.

For that, we have implemented two approaches: Simulated Annealing and
Genetic Algorithms, which are well established probabilistic algorithms for com-
puting global optima [19,30]. Given a function f , they attempt to heuristically
approximate the global maxima or minima of f . However, their heuristic nature
brings a certain degree of imprecision; this is mitigated by adjusting the parame-
ters in such a way to find a compromise between accuracy and performance.

Figure 3a shows the core idea behind the input generation. In summary, given
an input, whose time interval is [0, t ], we search for the input value at (t + 1)
that better satisfies our search metrics, e.g., the highest critical epsilon. Note
that the initial input value (where t = 0) must be given. This process is repeated
until the end of the simulation.

Since the basic algorithm only searches for input values for one timestep at a
time (t + 1, t + 2, ...), it is possible that a choice that gives a lower critical epsilon
at (t + 1) (and therefore is not selected), might result in a non-conformance
verdict in the future (e.g., at t + 10). This will not be detected by the algorithm
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(a) Input generated by a search heuris-
tic.

(b) Input generated and its change point
analysis.

Fig. 3: Example of inputs.

and then the non-conformance will be missed. Thus, testing the system using
multiple input trajectories should increase the odds of detecting faults, which led
us to proposing notions of coverage and diversity to remedy this.

A drawback of this strategy is that it can yield unrealistic inputs. For instance,
the variation rate of the resulting signal can be impractical. However, unrealistic
inputs do not necessarily mean invalid inputs. The algorithm searches for inputs
that fit the input domain. For instance, consider a turbine with a sensor that
measures wind speed in the range of 0 to 100 m/s as input and that our algorithm
finds a fault whenever the wind changes its speed from 0 to 100 m/s in 0.01
seconds. Although a fault was detected, such a high variance in wind speed might
have never been recorded before and could be considered unrealistic. We consider
this input unrealistic, but not strictly invalid.

These scenarios are then useful to further constrain the model. One solution
we propose is for the developers to refine the model to disallow such inputs by
defining preconditions (e.g., bounds of derivatives) on inputs.

4.2 Notions of coverage

Test coverage can be used as an indicator for measuring test quality [22], and
a positive relationship between test coverage and code reliability has been em-
pirically established [26]. However, coverage has a cost associated with it, and
achieving high degrees of coverage is not always feasible or necessary [31]. A
contribution of this work is the integration of coverage criteria into our strategy.
In this section, we show how we have implemented structural coverage criteria
that are able to impose some control on the input selection algorithm, ensuring
that the generated test cases cover particular elements of the hybrid automata.

We have considered three types of structural coverage: discrete state, edge
and prime path coverage [9]. Discrete state guarantees that each discrete state in
the model will be visited by our strategy. Edge coverage is achieved by triggering
all transitions. Finally, path coverage is a stronger notion of coverage that aims
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to cover a particular set of transitions in the model and encompasses both node
(i.e., discrete state) and edge coverage. In this work, we emphasize discrete state
coverage, due to the cost effectiveness that we obtained in our experiments.

Discrete State Coverage We adopt discrete state coverage, since a critical
epsilon-based input does not guarantee that the system runs through each and
every state. Given that a system can have issues in multiple states, visiting all of
them can uncover non-conformance.

In this search strategy, we guide the system towards each and every discrete
state (i.e., location) present in the specification. Once we move to an uncovered
state, we switch the priority to finding the highest critical epsilon. This way we
guarantee at least one test per location. The main idea is to generate inputs that
will guide the system towards each discrete state as quickly as possible and, then,
search for problems that might arise once the system is in those specific states.

In order to guide the system towards the desired discrete state, we require
information on its boundaries and information on transitions obtained through
the hybrid automaton specification provided by the user.

4.3 A notion of diversity

As an additional criterion for our search we consider a diversity metric. More
precisely, we adopt a distance-based diversity metric that computes the Euclidean
distance of previously generated inputs to generate a new diverse input. Diversity
is employed alongside the critical epsilon search.

However, a pure Euclidean distance evaluation on all points could lead to
inputs that have the same shape and simple spatial shift, such as two constant
signals that are distant from each other. To avoid this, our diversity metric takes
in consideration the change points in the input signals. A change point analysis
[34] detects sampling points in a trajectory in which there is an abrupt change.
Thus, to generate more interesting and effective inputs, we only employ the
diversity criteria to the change points of the previously generated ones.

In order to properly employ diversity, one needs inputs generated beforehand,
from which the new inputs can be diversified. Our strategy is as follows. In the
first step, a core group of inputs are generated using the highest critical epsilon
metric with discrete coverage. From this group, we execute the second step, where
more tests are generated using a combination of diversity metric with critical
epsilon. Consider the trajectory in Figure 3b as an input generated in the first
step (coverage + critical epsilon) and its change points, which are circled around.
As the new input is being produced in the second step, the priority assigned to
diversity and critical epsilon changes proportionally to the distance to a change
point. The closer the new input gets to a change point, the more we increase
the priority of the diversity metric and decrease the priority of critical epsilon,
so that the new input will distance itself from regions covered by old inputs.
Analogously, the further the new input gets from the change points, the more we
decrease the priority of diversity and increase the priority of critical epsilon.
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Lastly, employing diversity means that we can generate diverse inputs indefi-
nitely. Hence, we have decided to let the user set a maximum number of inputs
as stopping criteria; we plan to employ a more systematic approach in the future.

4.4 Mechanisation

Currently, our tool, HyConf, can read Simulink models and perform conformance
testing using (τ, ε)-conformance notion based on user-defined parameters (τ and
ε). Given a fixed τ , it can compute the critical epsilon for the user. For the input
generation, the tool requires information about the discrete locations, which is
not automatically inferred from the Simulink models. We plan to handle this
transition automatically, using, for instance, an algorithm [5] for conversion
between Simulink and hybrid automata.

The strategy requires two signals in the specification: a command (or reference)
signal, denoting the ideal target of the system, and an output signal, denoting
the current state of the system. The choice of these signals is domain specific
and requires some knowledge of the specification.

Figure 4 shows the pseudo-code for our strategy. Given the set of locations
in a hybrid automaton and the initial value for the input, the algorithm uses a
search-based heuristic, e.g., Simulated Annealing, to find the next value for the
input signal that results in either a change of locations or the highest critical
epsilon. The output of this algorithm is a discretised input.

The algorithm works as follows. It first creates a core group of inputs generated
based on critical epsilon and discrete coverage (lines 01 to 04). This group of
inputs is typically small (the same number of locations in the HA) but very
effective. Consider the running example depicted in Figure 1, since there are 4
states, our strategy generates a core group of 4 input trajectories. Notice that,
for the initial state, the algorithm only needs to prioritise critical epsilon. For the
remaining states, the algorithm takes in consideration the possible values of the
variables in order to enter the state and the path it can take. For instance, in
order to cover the state ”mode 2” from the initial state (”mode 1”), the switch
must be connected (S = 0) and the algorithm searches for inputs where the
electric charge is greater than zero (q ≥ 0). Once these two criteria have been
met, the algorithm detects it has entered the state ”mode 2” and only focus on
critical epsilon (lines 15 to 19 in Figure 4).

After that, it uses a diversity metric coupled with critical epsilon to find
inputs that are distant from the the ones already generated (lines 05 to 08).
As mentioned in Section 4.3, the diversity only considers the change points of
past inputs (line 27). The weight of the critical epsilon metric is proportional
to the distance to the change points while the weight of the diversity metric
is inversely proportional (lines 31 and 32). Thus, as the new input point being
created approaches the position of a change point, the search increases the priority
of the diversity metric and lowers the priority of the critical epsilon. It is worth
mentioning that the initial point in every input is always a change point, thus the
initial point for the new inputs being created is always distant from the existent
ones.
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00 function main(){
01 foreach location in HA{
02 testcase = createInput(location,HA, initialInput);
03 testSuite.add(testcase);
04 }
05 for (i = 0; i <= maxAdditionalInputs; i + +) {
06 testcase = createDiverseInput(testSuite, initialInput);
07 testSuite.add(testcase);
08 }
09 return testSuite;
10 }
11
12
13 function createInput(location,HA, input){
14 for (i = 0; i <= simulationEndTime; i + +) {
15 if (system.currentLocation 6= location) {
16 iteration = search(guideToLocation(location,HA), criticalEpsilon(), input);
17 }else{
18 iteration = search(criticalEpsilon(), input);
19 }
20 input.append(iteration);
21 }
22 return input;
23 }
24
25
26 function createDiverseInput(testSuite, initialInput){
27 changePoints = changePointAnalysis(testSuite);
28 for (i = 0; i <= simulationEndTime; i + +) {
29 foreach changePoint in changePoints{
30 d = euclideanDistance(input, changePoint);
31 changePriority(criticalWeight, d);
32 changePriority(diversityWeight, 1 / d);
33 }
34 iteration = search(diversity(), criticalEpsilon(), diversityWeight, criticalWeight);
35 input.append(iteration);
36 }
37 return input;
38 }

Fig. 4: Pseudo-code used in HyConf.

Being a multi-objective search [25] means that the objectives are meant to be
fulfilled concurrently. Whenever the search heuristic uses guideToLocation() or
euclideanDistance() as a metric, it also takes in consideration criticalEpsilon().

5 Empirical analysis

In this section, we describe the experiments performed using the proposed strategy.
Section 5.1 briefly describes the case study used in the experiment; Section 5.2
details the experimental plan along with its methodology and threats to validity;
and section 5.3 presents the results of the experiment.

5.1 Case study

In addition to the running example, we use a case study based on an automotive
pneumatic suspension system [33]. The system’s goal is to increase driving
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comfort by adjusting the chassis level to compensate for road disturbances. This
is achieved by a pneumatic suspension that connects the valves attached to each
wheel to a compressor and an escape valve.

The system aims to keep the chassis level as close as possible to a defined set
point in each of the four wheels. The decision to increase or decrease the chassis
level is based on the tolerance intervals defined for each wheel. The full automaton
of our version of this system and its behaviour slightly differs from the original
one [33]. The original model contains some unsupported features by the tools we
use, such as synchronised parallel components and non-deterministic differential
equations. We have serialised the model (by computing the overall behaviour of
the constituent hybrid automata), but kept the overall behaviour intact, except
for the removal of non-determinism. We have changed the non-deterministic
assignments to input assignments and, thus, we added inputs that can take the
same values within the original intervals and are now assigned directly to the
corresponding variable derivative. The final model contains 4 locations with
several differential equations each.

5.2 Experimental plan

The main goal of this study is the evaluation of strategies for input generation
to test Cyber-Physical Systems (CPS). Additionally, this experiment aims to
verify whether the strategy we implemented in our tool, HyConf, is more effective
and efficient in terms of performance compared with the alternatives found
in the literature. Another motivation behind this study is the fact that there
are few empirical and controlled experiments to evaluate the efficacy of MBT
(Model-Based Testing) tools in regard to Cyber-Physical Systems. We compare
our strategy against another tool called S-Taliro and also against random input
generation, which can serve as a baseline measurement.

– RQ1: Can HyConf detect more faults than the alternatives?

– RQ2: Can HyConf detect faults faster than the alternatives?

We analyse the effectiveness of our strategies using mutation analysis. The
mutation operators used in this experiment were chosen based on a study on
mutation operators for Simulink models [11] and are shown in Table 1, along
with the number of inserted faults for the Boost Converter (BC) and Suspension
System (SS) models.

In the experiment, a higher priority was given to variable change and constant
change due to the complexity in detecting this type of faults. In total, we inserted
82 and 105 faults in the boost converter and suspension system models.

The mutation score is used to determine the effectiveness of the strategies
(RQ1). In this experiment, the strategy that kills more mutants is deemed more
effective. In order to assert efficiency (RQ2), however, we collected the number
of time steps it takes for the test suites to kill mutants, and then we compute
the median. The strategy with lower median is considered the faster one.
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Operator BC SS

Constant Change 12 14

Variable Change 13 18

Variable Negation 6 9

Constant Replacement 8 12

Statement Change 9 13

Delay Change 8 13

Relational Operator Replacement 10 10

Arithmetic Operator Replacement 10 10

Total for each model 82 105

Table 1: Mutation operators and number of faults.

Methodology In order to answer our research questions, we define the metrics
MS, which represents the Mutation Score, and Average Time of Faults Detected,
ATFD, which is an extension of the APFD metric (Average Percentage of
Faults Detected) [36]. The experiment is followed by a statistical analysis and a
comparison of the yielded results.

The mutation score can be obtained by dividing the number of mutants killed
by the total number of mutants created. In this work, we do not distinguish
equivalent mutants, i.e., those mutants that conform to the specification. It is
generally difficult to check whether the mutant is equivalent in a continuous
domain and, thus, we assume that all mutants are not equivalent.

The ATFD metric tells us which test suite can detect mutants faster and is
formally defined as follows.

Definition 7 (Average Time of Faults Detected). Let T be a test suite
containing n timesteps and let M be a set of m models with a single distinct
mutant each. Let T ′ be an ordering of T. Let TSi be the first time step in T ′

that detects the fault i . The ATFD for T ′ is:

ATFDT ′ = 1− TS1 + TS2 + ...+ TSm

nm
+

1

2n

Similarly to APFD, ATFD can vary from 0 to 1 and a higher ATFD indicates
a faster fault-detection rate. One can see the ATFD as an APFD where each
time step is a distinct test case. However, if a test suite T cannot detect a fault i ,
then we assign to TSi the max number of timesteps in that test suite (n). Here,
timesteps can serve as time measurement, since to obtain the correct simulation
time, one only needs to multiply the number of timesteps by the sampling rate.

In this experiment, each strategy creates inputs for 2 models. Due to the
random nature of the search algorithms used in these tools and also to grant
statistical significance, each strategy was executed 30 times for each model. The
first model is the pneumatic suspension system and the second one is the boost
converter (Figure 2). Once the inputs were created, we performed mutation
testing analysis in order to determine which strategy was more effective and
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accept or reject Hypothesis A (see below). Additionally, the time steps will be
recorded during the execution of each strategy. These measurements were then
used to assert Hypothesis B (see below).

The stopping criteria for our diversity notion in this experiment (variable
maxAdditionalInputs in Figure 4) is the generation of 20 inputs. For S-Taliro
we have matched the same number of inputs. As for the random strategy, due
to its much faster input generation capabilities, instead of limiting the number
of inputs generated, we let it run for the same amount of time as the slowest
approach. We believe this is a fair approach to all strategies.

Hypotheses Hypotheses A and B aim to evaluate the research questions that
have been explained previously. For this, null hypotheses are defined, which states
that there is no difference between the strategies being analysed. This experiment
aims to refute such hypotheses. Thus, alternative hypotheses are also defined,
which have a complementary role to the null hypotheses, and can be accepted
in case its counterpart hypotheses are rejected. We define 4 hypotheses: A0 and
A1 (null and alternate, respectively), compares whether the mutation score (MS)
obtained by using our strategy (HyConf) is less than or equal to the mutation
score obtained by using the other strategies (OTH). Analogously, hypotheses B0
and B1 (null and alternate, respectively) consider ATFD.

HA0 : MSHyConf ≤ MSOTH HA1 : MSHyConf > MSOTH

HB0 : ATFDHyConf ≤ ATFDOTH HB1 ATFDHyConf > ATFDOTH

Threats to validity Here we list the threats to validity that apply to this ex-
periment. As Internal Validity, the mutation operators used in this experiment
were chosen based on a study on mutation operators for Simulink models [11].
The number of inserted faults is decided manually, based on the complexity of
each system. Furthermore, there is no limit to the amount of inputs the random
approach can generate and this can be a threat to fairness amongst strategies.
Thus, we have decided to let this strategy run for the same time as the slowest
approach. Concerning External Validity, this experiment only considers 2,
relatively small, examples; we cannot generalise the outcome of this experiment
for a general class of CPSs. Besides, since we introduced the faults ourselves,
the mutants may also not represent real world faults. As Construct Validity,
assessment of equivalent mutants for CPS was not performed. In this case, we
assume that all mutants could have been detected. Moreover, the values for τ
and ε have a direct impact on the results: sufficiently large values would have
detected all mutants and small values would have detected none. The values we
have chosen are based on prior experiments and domain knowledge.

Statistical analysis The purpose of this analysis is to verify whether one should
reject or accept the null and alternative hypotheses. Here, we used the RStudio,
where the comparison was made between averages MS and ATFD computed
using HyConf, S-Taliro and random input generation. Since our samples follow a
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normal distribution, the ”t-test” statistical technique with a p-value < 0.05 and
level of confidence of 95% is used to analyse our data.

5.3 Results

To answer the first research question, we ran the experiment 30 times for each
pair (strategy × model) and analysed the mutation score (see Table 2). The
experiment was carried out using a computer with Intel Core i5 processor, 8GB of
RAM and Windows 10 as operating system and the Matlab 2018b framework. The
models shown in the table, BC and SS, are the ones presented earlier, i.e., Boost
Converter (Section 3.1) and Suspension System (Section 5.1), respectively. Despite
the slight input variations due to the randomness of the employed heuristics,
the number of mutants detected by HyConf were the same for each run of the
experiment, and similarly for S-Taliro; this was not the case for random testing.
Each group of random inputs killed a different number of mutants; in this case,
we show the median score. For our tool, we show the results of using different
criteria combinations: highest critical epsilon (HCE), coverage and diversity. As
can be observed, HyConf consistently detected more mutants when it employs
all three combined.

Mutation Score ATFD

BC SS BC SS

HyConf (SA): HCE + Coverage 63/82 81/105 0.325 0.312

HyConf (SA): HCE + Diversity 55/82 68/105 0.277 0.281

HyConf (SA): HCE + Coverage + Diversity 69/82 88/105 0.364 0.362

HyConf (GA): HCE + Coverage 64/82 85/105 0.342 0.339

HyConf (GA): HCE + Diversity 59/82 70/105 0.301 0.314

HyConf (GA): HCE + Coverage + Diversity 71/82 94/105 0.373 0.371

S-Taliro (SA) 60/82 76/105 0.311 0.293

S-Taliro (GA) 62/82 80/105 0.327 0.309

Random Inputs 43/82 61/105 0.228 0.222

Table 2: Experiment results.

Analogously, to answer the second question, we computed the amount of time
steps necessary to detect each mutant. We used this information to calculate the
ATFD values. The median values for the 30 execution are also shown in Table 2.

We should mention that each model was simulated for a maximum of 10
time units using a sampling rate of 0.01, which gives us 1000 time steps for each
created input. Since we are not interested in prioritisation of the test suites, they
had a randomised order in each execution.

Furthermore, Table 3 shows the statistical test results obtained from compar-
ing the ATFD metric. Due to the lack of variation in the collected mutation score
(i.e, the HyConf and S-Taliro were constant), a t-test could not be performed to
evaluate the MS metric; however, the results are clear.
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Boost Converter Suspension

HyConf (SA) v. S-Taliro (SA) 6.11 ∗ 10−08 3.98 ∗ 10−14

HyConf (GA) v. S-Taliro (GA) 6.86 ∗ 10−08 7.74 ∗ 10−14

HyConf (GA) v. Random 8.73 ∗ 10−10 5.21 ∗ 10−15

Table 3: Test results (p-values)

The tests outcome indicate that HyConf performed better than the alterna-
tives, and statistically, the results are significant. Thus, based on the data shown,
we can reject the null hypotheses HA0 and HB0, and accept their alternatives
which tell us that our strategy can obtain a higher mutation score than the other
tools and also a higher ATFD. Another conclusion is that even though Genetic
Algorithm obtained a higher mutation score and ATFD compared to Simulated
Annealing, it has a higher computation cost. This trade-off is left for the engineer
to decide.

6 Conclusions and future work

In this work we have proposed a strategy for generating fault-oriented inputs
for Cyber-Physical Systems. The idea behind these inputs is to maximise the
distance between a system’s output and its ideal target, thus, leading to fault.

In order to generate inputs for continuous systems, a search based approach is
often necessary; in our case, we adopt simulated annealing and genetic algorithm.
We look for inputs that lead to a potential conformance violation, particularly
with respect to the (τ, ε)-conformance notion. Also, we make use of a discrete
coverage notion to find inputs that can guide the system towards new locations
and we also employ a diversity metric into our input selection strategy. By doing
this, we aim to increase coverage and find faults that are more difficult to detect.

Moreover, we have conducted a controlled experiment to compare the strategy
we propose with related alternatives. This was performed on two distinct systems:
a boost converter and a pneumatic suspension system. Overall, our approach
produced evidence of superior fault detection capabilities and efficiency.

As future work, we plan to further improve our input generation strategy. For
instance, we are studying additional types of coverage that we can consider and
which other types of parameters we can use to tune our multi-objective search.
With our diversity metric, we can generate inputs indefinitely. Thus, we let the
user define a maximum number but we plan to use a more systematic approach
in the future. Additionally, some of the steps in this strategy can be mechanised
further and fully integrated into our tool. Finally, we also plan to integrate our
strategy with the NAT2TEST [12] framework, which would allow us to define a
test strategy for CPS based on natural-language specifications.
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