
Formal Verification of Unreliable Failure Detectors in
Partially Synchronous Systems

M. Atif
TU/Eindhoven

Dept. of Computer Science
P.O. Box 513, 5600 MB

Eindhoven, The Netherlands
m.atif@tue.nl

M.R. Mousavi
TU/Eindhoven

Dept. of Computer Science
P.O. Box 513, 5600 MB

Eindhoven, The Netherlands
m.r.mousavi@tue.nl

A. Osaiweran
TU/Eindhoven

Dept. of Computer Science
P.O. Box 513, 5600 MB

Eindhoven, The Netherlands
a.a.h.osaiweran@tue.nl

ABSTRACT
We formally verify four algorithms proposed in [M. Larrea,
S. Arévalo and A. Fernández, Efficient Algorithms to Imple-
ment Unreliable Failure Detectors in Partially Synchronous
Systems, 1999]. Each algorithm is specified as a network of
timed automata and is verified with respect to completeness
and accuracy properties. Using the model-checking tool UP-
PAAL, we detect and report the occurrences of deadlock (for
all algorithms) between each pair of non-faulty nodes due to
buffer overflow in communication channels with arbitrarily
large buffers and we propose a solution. Moreover, we use
one of the algorithms as a measure to compare three model-
checking tools, namely, UPPAAL, mCRL2 and FDR2.

Categories and Subject Descriptors
F.3.1 [Specifying and Verifying and Reasoning about
Programs]: Mechanical verification; C.2.4 [Distributed
Systems]

General Terms
Verification, Reliability

Keywords
Distributed Algorithms, Formal Verification, Failure Detec-
tors, Model Checking

1. INTRODUCTION
Distributed systems are vulnerable to faults such as a crash
of the participating processes or the communication media
among them. A key challenge is to design distributed failure
detectors that allow processes to distinguish slow processes
from those which have crashed. It is important that these
detectors are accurate, i.e., do not suspect correct processes,
and complete, i.e., do suspect crashed ones. Given their non-
trivial design, it is highly desirable to validate that these

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’12 March 26-30, 2012, Riva del Garda, Italy.
Copyright 2011 ACM 978-1-4503-0857-1/12/03 ...$10.00.

protocols satisfy their required or claimed properties. M.
Larrea et al. introduce “efficient algorithms to implement
failure detectors in partially synchronous systems” in [6],
whose formal verification forms the subject matter of this
paper.

1.1 Types of unreliable failure detectors
A failure detector is called unreliable, if it can mistak-

enly report a correct process (a process that remains oper-
ational during the protocol) as faulty (also known as sus-
pected or crashed). Chandra and Toueg proposed unreli-
able failure detectors in [2] to guarantee two essential prop-
erties, namely, completeness and accuracy. Completeness
is about suspecting each faulty process and accuracy con-
cerns not suspecting any correct process. These proper-
ties are further classified into weak and strong as follows:

1 Strong completeness: Eventually every faulty process
is permanently suspected by every non-faulty process.

2 Weak completeness: Eventually every faulty process is
permanently suspected by some non-faulty process.

3 Eventual strong accuracy : Eventually no correct pro-
cess is suspected by any correct process.

4 Eventual weak accuracy : Eventually some correct pro-
cess is not suspected by any correct process.

1.2 Partial synchrony
In distributed systems, upper bounds on message delivery

times (across communication channels) and message pro-
cessing times play an important role in fault detection. For
example, it is impossible to distinguish a slow process from
a faulty one when there are no such upper bounds, i.e., in
a totally asynchronous system [4]. In [2], a system is desig-
nated as partially synchronous, if there exist upper bounds
for message delivery; such upper bounds are assumed to be
unknown and hold only after an unknown stabilization in-
terval. It is assumed that after the stabilization interval,
every sent message is eventually received within the upper
bound on the channel and process delays, provided that their
communication channel is up and both the sender and the
receiver are correct. The protocols described in [6] and an-
alyzed here are supposed to guarantee their properties only
in the partially synchronous setting.

1.3 Purpose of the study
The purpose of this study is to specify and formally verify

the algorithms given in [6] using the formal verification tool
UPPAAL [11]. Each algorithm includes a number of partici-
pants which have symmetric behavior and, as will be demon-

strated below, this allows us to exploit symmetry reduction
[5] supplied by UPPAAL to overcome the state-space explo-
sion problem.

The results of our verification show that all algorithms of
[6] contain a deadlock if there is a bounded (yet arbitrarily
large) buffer in the communication channel between a pair
of participants. We implement a fix for this problem and
show that in the fixed setting, the other claimed properties
regarding accuracy and completeness are indeed satisfied by
the respective algorithms.

We also used the first algorithm in [6] as a case study
to compare the performance of three model-checking tools,
namely, UPPAAL, mCRL2 [8] and FDR2 [3]. Our case
study shows that UPPAAL is best suited for larger state
space, e.g., 700 millions states and more, whereas for rel-
atively smaller state spaces, e.g., 300 millions or less, the
performance of FDR2 outperforms the other two. The per-
formance of mCRL2 remains closer to UPPAAL than FDR2
in both cases.

Structure of the paper. The algorithms under study
are presented informally in Section 2 and formally in Section
3. In Section 4 we describe the functional requirements of
the algorithms and Section 5 is devoted to the results.

2. ALGORITHMS
For fault detection, all the participants of the algorithms

in [6] make a logical ring and every participant monitors its
successor, called its target. This is achieved by sending peri-
odic messages of the form“ARE-YOU-ALIVE?”and expect-
ing timely response of the form “I-AM-ALIVE”. If the target
is unresponsive then it is suspected and the successor of the
current target becomes the new target. Otherwise, if the tar-
get replies “I-AM-ALIVE” in time then it is pinged again af-
ter a period of ∆, which is a waiting time specific to that tar-
get. Each algorithm has two tasks, Task1 and Task2, where
the former is responsible for sending “ARE-YOU-ALIVE?”
messages and the latter receives both “I-AM-ALIVE” from
the successors and “ARE-YOU-ALIVE?” messages from the
predecessors. Upon receiving “ARE-YOU-ALIVE?”, Task2
immediately replies with “I-AM-ALIVE”.

2.1 Assumptions
The family of algorithms presented in [6] and analyzed in

this paper are based on the following assumptions.
1. After stabilization, communication channels between

any two processes are reliable, i.e., no message is lost.
2. A crashed process is permanently halted.
3. Π is a set of n processes or participants and every

process is aware of the formation of the initial logical
ring. Members of Π are fixed and hence, no process
can join the protocol.

4. For fault detection, one process monitors at most one
process at a time.

5. Every process is correct at the start and initially does
not suspect any other process.

6. All the participants have symmetric behavior.
7. A process does not send any message to itself.
8. A message sent later can reach the destination earlier

than a message sent earlier to the same destination.

9. The initial waiting time (∆), the period in between
each two rounds of monitoring for every process, is
fixed and a priori known to each participant. For
example if a process p monitors another process q,
then ∆p,q denotes the time interval for which p has
to wait for the reply from q.

In the remainder of this section, we briefly explain the 4
algorithms proposed in [6].

2.2 An algorithm for weak completeness
This algorithm, given in Figure 1, forms the basis for the

other algorithms in [6]. As mentioned at the outset of this
section, the functionality of the process p is divided into two
concurrent tasks; Task1 is in charge of sending out “ARE-
YOU-ALIVE?”messages and suspecting processes that have
not replied within a certain time and Task2 is in charge of
receiving messages and processing (responding to them), if
needed. Task1 waits for the mutex and sends an “ARE-
YOU-ALIVE?” message to the current target and signals
the mutex. Subsequently, Task1 sets the variable received
to false and waits for its toggling by Task2. Task1 waits for
a fixed amount of time (initially set to the corresponding ∆
for its target), and if it does not receive a response after the
timeout, it suspects its target and moves to monitor the suc-
cessor of its current target. Task2 sets the variable received
to true upon receiving any message either from the current
target or from any of the already suspected processes. Upon
receiving a message from a process q suspected by another
process p, the process(es) in {q, . . . , pred(targetp)} are no
more suspected by p and then q becomes the next target.
All the messages of the type “I-AM-ALIVE” are discarded
if they are neither from the current target, nor from the
suspects.

2.3 An algorithm for eventual weak accuracy
This algorithm, given in Figure 2, is an extension of the al-

gorithm presented in Section 2.2. To provide weak accuracy,
the waiting time is adjusted according to the response time
of a particular process which is supposed to be correct. Such
a process is called leader. In the initialization phase of the
protocol, an arbitrary process is named as initial-cand (ini-
tial candidate) to become the leader. Eventually the leader
is either initial-cand or its immediate correct successor. If
some process p is unresponsive to an “ARE-YOU-ALIVE?”
message and initial cand ∈ {succ(p), . . . , targetp} then the
waiting time for the current target is incremented by one
unit of time, i.e., p increments its timeout value ∆p,targetp .

2.4 An algorithm for strong accuracy
This algorithm, given in Figure 3, is also an extension to

the basic algorithm given in Section 2.2. In this algorithm,
there is no leader; hence, each process increases the timeout
value for its target when suspected. Using such a scheme,
each process makes the timeout value sufficiently large so
that it eventually stops suspecting its correct target.

2.5 An algorithm for strong completeness
In this algorithm, given in Figure 4, each participant p

maintains a global list Gp of suspected processes along with
its local view Lp of suspected processes (the former is par-
ticular to this algorithm, while the latter is common to all
algorithms). Upon sending and receiving each message of

Process(p) Process(p)

targetp ← succ(p)
Lp ← ∅
∀q ∈ Π : ∆p,q ← default timeout

cobegin
‖ Task1:
loop
wait(mutexp)
send ARE-YOU-ALIVE? to targetp
tout ← ∆p,targetp
received← false
signal(mutexp)
delay tout
wait(mutexp)
if not received
Lp ← Lp ∪ {targetp}
targetp ← succ(targetp)
end if
signal(mutexp)
end loop

‖ Task2:
loop
receive message m from a process q
wait(mutexp)
case
m=ARE-YOU-ALIVE?:
send I-AM-ALIVE to q
if q ∈ Lp

Lp ← Lp − {q, . . . , pred(targetp)}
targetp ← q
received← true
end if
m = I-AM-ALIVE:
case
q = targetp:
received← true
q ∈ Lp:

Lp ← Lp − {q, . . . , pred(targetp)}
targetp ← q
received← true
else discard m
end case
end case
signal (mutexp)
end loop
coend

initial candp ← pre-agreed process
targetp ← succ(p)
Lp ← ∅
∀q ∈ Π : ∆p,q ← default timeout

cobegin
‖ Task1:
loop

wait(mutexp)
send ARE-YOU-ALIVE? to targetp
tout ← ∆p,targetp
received← false
signal(mutexp)
delay tout
wait(mutexp)
if not received
if initial candp ∈

{succ(p), . . . , targetp}
∆p,targetp ← ∆p,targetp + 1

Lp ← Lp ∪ {targetp}
targetp ← succ(targetp)

end if
signal(mutexp)

end loop

‖ Task2:
. . . { Same as algorithm in Fig. 1}

coend

Figure 1: Weak completeness [6] Figure 2: Weak accuracy [6]

Process(p) Process(p)

targetp ← succ(p)
Lp ← ∅
∀q ∈ Π : ∆p,q ← default timeout

cobegin
‖ Task1:
loop
wait(mutexp)
send ARE-YOU-ALIVE? to targetp
tout ← ∆p,targetp
received← false
signal(mutexp)
delay tout
wait(mutexp)
if not received

∆p,targetp ← ∆p,targetp + 1
Lp ← Lp ∪ {targetp}
targetp ← succ(targetp)

end if
signal(mutexp)

end loop

‖ Task2:
. . . { Same as task 2 of Fig. 1}

coend

{if the algorithm needs it:
initial candp ← pre-agreed process}
targetp ← succ(p)
Lp ← ∅
Gp ← ∅
∀q ∈ Π : ∆p,q ← default timeout

cobegin
‖ Task1:
loop

wait(mutexp)
send ARE-YOU-ALIVE? to targetp

—with GP — to targetp
tout ← ∆p,targetp
received← false
signal(mutexp)
delay tout
wait(mutexp)
if not received
{Update ∆p, targetp if required}
Gp ← Gp ∪ {targetp}
Lp ← Lp ∪ {targetp}
targetp ← succ(targetp)

end if
signal(mutexp)

end loop

‖ Task2:
loop

receive message m from a process q
wait(mutexp)
case
m=ARE-YOU-ALIVE?:

send I-AM-ALIVE to q
if q ∈ Lp

Lp ← Lp − {q, . . . ,
pred(targetp)}

targetp ← q
received← true
end if
Gp ← Gp ∪ Lp − {p, q}

m = I-AM-ALIVE:
case
q = targetp:
received← true

q ∈ Lp:
Lp ← Lp − {q, . . . ,

pred(targetp)}
Gp ← Gp − {q}
targetp ← q
received← true

else discard m
end case

end case
signal (mutexp)

end loop
coend

Figure 3: Strong accuracy [6] Figure 4: Strong completeness [6]

types “ARE-YOU-ALIVE?” and “I-AM-ALIVE”, the global
list is sent along and is updated, respectively, i.e., suspected
processes are added while the correct ones are removed. In
this way, eventually all crashed processes will be aggregated
in list G and correct processes will be removed from G, re-
alizing the goals of the algorithm.

3. FORMAL SPECIFICATION IN UPPAAL
We specify Task1, Task2, the communication channels and

the monitor processes (explained in Section 5) in terms of
timed automata in UPPAAL [7]. Timed automata as used
in UPPAAL are extensions of finite state machines with
real-valued clocks, as well as features such as invariants
(in states), guards (on transitions) and synchronization (de-
noted by ! for sending and ? for receiving messages, respec-
tively). We refer to [7] for further details. Parallel compo-
sition of these timed automata forms the system model. To
alleviate the state-space explosion problem, we apply sym-
metry reduction [5] to our models, because all participants
have symmetrical behavior. To this end, we exploit scalar
set to specify this symmetric behavior as shown in Figure
5. In this figure, initAll is a function for assigning default
values (to global declarations) and forming a logical ring of
participants. There is a twist in our use of scalar sets [5],
however, for specifying symmetry in our models. UPPAAL’s
scalar sets are suitable for specifying fully symmetric struc-
tures; in order to specify symmetry in a ring, we need to
identify the next process for each process while not expos-
ing the exact identity of the process, to prevent breaking
symmetry. This is the main technical difficulty dealt with
in Figure 5. The loops (of type for) in the beginning of the
initAll function are used to make the elements of Π dissim-
ilar to each other.

// Global declarations
typedef scalar[3] id t; // type declaration
id t p0, p1, p2; // process identifiers
bool mutex[id t]; // the mutex of each process
id t target[id t]; // target of each process
bool L[id t][id t]; // list of suspects for each process
void initAll(){

//To assign p2 a different value from p0
for (i:id t){

if (i!=p0)
p2=i;
}
// To assign p1 a different value from p0 and p2
for (i:id t) {

if (i!=p0 && i!=p2)
p1=i;
}

// To form a logical ring of participants
target[p0]=p1;
target[p1]=p2;
target[p2]=p0;
//To assign default value to the mutex of every participant
mutex[p0]=mutex[p1]=mutex[p2]=true;
// initialization of L
for (i:id t)

for (j:id t)
L[i][j]=false;

}
// initAll ends

Figure 5: Ring Symmetry in UPPAAL

In the following sections we discuss the formal specifica-

tion of processes for each algorithm.

3.1 Weak completeness

3.1.1 Task1

The automaton for Task1 is shown in Figure 6 where p
is the identifier of the process executing Task1. In the ini-
tial state, Task1 waits for the mutex and upon its avail-
ability, it assigns targetp to MyTarget (a temporary vari-
able). This temporary variable is used because targetp can
change, while MyTarget remains constant throughout each
given round. Then at the wait state, Task1 synchronizes
with the channels dedicated to targetp and sends an “ARE-
YOU-ALIVE?” message. During this synchronization, the
mutex is signaled (i.e., released) and receivedp is reset in
accordance with the discussion in Section 2.2. At the delay
state, Task1 either notices non-deterministically the receipt
of an “I-AM-ALIVE” message by Task2 or starts suspect-
ing the current target after reaching the noReply state. The
function succ computes the successor of the current target.
The process may crash at any state as shown in Figure 6. We
assume that a crashed process can only receive messages but
will not respond to them; the former assumption is essential,
because otherwise messages to crashed processes would not
be removed from the channels.

In this protocol, UPPAAL’s built-in support for time is
not used, because time plays a role only in determining
whether a received message is in time or not (i.e., in dis-
tinguishing no reply from late reply), which we model as a
non-deterministic choice at the state delay in Figure 6.

noReply

wait

crashed

delay
initial

from: id_t

send_I_Am_Alive[from][p]?

mutex[p] and
p!=target[p]

mutex[p]=false,
MyTarget=target[p]

from :id_t

send_Are_You_Alive[from][p]?

L[p][MyTarget]=true,
target[p]=succ(MyTarget) mutex[p] and

!received[p]

p==p1 crash[p]!
crashProc[p]=true

send_Are_You_Alive[p][MyTarget]!

received[p]=false,
mutex[p]=true

mutex[p] and received[p]

p==p1crash[p]!

crashProc[p]=true

p==p1 crash[p]!

crashProc[p]=true

Figure 6: Task1 of weak completeness algorithm

In our modeling, only one process is allowed to crash,
which without loss of generality can be called p1 (note that
p1 is not a particular identifier, but is just one of the scalars
used in the ring). Hence, every transition going towards
the crashed state is guarded with p1. Crash of Task1 is
synchronized with Task2 to halt both tasks at the same
time.

3.1.2 Task2

Task2 receives either an“ARE-YOU-ALIVE?”(called mes-
sage type 0) or an “I-AM-ALIVE” (called message type 1)
from some process q at its initial state and then waits for the
mutex at the wait state as shown in Figure 7. If the mutex
is available it reaches the case state where, according to the
message type, it either replies by sending an “I-AM-ALIVE”
message or updates the suspicion status for process q. If pro-
cess q is suspected by a process p, i.e., L[p][q] is true then

all the processes in {q, . . . , pred(targetp)} are removed from
the list of p’s suspects (using stopSuspect function) and its
received variable is set to true as shown at the stopSus state
in Figure 7. A message of type “I-AM-ALIVE” is discarded
if it is neither from the current target nor from an already
suspected process.

wait

stopSus

replyRcvd

replySentcase

crashed

initial

L[p][q]!=truemutex[p]=true

stopSuspect(q,target[p]),
target[p]=q,
received[p]=true,
mutex[p]=true

q!=target[p]mutex[p]=true

q==target[p]

received[p]=true,
mutex[p]=true

mutex[p]

mutex[p]=false

from:id_t rcv_I_Am_Alive[from][p]?

q=from,
MsgType=1

L[p][q]==true

crash[p]?

L[p][q]!=true

crash[p]?

from:id_t

rcv_Are_You_Alive[from][p]?

q=from,
MsgType=0

L[p][q]==true

crash[p]?

MsgType==1

MsgType==0

send_I_Am_Alive[p][q]!

crash[p]?

Figure 7: Task2 of weak completeness algorithm

3.1.3 Communication channels
There are two communication channels between each pair

of processes for the messages “ARE-YOU-ALIVE?” and “I-
AM-ALIVE”. Each channel has a limited buffer size, globally
defined for all channels in the system. Source and destina-
tion processes are denoted by from and to, respectively as
shown in Figure 8. Upon receiving a message every channel
increases its local counter, i.e., msgCounter and decreases
when a message is delivered. Channels can receive messages
until msgCounter reaches the maximum buffer-size (denoted
by BufferSize). A message is delivered only if there exists
some message in the buffer of that channel.

msgCounter--

msgCounter>0

rcv_I_Am_Alive[from][to]!

msgCounter++

msgCounter<BufferSize

send_I_Am_Alive[from][to]?

Figure 8: Channel process specific to I-AM-ALIVE

An identical channel is used for the messages of type
“ARE-YOU-ALIVE?” for each process.

3.2 Weak accuracy
We model this protocol after its stabilization phase, i.e.,

when there is an upper bound on the maximum round-trip
delay for messages both in the channels and processes, de-
noted by maxDelta.

3.2.1 Task1

The process for Task1 in this protocol is similar to the
one discussed in Section 3.1.1. The variable p is the iden-
tifier of the process executing this task. However, unlike in
Section 3.1.1, here we do use the built-in support of UP-
PAAL for clocks. Every process uses a separate clock for
each of its target processes. When sending an “ARE-YOU-
ALIVE?” message, the variable t out (for timeout) and the
clock linked to the current target are initialized. At the delay
state, delay is exactly up to t out. This is why all outgoing

edges are guarded with waiting[p][MyTarget] = t out, ex-
cept for those modeling process crashes.

After a timeout, if the received flag is not marked as true
by Task2 then Task1 reaches a state, named as noReply
where it is determined whether the initial cand belongs to
{succ(p), . . . , targetp} or not as shown in Figure 9. If the
initial cand is in the aforementioned set, then ∆ for the
current target is incremented by 1 unit of time (provided
that ∆ < maxDelta).

The other two edges from the delay states are for going
to the initial state after a timeout, when either a reply has
been received or the target is crashed.

noReply

wait

crashed

delay

waiting[p][MyTarget] <=t_out

initial

from: id_t

send_I_Am_Alive[from][p]?

mutex[p] and
p!=target[p]

mutex[p]=false,
MyTarget=target[p]

mutex[p] and crashProc[MyTarget]
and !received[p]
and waiting[p][MyTarget]==t_out

L[p][MyTarget]=true,
target[p]=succ(MyTarget)

from :id_t

send_Are_You_Alive[from][p]?

!(initial_cand==succ(p) or
initial_cand==target[p])L[p][MyTarget]=true,

target[p]=succ(MyTarget)

initial_cand==succ(p) or
initial_cand==target[p]

Delta[p][MyTarget]++,
L[p][MyTarget]=true,
target[p]=succ(MyTarget)

mutex[p] and
!received[p] and
waiting[p][MyTarget]==t_out
and !crashProc[MyTarget]

p==p1
crash[p]!

crashProc[p]=true

send_Are_You_Alive[p][MyTarget]!

t_out=Delta[p][MyTarget],
received[p]=false,
mutex[p]=true,
waiting[p][MyTarget]=0

mutex[p] and received[p]
and waiting[p][MyTarget]==t_out

p==p1crash[p]!

crashProc[p]=true

p==p1 crash[p]!

crashProc[p]=true

Figure 9: Timed-automata for Task1 in the algo-
rithm that provides weak accuracy

3.2.2 Task2

Task2 is exactly the same as the corresponding task dis-
cussed in Section 3.1.2 except for the added invariant to
make sure that the processing time remains within maxDelta.
This invariant checks the amount of time spent for a re-
ceived message so that in the remaining time (maximum
delay=maxDelta) the received message is processed.

3.3 Strong accuracy
For this algorithm, Task1 discussed in Section 3.2.1 is

slightly modified while Task2 remains intact. The only
difference is at the noReply state in Figure 9. There is
only one outgoing transition from the noReply state to the
initial state. This transition has no guard and updates
∆p,targetp , Lp and targetp as follows:

• ∆p,targetp = ∆p,targetp + 1,

• L[p][MyTarget] = true, and

• targetp = succ(MyTarget).

3.4 Strong completeness
In the specification of this protocol, we declare a global

list G for all suspected processes. Hence, Task1 of each pro-
cess adds its target to G if the target is suspected and Task2
removes the process if a process from this list communicates
with its monitoring process. Task1 discussed in Section 3.3
is modified to add the target in G to the only outgoing tran-
sition from the noReply state. There is no other change in
Task1.

Task2 is also slightly modified by adding the list G, i.e., if
an already suspected process q sends an“I-AM-ALIVE”mes-
sage to a process p, then p removes q from G and likewise,
if the received message is of the type “ARE-YOU-ALIVE?”
then both p and q are removed from G.

4. GENERAL REQUIREMENTS
The algorithms to implement unreliable failure detectors

in partially synchronous systems given in [6] are supposed
to satisfy the following requirements.

1 Deadlock freedom: There must not be a deadlock in
any protocol provided that at least two processes are
correct.

2 Weak completeness: For the protocol discussed in
Section 2.2.

3 Eventual weak accuracy : For the protocol discussed
in Section 2.3.

4 Strong accuracy : For the protocol discussed in Sec-
tion 2.4.

5 Strong completeness: For the protocol discussed in
Section 2.5.

5. RESULTS
In this section, we report on our analysis results for all

four algorithms presented earlier in this paper. For each
algorithm, we first discuss the result of deadlock checking
in UPPAAL. In order to compare the effectiveness of UP-
PAAL, we compare its performance with two other model-
checking tools, namely, FDR2 [9, 10] and mCRL2[8]. Then,
we propose a slight correction of the algorithms to remove
the detected deadlock. Finally, we report on the verification
of other properties on the corrected algorithms.

5.1 Results for weak completeness

5.1.1 Detecting deadlocks in UPPAAL
In UPPAAL, we specify the absence of deadlock through-

out the state space by the following formula:

A[] not deadlock

We have used client and server components of UPPAAL
4.1.4 (64 bit, release July 11, 2011) on different machines,
i.e., a client on a Windows-based machine and the server on
a Unix-based server machine (4 × 2.5 Ghz processor and 64
GB RAM).

To express eventuality while not breaking symmetry, we
devise monitor processes for liveness properties, which we
discuss in detail in the following sections. In the remainder
of this section, we assume Π = {p0, p1, p2} and p0, p1, and
p2, respectively, form a logical ring.

Figure 10 shows a counter-example where a finite buffer
(of an arbitrary size) overflows and as a consequence the pro-
tocol encounters a deadlock. Particularly, the buffer used to
store “ARE-YOU-ALIVE?” messages overflows due to send-
ing more “ARE-YOU-ALIVE?” messages and receiving less
“I-AM-ALIVE”messages. In this deadlock scenario, the pro-
cess p2 sends “ARE-YOU-ALIVE?” to its target p0 and af-
ter a timeout suspects p0. Then p2 receives “ARE-YOU-
ALIVE?”from p0, replies with“I-AM-ALIVE”and stops sus-
pecting p0. Task2 of p2 receives “I-AM-ALIVE” but at that
time the mutex is taken by Task1 which sends “ARE-YOU-
ALIVE?” to p0 and releases the mutex. Task2 takes the

mutex and processes the recently received “I-AM-ALIVE”
considering it the reply of the last polling. Up to this point,
the process p2 has sent two “ARE-YOU-ALIVE?” messages
and received only one reply whereas it is not waiting for
any further reply. Rather it is going to send another “ARE-
YOU-ALIVE?” for p0. So, due to repeating the above mes-
sage sequence at p2’s end, the buffer of size n overflows on
n + 1 iterations as shown in Figure 10. When the buffer is
full, Task1 cannot synchronize with the channel after hold-
ing the mutex, and due to the unavailability of the mutex,
Task2 is also halted, which results in a deadlock for process
p2. Process p1 has already crashed, hence the protocol faces
a general deadlock.

p0 p1 p2

Are You Alive

timeout, suspect p0

stop suspecting p0

I Am Alive

Are You Alive

received by Task2
and wait for mutex

Are You Alive

I Am Alive

Task2 gets mutex and
processes the already re-
ceived I AM ALIVE

Figure 10: Example of buffer overflow

5.1.2 Detecting deadlocks in FDR2 and mCRL2
Besides UPPAAL, we model checked the algorithm that

provides weak completeness in both FDR2 and mCRL2, and
came up with the same counterexample shown in Figure 10
for the occurrence of a deadlock due to buffer overflow. We
refer to [1] for the complete formal specifications in mCRL2
and CSP. The reason for modeling this algorithm in FDR2
and mCRL2 is to compare the performance of the three
model checkers, i.e., UPPAAL, FDR2 and mCRL2. The rea-
son for not modeling other algorithms in FDR2 and mCRL2
is that built-in support of time is available only in UPPAAL
and time-based events in the other three algorithms play a
crucial role in their functionality (see sections 2.3, 2.4 and
2.5).

To fix this deadlock, one solution is to use FIFO channels
(instead of arbitrary channels allowing for message overtak-
ing), and another solution is to ignore all incoming messages
to a channel when its buffer is full.1 We categorize the be-
havior of a channel as follows when its message buffer is
full.

1. Channel type B: Sender waits until there is space for
one message.

2. Channel type R: Full channel reports “error” message
when another message is received.

3. Channel type I: Full channel receives and ignores fur-
ther messages.

In Table 1, we give the results with respect to channel types
R and B.

We performed model-checking on a server machine hav-
ing 32 × 16 × 2 Ghz processor and 32 × 12 GB memory.

1In a recent personal communication, the first author of [6]
suggested another possible fix, namely to remove lines 7 to
11 from Task 2 in Figure 1. We could formally verify that
this fix is deadlock free, if we also assume that messages to
crashed processes are always lost.

Tool Buffer Size Channel type time state-space states/sec

m
C
R
L
2

1
B 44sec 588641 13378

R 0m5.9 6630 1105

2
B 42m43 30182443 11776

R 33sec 314951 9544

U
P
P
A
A
L

1
B 52sec 2431674 46762

R 0sec 46608 –

2
B 71m8 184493193 43227

R 1m17 5654365 73433

F
D

R
2

1
B 1sec 167388 167388

R 0sec 2401 –

2
B 1m10 6230100 89001

R 0sec 83437 –

Table 1: Comparison of mCRL2, UPPAAL and
FDR2

For channel type I, there is no deadlock regardless of buffer
size. For buffer size 1, UPPAAL explored 711410029 states
in 404 minutes, FDR2 explored 385861073 states in 887 min-
utes and mCRL2 explored 168491893 states in 451 minutes.
Thus, for this case study, UPPAAL is the most effective for
larger state spaces, while for smaller state spaces, i.e., for
the case of channel types B and R, FDR2 takes the lead as
shown in Table 1.

In the remainder of this paper, we first remove the above-
mentioned deadlock, using a bounded FIFO channel and
then proceed to verify the functional properties of the pro-
tocols. (The authors of [6] indicated in a personal commu-
nication that general channels with the possibility of over-
taking are the ones used when designing the protocol, but
as demonstrated above this assumption appears to be too
general for the protocol to work correctly.)

5.1.3 Weak completeness
To verify weak completeness for the algorithm discussed

in Section 2.2, we devised a monitor process shown in Figure
11. This process moves to the error state when the system
oscillates more than a specified number of times (e.g., three
times in Figure 11) between suspecting and not suspecting
an already crashed process by its correct predecessor. (A
more general monitor can be constructed by counting the
number of oscillations and checking it against a fixed con-
stant as the guard for the transition to the state labeled
error.) The initial state is marked as committed to give it a
higher priority over functional steps of the protocol, because
using the initAll function, global declarations are initialized
and a logical ring of the participants is formed.

After verification, it turns out that the monitor process
does detect a counterexample if the number of oscillations is
set to one or two. We depict the counter-examples in Figure
12. According to [6], suspecting a crashed process by its cor-
rect predecessor must be permanent and hence the reported
counter-examples apparently do violate the intuition stated
in [6].

The property of weak completeness is satisfied, i.e., even-
tually a crashed process is suspected by its correct predeces-
sor, but the proof of Theorem 1 in [6] does not appear to be
correct; it is claimed there:

∃t0 : ∀p ∈ crashed, p has failed at time t0 and ∀t ≥ t0, p ∈
Lcorr pred(p)(t).

A counter-example to this claim is shown in the message-

error

initAll()

!L[p0][p1]

L[p0][p1]

!L[p0][p1] L[p0][p1]

crashProc[p1] and !L[p0][p1]

!L[p0][p1]

L[p0][p1]

Figure 11: A monitor to check weak completeness

sequence charts of Figure 12, where (a) shows the scenario
given as the proof of Theorem 1 while (b) and (c) depict the
counterexamples to this proof, i.e., exclusion of a crashed
process from the list of suspects. Although this exclusion is
eventually stopped, oscillating between suspecting and not-
suspecting a crashed process is not addressed in the proof.

corr pred(p) p

Are You Alive

stop suspecting

I Am Alive

Are You Alive

corr pred(p) p

Are You Alive

timeout, suspect p

I Am Alive

Are You Alive

Are You Alive

stop suspecting

corr pred(p) p

Are You Alive

timeout, suspect p

I Am Alive

Are You Alive

receive by Task2 and
wait for the mutex

process “I-AM-ALIVE” by
Task2 and stop suspecting

Are You Alive
timeout, suspect p

∆corr pred(p),p(t′)

∆corr pred(p),p(t′)

∆corr pred(p),p(t′)

timeout,
permanently suspect p

t′

t′

t′

∆corr pred(p),p(t)

t

(a)

(b) (c)

Figure 12: Counterexamples contradicting Theorem
1 given in [6]

In Figure 12, a correct predecessor of a process p sends
an “ARE-YOU-ALIVE?” message to p and receives its re-
ply after which p crashes. At time t′, another “ARE-YOU-
ALIVE?” message is sent and because of p’s crash failure,
it is assumed that there will be no further message from p.
Hence, p is permanently suspected as shown in Figure 12(a)
after ∆correct pred(p),p(t′). However, Figure 12(b) shows re-
ceiving of a “ARE-YOU-ALIVE?” message (late, due to un-
bounded delay in channels) from p which causes it to stop
suspecting process p. Figure 12(c) shows a different situation
when Task2 of corr prd(p) receives a “I-AM-ALIVE” mes-
sage and waits for the mutex but at the same time, timeout
occurs at Task1 which adds the process p in suspects and
releases the mutex. Task2 takes the mutex and processes
the reply, due to which p is again excluded from the list of
suspects.

5.2 Results for weak accuracy

5.2.1 Deadlock
The counterexample shown in Figure 13 exhibits the dead-

lock scenario which is different from the one discussed in Sec-
tion 5.1.1 but it resembles it in the sense that it is also due to
not-suspecting by receiving an “ARE-YOU-ALIVE?” mes-
sage when an “I-AM-ALIVE” message is expected. An ex-
planation of reaching deadlock in process p0 is given below.

1 Send “ARE-YOU-ALIVE?” to p1, but p1 is already
crashed.

2 Suspect p1 and change target to p2.
3 Send “ARE-YOU-ALIVE?” to p2.
4 Timeout and suspect p2.
5 Receive “ARE-YOU-ALIVE?” from p2.
6 Send “I-AM-ALIVE” and stop suspecting p2.
7 Send “ARE-YOU-ALIVE?” to p2.
8 Task2 receives “ARE-YOU-ALIVE?” from p2 and

gets the mutex but cannot send “I-AM-ALIVE” be-
cause the same message (mentioned at step 6) is al-
ready there to be delivered. Now Task2 continues to
wait for a free channel while holding the mutex. Be-
cause of the mutex, Task1 also stops and as a result
the whole process p0 is halted even though it is non-
faulty. A similar reason for deadlock is there for p2
as well, which is shown in Figure 13.

p0 p1 p2

Are You Alive

timeout, suspect p0

stop suspect p0

Are You Alive

Cannot be replied
because already sent
reply for p0 is not yet
received

Are You Alive

timeout, suspect p1

I Am Alive for p0

Are You Alive

I Am Alive for p2

Are You Alive

Cannot be replied
because already sent
reply for p2 is not yet
received

timeout, suspect p2

stop suspect p2

Figure 13: Message sequence chart to show deadlock

Again, the deadlock is removed when replacing the com-
munication channel with a FIFO channel and we verify the
rest of the properties in the fixed setting.

5.2.2 Weak accuracy
To verify weak accuracy, we devised a monitor process

shown in Figure 14 and found that this property is satisfied.
The initial state is marked committed, so that the first tran-

errorinitAll() L[a][c]Delta[a][c]==maxDelta

Figure 14: A monitor process for weak accuracy

sition in the system model is by this monitor process which
uses the initAll function to initialize global variables. Then,
it takes the next transition only when the waiting time at
some process p0 for process p2 reaches maxDelta whereas
in the logical ring of processes p0, p1 and p2 only p1 can
crash. So this monitor process reaches the error state when
the process p2 is correct, replying within maxDelta and its
correct predecessor p0 suspects it.

5.3 Results for strong accuracy and strong com-
pleteness

We found the same deadlock reported in Section 5.2 for
both of these algorithms but their concerning properties of
strong accuracy and strong completeness are satisfied.

For strong accuracy, we devised a monitor process shown
in Figure 15. In the logical ring of the processes p0, p1
and p2, only p1 is allowed to crash. In other words the pro-
cesses p0 and p2 are correct and according to strong accuracy

[6] they are supposed to be not suspected if they continue
responding within a certain amount of time. So, the mon-
itor process monitors the suspicion status of both p0 and
p1 when the waiting time of one for the other is augmented
to maxDelta but the other is still unresponsive. So, ∆ be-
comes more than maxDelta, which is a violation of strong
accuracy because the upper bound on the round-trip com-
munication between each pair of processes is maxDelta. So,
∀p, q ∈ Correct when ∆p,q becomes greater than maxDelta
then it causes reaching to the error state.

error
Delta[p2][p0]>maxDelta
or
Delta[p0][p2]>maxDeltainitAll()

Figure 15: Monitor process for strong accuracy

For strong completeness, we devised the monitor process
shown in Figure 16. As discussed before, only the process p1
is allowed to crash. So the monitor process shown in Figure
16 reaches to error state when p1 is crashed but not sus-
pected (i.e., not part of the list G) while the other processes
p0 and p2 have augmented their waiting time to maxDelta.

errorinitAll() !G[p1]

Delta[p2][p1]==maxDelta and
Delta[p0][p1]==maxDelta and
crashProc [p1]

Figure 16: Monitor process for strong completeness

6. REFERENCES
[1] M. Atif, M. R. Mousavi, and A. Osaiweran. Formal

verification of unreliable failure detectors in partially
synchronous systems. Technical Report CSR-11-12,
Dept. of Computer Science, TU/Eindhoven, 2011.

[2] T. D. Chandra and S. Toueg. Unreliable failure
detectors for reliable distributed systems. J. ACM,
43(2):225–267, 1996.

[3] FDR homepage. http://www.fsel.com.

[4] M. J. Fischer, N. A. Lynch, and M. S. Paterson.
Impossibility of distributed consensus with one faulty
process. J. ACM, 32:374–382, 1985.

[5] M. Hendriks, G. Behrmann, K. G. Larsen, P. Niebert,
and F. W. Vaandrager. Adding symmetry reduction to
UPPAAL. In K. G. Larsen and P. Niebert, editors,
Formal Modeling and Analysis of Timed Systems,
volume 2791 of Lecture Notes in Computer Science,
pages 46–59. Springer, 2003.

[6] M. Larrea, S. Arévalo, and A. Fernández. Efficient
algorithms to implement unreliable failure detectors in
partially synchronous systems. In P. Jayanti, editor,
DISC, volume 1693 of Lecture Notes in Computer
Science, pages 34–48. Springer, 1999.

[7] K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a
nutshell. STTT, 1(1-2):134–152, 1997.

[8] mCRL2 toolset homepage. http://www.mcrl2.org/.

[9] B. Roscoe. Understanding Concurrent Systems.
Springer, 2010.

[10] P. Y. A. Ryan and S. A. Schneider. The modelling and
analysis of security protocols: the CSP approach.
Addison-Wesley Professional, first edition, 2000.

[11] UPPAAL homepage. http://www.uppaal.org/.

