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Abstract. Hennessy and De Nicola established the foundations of for-
mal testing for (discrete) processes. In this paper, we review the chal-
lenges before establishing a formal testing theory for quantum processes.
We survey the recent approaches that provide credible attacks to these
challenges and propose some directions towards a testing theory for quan-
tum processes.

1 Introduction

Testing is the most widely used quality assurance technique for computer systems
and together with debugging accounts for more than half of the development cost
of systems [36]. Grounding testing on a formal foundation and coming up with
foundational results about the properties of tests is hence an impactful subject
that deserves much research. Rocco De Nicola and Matthew Hennessy [38] were
among the first, along with other pioneers such as Marie-Claude Gaudel [24],
to address this subject. In their seminal work [38], De Nicola and Hennessy
developed a formal method of testing for communicating systems. This led to
a proliferation of formal process-theoretic notions of test [41, 9, 49, 43, 50] that
eventually found their way to industrial practice [40, 7, 18] and made significant
impact.

Quantum information technology (including quantum computing and quan-
tum communication) is gaining a growing prospect of applications: quantum
communication is already commercialised [27, 42], e.g., with applications in cy-
bersecurity and key distribution; and various applications of quantum computing
are being explored, e.g., in drug discovery and simulating complex materials [6,
48]. Modeling and testing quantum systems is challenging, due to their complex
nature, e.g., concerning entangled particles and the superposition of states that
often escape intuitive explanations [35]. These phenomena have direct practical
implications about the state and evolution of quantum systems and what can be
known or tested about them (more on this later in this paper). Moreover, there
are alternative representations of quantum systems, e.g., state vectors and den-
sity matrices, that can be used as a basis for formal modelling and testing [39].
All of these make designing process-theoretic representation of quantum systems
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and building a theory of testing for them a non-trivial task. The purpose of this
paper is to provide an overview of available results and a roadmap towards a
formal theory of testing for quantum systems.

In this paper, we start with reviewing the development of formal notions of
testing equivalence and pre-order in classical (discrete and probabilistic) process
calculi (Section 2). Subsequently, we give a brief introduction to the peculiarities
of quantum systems and the recent attempts to capture them in process calculi
(Section 3). This sets the scene for specifying the requirements on a suitable test-
ing pre-order for quantum systems and the challenges in fulfilling them (Section
4). We draw a roadmap based on these observations towards a formal testing
theory for quantum processes (Section 5). We conclude the paper by reviewing
the findings and summarising our future research plans (Section 6).

2 Formal Testing Theory: Available Results

Testing on discrete and probabilistic systems is well studied. As we observe
in Section 3.2, process calculi for quantum based systems combine features of
classical discrete and probabilistic systems with quantum features. Accordingly,
the testing theories for discrete and probabilistic systems are the foundations for
a testing theory for quantum based systems. In the following we briefly review
these existing approaches and hint on literature for further information.

2.1 Testing Theories for Discrete Systems

There were two initial proposals for testing pre-orders on communicating pro-
cesses, put forward by Kennaway [13] and Darondeau [13], followed by the semi-
nal work of De Nicola and Hennessy [38], on one hand, and Brookes, Hoare, and
Roscoe [10], on the other. Rocco De Nicola [37] unified these earlier approaches
by providing an extensional definition of a testing pre-order. The De Nicola and
Hennessy notion of testing pre-order was later extended by Iain Phillips [41] to
allow for a negative observation of refusals (the system not engaging on an input)
while testing. Brinksma extended this theory to conformance testing [9] to allow
for partial specifications. Tretmans [49] introduced input-output conformance,
which, as the name suggests, distinguishes between inputs and outputs and bases
the test verdicts on observing incorrect outputs (or lack of any outputs at all,
called quiescence). Figure 1 provides an overview of these notions and their rel-
ative positioning with respect to trace equivalence and bisimulation. (Note that
most of these notions can be defined both as a pre-order and an equivalence.) In
this paper we mainly talk about bisimulation that is introduced in Section 3.2.

2.2 Testing Theories for Probabilistic Systems

In probabilistic systems, transitions are augmented with probabilities. Larsen
and Skou [33] introduced a first framework for probabilistic testing. Based on a
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Fig. 1. An overview of formal notions of testing for discrete processes and their po-
sitioning with respect to trace equivalence (inclusion) and bisimulation (simulation).
An arrow indicates that the source notion is strictly coarser, i.e., relates more systems,
than the target notion. The notions are briefly introduced in Section 2.1.

probabilistic transition system as the underlying model for processes, they de-
fine a logical framework and operational tests to test properties with arbitrarily
high probability. To this end, they follow the ideas of Abramsky [1] and allow
multiple copies of the process at any stage of the test. By running the same test
on several copies, the probability of success can be approximated. In [8, 51] the
characterisation of Larsen and Skou [33] is generalised to the more general set-
ting of labelled Markov processes with continuous state spaces. Again the tester
is allowed to make multiple copies of a process in order to experiment indepen-
dently on one copy at a time. This feature is considered crucial for capturing
branching-time equivalences (see [8]). A comparison of different testing equiva-
lences for non-deterministic and probabilistic processes can be found, e.g., in the
papers by Bernardo et al. [4, 5].

3 Quantum Systems and Process Theories

We provide a brief introduction to quantum systems and then review process
calculi for quantum-based systems and variants of bisimulation developed on
these calculi.



4 Mousavi, Peters, and Schmitt

3.1 Quantum Systems: Brief Introduction

Quantum systems have access to a register of quantum bits (qubits) on that
they can perform quantum transformations and measurements to retrieve some
information about their current states. The transformations that describe the
changes in closed systems are unitary transformations. See, e.g., the text book
by Nielsen and Chuang [39] for a formal definition of unitary transformations as
well as of the following introduced concepts. Note that unitary transformations
are reversible. To describe open systems, i.e., interactions with an unknown envi-
ronment, so-called super-operators are used. This is used, for instance, to model
noise on quantum channels, i.e., channels to transfer qubits. For every unitary
transformation there is a super-operator with the same behaviour, but there are
super-operators that cannot be precisely expressed as unitary transformations.

In case of a distributed quantum system, any process of the network has
access to its own quantum registers (there are, however, some possible couplings
among qubits in distributed processes, as described below).

The main difference between a classical bit and a qubit is an effect called
superposition. While the state of a classical bit is one of two possible Boolean
values, typically denoted by 0 and 1, the state of a qubit may be a combination of
the two states 0 and 1 with specific amplitudes. The states of qubits are usually
written in ket-notation, e.g., |0⟩ is the state that is fully in state 0 (in state 0
with amplitude 1, and in state 1 with amplitude 0). Likewise, a single qubit that
is fully in state 1 is denoted by |1⟩. Qubits in superposition are then denoted by
α|0⟩+ β|1⟩, where the non-zero amplitudes α and β are complex numbers such
that α2 + β2 = 1.

Another difference is that the classical bits are always specified on the same
basis, namely, 0 and 1. However, the state of the qubit register is usually de-
scribed by a vector space, i.e., a (finite-dimensional) Hilbert space, and a qubit
can be measured with respect to different bases. The basis {|0⟩, |1⟩} is called the
standard basis. The Hadamard basis {|+⟩, |−⟩} is also frequently used.

Although the current state of a qubit may be specified as a probability dis-
tribution of 0 and 1 after measurement, a qubit is not a probabilistic variable.
A qubit in superposition is indeed in a combination of states at the same time.
More importantly, the state of two qubits can be entangled : the state of an n-
qubit system is not specifiable in terms of n independent random variables. That
is why operations on an n-qubit system have the potential of modifying them
in tandem, a phenomenon that is sometimes referred to as quantum parallelism
[39]. It is, however, very challenging to exploit this type of parallelism to obtain
substantial savings in computational complexity. One of the best known suc-
cess stories in this regard is Shor’s algorithm [45, 46] for prime factorisation in
polynomial time.

Entanglement connects the states of two qubits in superposition. Measur-
ing a qubit may affect the state of other qubits if there is entanglement. There
are different ways to entangle qubits. For instance, there are the so-called Bell’s
states or EPR pairs for two fully entangled qubits. In the Bell state |Φ+⟩ =
1√
2
|0⟩ + 1√

2
|1⟩ the two qubits are in superposition but their states are not in-
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dependent. After measuring either one of the two qubits (on a standard basis)
resulting in either 0 or 1 for the measured qubit, the state of the other qubit is
also immediately reduced to |0⟩ or |1⟩, respectively. Because of that, a subsequent
measurement of the other qubit will result in exactly the same value as the first
measurement. The effect is instantaneously and independent of space. Hence, it
does not matter how much time may pass between the two measurements (or
whether any time passes at all) nor does it matter how far the two qubits are
separated in space. Note that it is possible to locally entangle qubits and then
to communicate these qubits without destroying the entanglement.

Entanglement can be used to ensure the absence of eavesdroppers in a dis-
tributed system with arbitrary large probability. This is used in quantum key
distribution protocols such as the BB84 protocol [3, 47]. Entanglement can also
cause practical problems: it is difficult to keep a quantum register stable, i.e.,
to ensure that all state changes are intended and caused by explicit operations
on the qubits. Therefore, qubits have to be isolated from their environment, be-
cause entanglement with particles in the environment can cause unintended and
unpredictable state changes.

A drawback of qubits and the main reason that limits the applicability of su-
perposition to algorithms is that it is impossible to retrieve the exact state of a
qubit. Qubits cannot be read or copied, but only measured and a measurement
destroys the state in superposition and drags it to one of the bases of the mea-
surement, with probabilities proportional to the square root of the amplitudes
α and β, specified above. Only if α is one (and thus β is zero) or vice versa, the
respective value is returned. Else, the result of measurement is described by a
probability distribution, but a single measurement will return either one of the
values.

To retrieve full information about the state of a qubit in superposition, one
needs to perform many measurements and reconstruct the probability distri-
bution from these measurements. For an n-qubit system the situation is much
worse and one needs to perform an exponential number of measurements (in the
number of qubits) to reconstruct the entangled state of the system, a problem
referred to as full tomography [39]. There are practical ways to avoid this expo-
nential blow-up by trading the number of measurements for less information or
less precise information [30].

A direct consequence of the impossibility to read a qubit is the no-cloning
principle. It states that it is impossible to make an exact copy of an unknown
qubit state, because that would require to read the qubit.

3.2 Quantum Process Theories

The first programming languages for quantum systems were developed in the
90’th. For further information, we refer to the surveys on the early research of
such languages, e.g., in [44, 25]. To analyse quantum programs, different quan-
tum process calculi and behavioural equivalences have been proposed. Among the
earliest calculi were [31, 26]. As bisimulation is the most important behavioural
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equivalence for classical systems, research currently focus‘es on variants of bisim-
ulation for the quantum case. Moreover, to allow for a compositional analysis
of programs, congruences are desired. The formulation of quantum bisimulation
that is a congruence with respect to parallel composition turned out to be one
of the main challenges in the study of quantum process calculi.

Consider a set of terms—that are either processes or configurations as ex-
plained below—and a labelled semantics ·−→ such that X

α−→ X ′ is a transition
from term X with label α to the term X ′. X ′ is denoted as continuation. A
symmetric relation R is a strong (labelled) bisimulation if whenever (X,Y ) ∈ R
then X

α−→ X ′ implies Y
α−→ Y ′ for some Y ′ such that (X ′, Y ′) ∈ R. For weak

(labelled) bisimulation, we distinguish a special label τ that is usually used to
denote an unobservable (or internal or silent) transition. Moreover, we use ∗ to
denote the reflexive and transitive closure. A symmetric relation R is a weak
bisimulation if whenever (X,Y ) ∈ R then X

α−→ X ′ implies that either α = τ

and (X ′, Y ) ∈ R or Y
τ−→

∗ α−→ τ−→
∗
Y ′ for some Y ′ such that (X ′, Y ′) ∈ R. A

symmetric relation R is a branching bisimulation if whenever (X,Y ) ∈ R then
X

α−→ X ′ implies that either α = τ and Y
τ−→

∗
Y ′ such that (X,Y ′) , (X ′, Y ′) ∈ R

or Y
τ−→

∗
Y1

α−→ Y2
τ−→

∗
Y ′ such that (X,Y1) , (X

′, Y2) , (X
′, Y ′) ∈ R. Alterna-

tively, the semantics can be given as an unlabelled, so-called reduction semantics
7−→, where a reduction is a transition X 7−→ X ′ from X to X ′. The definition of
strong reduction bisimulation is obtained from the above by omitting the labels.
A symmetric relation R is a weak reduction bisimulation if whenever (X,Y ) ∈ R
then X 7−→ X ′ implies Y 7−→∗ Y ′ for some Y ′ such that (X ′, Y ′) ∈ R. To com-
pensate for the missing labels, (strong or weak) reduction bisimulation is usually
enhanced by requiring that X and Y with (X,Y ) ∈ R have to have the same
barbs. The definition of processes, labels, and barbs may vary for different calculi.
Two terms are (weak/strong/branching labelled/reduction) bisimilar if there is
a (weak/strong/branching labelled/reduction) bisimulation that relates them.

Measurement reveals the probabilistic nature of qubit states. Accordingly,
the semantics of quantum based process calculi has to deal with probabilities.
A transition into a probability distribution is of the form X

α−→ ∆ or X 7−→ ∆,
where ∆ is probability distribution over terms. To capture transitions into a
single term, ∆ may be a point distribution consisting of a single case X with
probability 1. A symmetric R is a strong (labelled) bisimulation if whenever
(X,Y ) ∈ R then X

α−→ ∆ implies Y
α−→ Θ for some Θ such that (∆,Θ) ∈ R.

The definition of R may vary. In the simplest case it requires that all cases of
the two distributions are pairwise related by R and have the same probability. A
more relaxed version requires that the two distributions split into equivalences
classes modulo R with pairwise the same sum of probabilities. The probability
to perform an action is the sum of all probabilities of all branches that perform
this action, where the probability of a branch is the product of its probabilities.
The other notions of bisimulation discussed above are adapted in the same way.
A probabilistic transition, i.e., a transition augmented with a probability, can
be used to move to one case of a probability distribution. Again the notions of
bisimulation can be adapted to probabilistic transitions, where usually the same
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probability is required for matching transitions. Usually measurement is the only
action that leads to a probability distribution.

A relation R on processes is a congruence w.r.t. parallel composition |, if
(P,Q) ∈ R implies that (P | R,Q | R) ∈ R for all R. One problem for the quan-
tum case is the quantum register that captures the current state of qubits, but
has to do that in a non-compositional way as a global view on all qubits. Be-
cause of that, the semantics of quantum process calculi is usually not defined
as a relation between processes but between configurations, where a configu-
ration (P, σ) is the composition of a process P and (the current state of) a
quantum register σ. Consequently many behavioural relations in the quantum
case are defined between configurations (or probability distributions over con-
figurations) rather than processes, but the congruence property is defined on
processes. To obtain a congruence, such relations between configurations have
to be lifted to relations between processes. The main technique, denoted here as
forall-states-lifting, works as follows: Given a relation R on configurations, its
lifting is the relation on processes that relates the processes P and Q whenever
((P, σ) , (Q, σ)) ∈ R for all register σ.

QPAlg. The Quantum Process Algebra (QPAlg) in [31, 32] combines CCS-style
value passing via classical channels with the communication of qubits via quan-
tum channels, where no clear distinction between the different kinds of channels
is imposed. Moreover, it contains a non-deterministic and a probabilistic choice,
unitary transformations, measurement, and standard CCS-operators. The se-
mantics is given as a labelled transition system between configurations with
probabilities and non-determinism. There are labels for sending, receiving and
the silent action τ , where in qubit communication labels contain the name of the
qubit but not its state and where unitary transformations and measurement are
silent. The semantics of QPAlg forbids transitions until a probability distribu-
tion over configurations as result of measurement is resolved by a probabilistic
transition to a single case.

As behavioural equivalences on configurations, probabilistic branching bisim-
ulation and probabilistic rooted branching bisimulation are introduced in [32].
The former relation is weak and probabilistic, because bisimilar processes must
perform an action with the same label with the same probability. Since it is
defined on configurations, probabilistic branching bisimulation in [32] is not a
congruence. Also its forall-states-lifting is not a congruence.

To obtain a congruence, the latter, stricter relation is given. In particular,
probabilistic rooted branching bisimulation is strong—though derivatives have
to be related by the former, weak relation only—and requires that in send-
ing/receiving a qubit also the respective states of the transmitted qubits have to
be the same. Then the forall-states-lifting is claimed to be a congruence except
for parallel composition. Note that entanglement is identified already in [32] as
the main problem in defining a bisimulation that is a congruence with respect
to parallel composition.
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CQP. Communicating Quantum Processes (CQP) in [26] are a quantum ex-
tension of the π-calculus [34]. In addition to the standard constructs of the
π-calculus, qubits can be transmitted, altered using unitary transformations,
and measured. A static type system rules out impossible processes, that violate
the no-cloning principle. Channel names can be constructed from expressions
that are constructed from values, data operators, unitary transformations, and
measurement. The type system ensures that such expressions refer to a chan-
nel name. The semantics is given by reductions into a probability distribution
over configurations. A probabilistic transition reduces a distribution to one of its
cases. In [26] there is no conditional guard to base future behaviour of processes
on the outcome of measurement. As claimed such operators can be easily added
and indeed a later version of CQP in [23] contains it.

Bisimulation for CQP is discussed in [14, 23]. Therefore, the bisimulations of
[32] for QPAlg and [20, 52] for qCCS (see below) are reviewed and compared.
In contrast to [20, 52], the bisimulation should not focus on the final states of
the register and, in contrast to [32], it should better cope with parallel contexts.
The resulting weak probabilistic branching bisimulation is similar to [32], but
treats non-determinism differently. The application of unitary transformations
and measurement are labelled by τ . Two probabilistic transitions cannot be di-
rectly subsequent without a reduction in between. Configurations are separated
into probabilistic configurations, i.e., configurations that can perform a proba-
bilistic transition, and the remaining non-deterministic configurations. Proba-
bilistic branching bisimulation is an equivalence R between configurations such
that (s, t) ∈ R implies that a transition of s has to be weakly simulated by t, the
states of transmitted qubits have to coincide in the continuations after sending
and receiving of qubits, and if s is a probabilistic configuration then the equiv-
alence classes in s and t have to have the same probabilities. Because a context
may capture the free names of a process, the forall-states-lifting of probabilistic
branching bisimulation is no congruence. Instead of the forall-states-lifting, the
so-called full probabilistic branching bisimilarity relates two processes if for any
substitution on free qubit names and all states of the quantum register the con-
figurations (of the respective process and the considered state) are probabilistic
branching bisimilar. This relation is a congruence except for parallel composi-
tion.

To obtain a congruence (also w.r.t. parallel composition) [14, 23] then in-
troduces mixed configurations, that pair a process with a weighted distribution
of classical values and quantum states. The classical values instantiate the free
variables of the process. Then the labelled transition system and the type system
is adapted to mixed configurations. Note that measurement produces a mixed
instead of a probabilistic configuration and after sending a mixed configura-
tion reduces to a probability distribution on mixed configurations. This allows
to postpone probabilistic branching until there is some visible information that
distinguishes the branches. An output of classical values that may differ for the
cases of a mixed configuration causes a probability distribution. Then proba-
bilistic branching bisimulation is an equivalence R between mixed configurations
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such that (s, t) ∈ R implies that a transition of s has to be weakly simulated
by t, the states of transmitted qubits have to coincide in the continuations after
sending and these continuations have to have the same probabilities with related
mixed configurations, and if s is a probabilistic (mixed) configuration then the
equivalence classes in s and t have to have the same probabilities. The forall-
states-lifting of this relation is shown to be a congruence except for input and
qubit declaration. Finally, the forall-states-lifting of full probabilistic branching
bisimulation is a congruence.

qCCS. The calculus qCCS in [20–22] is a quantum extension of classical value-
passing CCS [29]. In contrast to QPAlg, the syntax of qCCS rules out systems
that are impossible, because they violate the no-cloning principle. Therefore,
they require that a receiver of a qubit should not know this qubit before its
reception, the sender loses any access to the transmitted qubit, and parallel
composed processes cannot share access to the same qubits. The syntax allows to
transmit classical values as well as qubits, qubits can be manipulated by unitary
transformations and measurement, and there is non-deterministic choice. The
semantics is again probabilistic and labelled. In contrast to QPAlg, distributions
over configurations are not reduced to one case, but a subsequent transition has
to be performed separately for every configuration in the distribution.

First versions of weak and strong bisimulation for qCCS are presented in [20].
Terminated configurations are strongly bisimilar only if they have the same reg-
ister. Note that this requirement on terminated configurations does not fit well
with recursive processes. The forall-states-lifting of strong/weak probabilistic
bisimulation is shown to be a congruence but not with respect to the restriction
operator and only a limited form of parallel composition. For parallel compo-
sition either the parallel context does not contain unitary transformations nor
measurement or the related processes do not contain quantum input. Again, en-
tanglement prevents the defined relations from being a congruence with respect
to general parallel composition.

Another challenge for a bismulation that is a congruence with respect to par-
allel composition is pointed out in [52]; namely the combination of classical and
quantum information. Accordingly, [52] presents a version of qCCS with pure
quantum processes without any classical information. In contrast to [20], super-
operators can be used. Usually measurement bridges between quantum and clas-
sical information, because the information obtained from measuring a qubit is
classical. Here measurement is not a separate operator but is implemented via
super-operators. Hence, measurement influences the state of the quantum regis-
ter and may set a qubit to a classical value, but there is no operator to retrieve or
utilize the information gained by measurement about a qubit state. As a direct
consequence, the semantics of pure quantum qCCS is given by a non-probabilistic
labelled transition system. Moreover, qubit manipulation by super-operators is
not silent but labelled by the respective super-operator. A strong bisimulation
is given, that requires the simulation of every step but (in contrast to [20]) does
not require the equality of states of terminated configurations. It is shown that
the forall-states-lifting of strong bisimilarity is a congruence w.r.t. all opera-
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tors in pure quantum qCCS (including general parallel composition). However,
the exclusion of classical data limits the applicability of pure quantum qCCS.
Moreover, since labels contain applied super-operators, the discussed bisimilarity
distinguishes processes that obtain the same behaviour via different sequences of
super-operators. To gain more flexibility, so-called strong reduction bismilarity is
introduced that allows to collapse a sequence of applications of super-operators
to a single application of a super-operator. Again the forall-states-lifting is a con-
gruence. Finally, [52] also studies a variant of approximate bisimulation using a
distance between the applied super-operators.

[21] studies again qCCS with quantum and classical information, i.e., com-
bines the calculi of [20] and [52]. The semantics is again probabilistic, measure-
ment is a separate operation that provides classical information about states,
and the application of super-operators and measurement is silent. A weak bisim-
ulation between configurations is defined. After the reception of a qubit, bisim-
ulation additionally requires that the two continuations ∆,Θ are related after
the application of an arbitrary super-operator E , i.e., (E∆, EΘ) ∈ R. The re-
quirement of [20] on terminated configurations is replaced by requiring that the
quantum register of all bisimular configurations have to have the same trace4,
because the latter requirement is also meaningful for non-terminating configu-
rations and better to deal with restriction. Moreover, bisimilar configurations
have to have the same set of free qubits. The forall-states-lifting of this weak
bisimulation is a congruence with respect to all operators of qCCS including
general parallel composition but excepting (similar to the classical case) non-
deterministic choice. To also capture non-deterministic choice, an equivalence
based on the bisimulation is defined, that requires that a silent transition has
to be simulated by at least one silent transition. The forall-states-lifting of this
equivalence is a congruence for qCCS.

The papers [16, 22, 15] relax the above congruence, i.e., they provide strictly
coarser versions that also relate processes that should intuitively not be distin-
guished. The open bisimilarity in [16] allows to separate ground bisimulation and
the closedness under super-operator applications. Open bisimularity is closed un-
der all qCCS operators except for non-deterministic choice. [16] also presents an
extension of Henessy-Milner logic with a probabilistic choice modality by a super-
operator modality and atomic formulae involving projectors for dealing with
quantum states. Note that all of these relaxations still require that the states in
the quantum registers of bisimilar processes are equivalent. In [22] open bisimula-
tion is lifted to a relation on probability distributions, called distribution-based
bisimulation. Instead of single configurations it considers probability distribu-
tion over configurations. Moreover, a bisimulation distance is defined in [22].
Also [15] gives a distribution-based quantum bisimulation. [22] and [15] both
use the technique from [17] to lift a relation on configurations to a relation on
probability distributions over configurations. In contrast to [22], [15] provides a
slightly coarser distribution-based quantum bisimulation.

4 Here trace refers to a property of a quantum register that is used to compare the
states of different quantum registers. See [39] for a formal definition.
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Since quantum states constitute a continuum, the requirement on equivalent
states that is present in all of the above bisimulation variants is a problem for
algorithms that check bisimilarity. To overcome this problem, [19] presents a sym-
bolic transition system and a bisimulation on processes without the need to check
quantum states. Note that for every state of a quantum register there is a super-
operator that generates this state. Moreover, several sequential applications of
super-operators can be collapsed into a single super-operator. Configurations are
made symbolic in [19] by replacing the state of the quantum register by a super-
operator that generates it. In the symbolic semantics on symbolic configurations,
transitions compute a new super-operator instead of a new state for the continu-
ation. Symbolic (strong open) bisimulation relates symbolic configurations (P, E)
and (Q,F) with the same free qubit variables and similar states E ,F if for all
super-operators G transitions of (P,GE) are simulated by (Q,GF) such that the
resulting distributions ∆,Θ are related if GE is applied to all states of ∆ and
GF is applied to all states of Θ. Symbolic bisimulation is shown to coincide
with open bisimulation of [16] and can be split again into a ground bisimulation
and super-operator applications. Since super-operators form a continuum, the
closure over applications of super-operators is hard to check algorithmically, but
an algorithm to check symbolic ground bisimulation is presented in [19]. Also a
Henessy-Milner type model logic is given, that contains super-operators.

lqCCS. Linear quantum CCS (lqCCS) is introduced in [11] as another extension
of CCS by quantum operations. It is inspired by qCCS, but (1) communication
is asynchronous, i.e., senders have no continuation, (2) the process for inaction
allows to keep the ownership of qubits, such that they cannot be manipulated
by a context, and (3) is linearly typed, i.e., the type system ensures that every
qubit is send exactly once or discarded by being claimed by an inactive process.
The semantics is given via reductions into distributions over configurations. Two
versions of strong, barbed bisimulation between probability distributions on con-
figurations are presented, where barbs are the channels of unguarded senders
equipped with the probability of the sender in the considered probability distri-
bution. Hence, barbs are on classical (and probabilistic) information only.

Saturated bisimulation—that is introduced as an intermediate step—relates
two distributions with the same barbs if for every observer a reduction of one
observed system is answered by a reduction of the other observed system such
that the resulting probability distributions are again related. An observer is here
an arbitrary lqCCS process placed in parallel to the considered system, i.e., to
the process of all cases of the distribution.

Constrained bisimulation is defined in the same way, but the observers are
restricted. Restriction is forbidden in observers and choice is limited to input
guarded choice on distinct channel names. Moreover, the semantics is revised
to limit the interactions of observers. Observers can no longer reduce by com-
municating with themselves, which does, however, not limit their observation
power, but ensures that choices of observers are decided by the sending observed
process and not the observer. All choices of the observer have to be based on
classical information. Also forbidding restriction does not decrease the discrim-
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inating power of observers. Observers are still non-deterministic, but different
non-deterministic choices can be distinguished by different indices on the reduc-
tions they produce. The forall-states-lifting of constrained bisimilarity is not a
congruence w.r.t. parallel composition.

The authors [11] then compare the bisimulations on QPAlg in [32], CQP in
[14], qCCS in [16] and [22], and their bisimulations on lqCCS. They observe that
they disagree on several simple cases that are likely to occur in the analysis of
quantum protocols. More precisely, they give counterexamples that show that
the bisimulations on QPAlg in [32], CQP in [14], qCCS in [16] and [22], and
constrained bisimulation on lqCCS are pairwise different notions of bisimulation.
They also point out that there are no formal proofs that relate features of the
before mentioned bisimulations to quantum theory and the indistinguishability
it implies. We briefly review their comparison.

The first considered example consists of two systems that first receive a qubit
via the same channel, then change this qubit using different unitary transforma-
tions, and then terminate. The bisimulations of QPAlg in [32] and CQP in [14]
do not distinguish these systems, because they consider the state changes of the
qubit as not visible. By the qCCS bisimulations in [16] and [22] the two processes
are distinguished, because the resulting quantum states differ. For lqCCS this
situation is avoided all together, by requiring that each qubit has to be sent or
discarded exactly once. With that lqCCS ensures that all state changes to qubits
are visible. If termination is replaced by the inactive process that claims the own-
ership of the qubit, the systems are related by all six considered bisimulations.
If instead termination is replaced by sending the qubit over a new channel, then
all six considered bisimulations do not relate the systems.

In quantum theory the probability distributions of quantum states should be
indistinguishable if they are represented by the same density operator (see [39]
for a formal definition). The bisimulation of QPAlg in [32], open bisimulation of
qCCS in [16], and saturated bisimulation of lqCCS violate this principle. This is
shown by an example P,Q, where a qubit is set to |+⟩ in P and |0⟩ in Q then
measured w.r.t. the standard base in P and the Hadamard base in Q and then
transmitted via the same channel in P and Q. After measurement the state of
the respective qubit is with equal probability either in |0⟩ or |1⟩ for P and |+⟩
or |−⟩ for Q. These two probability distributions should be indistinguishable.
That these processes are wrongly distinguished is, according to [11], caused by
the combination of non-determinism and quantum features. Therefore, the non-
determinism in observers is restricted for constrained bisimulation such that the
mentioned two procesess are related. To show that the bisimulations of CQP
in [14] and qCCS in [22], that also relate these two processes, overly constrain
non-determinism, the sending of the qubit is replaced by a non-deterministic
choice with two cases that both send the qubit but on different channels. The
bisimulations of CQP in [14] and qCCS in [22] still relate the systems, but
constrained bisimulation now distinguishes them. This is because, a context may
use measurement and a boolean guard based on the result of measurement to
chose between the two channels.
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Ceragioli1, Gadducci, Lomurno, and Tedeschi [12] define a notion of tests
for quantum processes in lqCCS [11], discussed above. Therefore, they again
consider the parallel compositions of lqCCS-processes and observers. The latter
contain a deadlock state to mark success, i.e., a test is successful if the system of
process and observer leads to the success state. Based on this notion of successful
test, a testing equivalence is defined that relates processes if they pass the same
tests with the same probabilities. Their focus is on ensuring that states that
should not be considered as observably equivalent are not distinguished. The
interaction between nondeterministic and probabilistic choice is known, thanks
to the earlier work of the authors [11], to cause issues for testing pre-orders.
The latter is inherent (and possibly exacerbated) in the context of quantum
processes, as demonstrated by the authors. Hence, the authors suggest a way to
mitigate this problem by restricting the language of tests to deterministic ones.
They prove that this restriction resolves the problem and does not distinguish
between observably equivalent states.

4 Quantum Testing Pre-Orders: Requirements and
Challenges

Several proposals have been put forward for defining a theory of quantum pro-
cesses. In some of these proposals, a notion of behavioral equivalence or pre-order
has also been provided. However, none of these seem to provide a satisfactory
foundation for a testing theory of quantum processes. Below, in Section 4.1 we
set forth the requirements on such a satisfactory foundation and argue why the
existing proposals come short of satisfying them.

4.1 Requirements

There are several requirements for a satisfactory theory of testing for quantum
process. Some basic requirements are common to discrete and probabilistic pro-
cesses; these include the notion of testing being a pre-order, compositional, and
having intensional and extensional representations. Although these requirements
are generic, realising them in the context of quantum processes may be partic-
ularly challenging as we describe below. A requirement that is specific to the
context of quantum processes is that the observational power of a notion of
testing should match quantum observability.

Pre-order. A desired requirement for a formal notion of testing is that it should
be reflexive, i.e., any system should pass all tests when the system itself is given as
its specification. Likewise, a suitable notion of testing is expected to be transitive
in order to allow for stepwise refinement. While these two properties turn out
to be straightforward for many formal theories (e.g., strong bisimulation and
trace equivalence), they turn out to be challenging [2] or even impossible for
some others [49]. Particularly, for formal testing theories that allow for partial
specifications, this became a major road block leading to a major redesign of
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well-known theories, such as the notion of input-output conformance testing
(ioco) [50]. As there are no current theories for quantum testing that allow for
partial specification, it is unclear how challenging this requirement will turn out,
but we expect the same challenges as for discrete testing theories to hold here.

Compositionality. Real world applications are usually large and often developed
in a modular way. Therefore, behavioural equivalences should allow to analyse
parts of systems and then conclude on the properties of the systems by compos-
ing the properties of its parts, i.e., should be a congruence in particular w.r.t.
parallel composition. In the quantum based setting giving a congruence is of-
ten challenging as observed independently by several approaches discussed in
Section 3.2.

Intensional and extensional representation. There are two major approaches to
defining a formal testing theory:

– an intensional (white-box) definition: in this approach one assumes access
to the model of both specification and implementation and an implemen-
tation conforms to a specification if all the observable behaviours that can
be generated from the implementation model are included in those of the
specification model.

– an extensional (black-box) definition: in this approach, one only assumes
access to the model specification. Conformance is checked by generating
tests from the specification model and executing them against a black-box
implementation. An implementation conforms to a specification if the result
of executing all such executions is a pass.

Ideally, a formal theory of testing should come with both such definitions and
a proof that they coincide. The advantage of having both definitions is that they
reflect different intuitions and thought processes and their coincidence provides
more assurance of the suitability of the definitions. Since many approaches in
the literature require the comparison of quantum states (e.g. in [32, 14, 23, 20]),
they are rather intensional. A concrete intensional approach can be found in
[11, 12]. They specify observers (as specifications) to be placed in parallel with
the processes (implementation) and define a testing equivalence. The syntax of
observers thereby provides the set of tests that can be run. We did not find any
real extensional approaches to testing. Henessy-Milner logics are given in [16, 19]
for qCCS, but they contain super-operators that form a continuum. Because of
that the practicability of these logics in an extensional approach that may e.g.
consist of buttons to test a system is limited.

Respecting quantum principles of observability. The actions of quantum sys-
tems usually combine classical actions with quantum specific actions such as the
transmission of qubits, measurement, and other quantum transformations.

Observing the transmission of qubits is more difficult in quantum systems. As
in classical systems, we may easily observe the channel used for the transmission
and whether it was a sending or receiving action. However, we cannot observe the
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state of the transmitted qubit. The reason is, that it is in general impossible to
read the state of a qubit. We can only measure it and, as explained in Section 3.1,
measurement provides only incomplete knowledge about the state of a qubit.

Measurement (or any other transformation of qubits) is a local operation that
is not directly visible by the rest of the system, but changes the state of qubits.
Hence, it is more natural to model measurement and transformations of qubits as
internal and not observable actions. Accordingly, the applicability of approaches
such as [52] for testing is limited. Note, however, that measurement does not
only affect the state of the measured qubit but also of entangled qubits. Because
of the latter, the effect of measurement is not completely local. Nonetheless, it
is not directly observable. This has to be taken into account, when building a
testing framework for quantum systems.

Moreover, the combination of non-determinism and quantum features can be
problematic for the observable behaviour as pointed out in [11]. They explicitly
restrict the non-determinism in observers to ensure that distributions on quan-
tum states that are indistinguishable by quantum theory are not distinguished.
Note also that [11] is the only approach discussed in Section 3.2 with an explicit
notion of barbs and that it considers only classical available information in them.

4.2 Challenges

Stateless formulation. As explained in Section 3, quantum systems are usually
modelled with an explicit and global quantum register. The current state of
the quantum register influences the future behaviour of the quantum system.
However, states are not directly observable and hence difficult to test. Therefore,
many testing frameworks consider stateless formulations of bisimulation, but
many quantum based bisimulations are not stateless (see Section 3.2).

In classical systems we may ask for the current state of a classical register to
be communicated. In quantum based systems the situation is more difficult. On
the one hand side, transmitting a qubit destroys its state on its original location.
On the other hand side, receiving a qubit does reveal only partial information
about its state, since the state can only be measured.

Analysing the congruence-relations in Section 3.2 we observe that they heav-
ily rely comparing quantum states or super-operators. The bisimulation in [23]
for CQP checks the states of transmitted qubits. In [52] for pure qCCS super-
operators are used as labels and in [21] for qCCS the states of terminated config-
urations are compared. Symbolic approaches such as [19] may help to overcome
this problem, but the closure over super-operators used in [19] is again a problem
for algorithms checking bisimulation.

Another problem is pointed out in [11, 12]. The strong focus on concrete
states results in equivalences that wrongly distinguish processes by different but
observably equivalent states.

No-cloning principle. It is impossible to exactly copy an unknown quantum
state (cf. [39]). It is possible to communicate a quantum state, i.e., to transfer it,
but by doing so the original quantum state gets destroyed. Intuitively, copying a
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quantum state would require a method to read a quantum state. However, quan-
tum states cannot be read, but only measured (see Section 3.1). Since copying is
impossible and since measurement destroys the current quantum state, all that
we can learn by measuring is one of the possible values of the state.

As described by Larsen and Skou [33], the main idea of probabilistic testing
is to approximate the probability of a test result by running the same test several
times on different copies of the process. Moreover, for bisimulation it is essential
that we can test different copies of an intermediate state of the system to anal-
yse the branching structure of the system. Hence, the method described in [33]
requires to copy the process at any stage of the test. Because of the no-cloning
principle, this is impossible for quantum based systems or, more precisely, for
the state of its quantum register.

Note that the results of measurement can be used in many of the approaches
in Section 3.2 to decide on the future behaviour of the process. Hence, a sep-
aration of control in the processes and the state in the register is not trivial.
We could not find any approach that supports this kind of separation and thus
whether such a separation may help is an open problem. Moreover, several of the
introduced notions of bisimulation require to directly compare quantum states.
Hence, not analysing the state of the quantum register in testing is a challenge
in its own (see Stateless formulation). Also a symbolic formulation of bisimula-
tion such as in [19] does not completely overcome this problem at least not for
extensional (black-box) testing. An approach similar to [33] would still require
to run several tests on a concrete running system.

Compositionality and Pre-congruence. Obtaining congruences, i.e., conformance
relations that are preserved under various composition operators, is very difficult
in the quantum setting. The main problem is entanglement as pointed out e.g.
in [32, 20]. Entanglement relates the states of qubits such that measuring one
qubit may change the state of another qubit without any explicit communica-
tion. With that a context can exploit information about a system and break the
compositionality of parallel composition: two processes that were testing equiv-
alent may cease to be equivalent in a parallel context if one of them has an
entangled qubit with the context. A concrete example with this property is used
in [32] to explain why their notion of bisimulation is not preserved by paral-
lel composition. Another problem is caused by the combination of classical and
quantum information (see e.g. [52]). Restriction operator tends to pose further
technical challenges for compositionality as observed in [19].

Non-Determinism. The combination of non-deterministic and probabilistic tran-
sitions was already identified as problematic for testing in classical systems. Since
most of the approaches described in Section 3.2 combine both features, this prob-
lem reoccurs also in the quantum based setting. Also [52] point out that removing
some features including probabilities simplifies the task of finding a bisimulation
that is a congruence. However, the solutions found for this problem in the clas-
sical setting seem to work also for quantum based systems. We observe that e.g.
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the bisimulations in [23, 21], each of them a congruence, combine probabilities
and non-determinism.

More problematic are the observations made in [11, 12] on non-determinism
in observers. Non-determinism may allow an observer to distinguish processes by
states that should not be distinguishable. Therefore their restrict the amount of
non-determinism in observers. This problem has to be taken into account than
building a testing theory for quantum based systems.

Partial specifications. It is impossible to come up with a full specification of a
complex system; one powerful abstraction method is to declare some steps as un-
observable and define the testing theory to be oblivious (“jump over”) such steps
[28]. Another way is to separate different concerns and make different specifica-
tions; then the testing theory would allow for only comparing those behaviours
that are specified for each partial model separately [9, 49, 50]. Since there are
currently not theories for quantum testing that allow for partial specification,
we at least expect the same challenges as for the classical cases. Whether on top
of that the quantum based setting allows for additional meaningful ways to split
specifications remains open.

5 Quantum Testing Pre-Orders: Future Roadmap

Despite the wealth of results available, there remains a significant amount of
work to come up with a satisfactory notion of testing for quantum processes.
Firstly, defining the set of quantum tests and quantum processes (as system
under test), for which quantum bisimulation can be tested provides a much
needed insight on the observability of quantum bisimulation. For larger subsets
of quantum processes, defining a weaker intensional notion of testing that can
be extensionally tested is the next step. Using the wealth of available results
we need to prove results on logical characterisation as well as pre-order and
pre-congruence properties for the developed notions. Finally, coming up with
(efficient) test-case generation techniques based on the established extensional
definition and applying the theory to substantial case studies will bring the
theory to the practice of testing quantum systems.

6 Conclusions

In this paper, we considered the available results that can lead to a formal theory
of testing for quantum processes. To this end, we reviewed the line of work that
was commence by the seminal work of De Nicola and Hennessy [38] in estab-
lishing a formal framework for testing communicating systems. We particularly
considered the extensions of this line of work that addressed probabilistic pro-
cesses, due to their similarity to quantum processes. We also set the desirable
requirements for a suitable notion of testing and the significant challenges before
meeting these requirements. We studied the available literature on behavioural
equivalences for quantum processes, which can further inform the design of the
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testing theory. Finally, we sketched a roadmap towards a formal foundation for
testing quantum processes.
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