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ABSTRACT
Property-based testing is a structured method for automated testing
using program specifications. We report on the design and imple-
mentation of what is to our knowledge the first property-based
framework for quantum programs. We review various aspects of
our design concerning property-specification, test-case generation,
and test result analysis. We also provide an overview of the imple-
mentation and its way of working. Finally, we present the result of
applying our framework to some examples.

CCS CONCEPTS
• Software and its engineering→ Empirical software valida-
tion.
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1 INTRODUCTION
Quantum computing and communication systems are becoming
practical and are likely to revolutionise modern technology. Much
progress has been achieved recently by companies in developing
quantum computers. Quantum programming languages exist and
programs can be run on today’s quantum hardware or on classical
computers using simulators.

It is well-known that quantum programs are non-trivial to de-
sign and programmers may struggle to develop a sound intuition
of their behaviour [27]. Thus, we need a spectrum of rigorous and
structured techniques for the quality assurance of quantum pro-
grams. Unfortunately, this is a very much understudied topic, with
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the most prominent existing results focusing on formal verification
techniques [3, 17, 18, 28]. Model-based testing is a complementary
technique to formal verification for quality assurance that has been
widely applied to industrial-scale systems. While it is not exhaus-
tive, the advantage of model-based testing is that it scales up to
very large systems and can still provide rigorous results regarding
conformance. It can provide quantitative guarantees in terms of
coverage and diversity of the generated test cases.

Property-based testing is a model-based testing technique that
was developed as a unit testing tool, called QuickCheck, for Haskell.
It has been later extended to different programming languages and
is used for testing large-scale reactive systems [4, 13]. The basic
idea of property-based testing is not to write individual test cases,
but to generate them from more general properties of the system
under test. These properties are often described in a logical style of
pre- and post-conditions. In this approach, the state of the program
is abstracted away or represented at a high-level of abstraction as a
model-state [12].

The state-of-the-art in testing quantum algorithms and protocols
is still rudimentary and we are not aware of any model-based-
or property-based testing framework for quantum programs. For
instance, a basic unit testing framework is provided in Q# [21,
23] and Miranskyy and Zhang [19] report on a validation and
verification framework for Quantum Computing. Other steps that
could lead to more sophisticated techniques include a number of
assertion languages for quantum programs, reviewed below.

The aim of this paper is to take the first step towards structured
testing techniques for quantum programs. To this end, we propose a
property-based testing framework for Q# and report on a prototype
implementation of this framework. To examine its applicability, we
experiment with our framework on a suite of small, yet representa-
tive set of quantum programs. Our techniques are formulated in the
context of the procedural programming language Q#. However, we
expect that it would be transferable to other quantum programming
languages and frameworks in a similar fashion as the extensions of
QuickCheck.

Related work. There is a reasonable amount of work on for-
mal verification of quantum programs and protocols, e.g., using
equivalence-checking and model-checking [2, 3, 10, 14, 17, 28] and
theorem proving [5, 18]. Quantum Hoare Logic [27] and its ap-
plied variant [29] are extensions of Floyd-Hoare logic for quantum
programs. In particular, Zhou, Yu, and Ying [29] promise a testing
and debugging framework based on their Applied Quantum Hoare
Logic. Our approach does borrow a number of ideas from Quantum
Hoare Logic. Also, the assertion language proposed by Huang and
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Martonosi [11] has been influential in the design of our language for
property-based testing. There is a fundamental difference between
the approach proposed by Huang and Martonosi [11] and ours;
namely, we focus on the input-output interfaces and hence, rely
on measurements after method calls, while their approach relies
on approximate cloning [7] to inspect the internal state without
disturbing it.

Contributions. The contributions of this paper can be summarised
as follows: (i) a test property specification language for Q# pro-
grams; (ii) a property-based testing method to generate concrete
test cases, execute them, and perform statistical analysis on the
test data; and (iii) a case study on the effectiveness of the proposed
approach by applying mutation on two well-known programs from
the literature.

Structure. The remainder of this paper is organised as follows.
In Section 2, we describe our language for specifying properties of
Q# programs and provide a number of examples of tests specified
in our language. In Section 3, we describe the architecture of our
tool for test case generation, test execution and the (statistical)
analysis of the outcomes. In Section 4, we report on the application
of our tool to two examples from the literature. Finally, in Section
5, we conclude the paper and present the directions of our ongoing
research.

2 LANGUAGE OF TEST FOR QUANTUM
PROGRAMS

Our test specification language is inspired by the syntax of Q#,
by quantum predicates and predicate transformers by D’Hondt
and Panangaden [9] and Quantum Hoare Logic by Minsheng Ying
[27]. Also, noteworthy in this domain is the recent introduction of
Applied Quantum Hoare Logic [29], where Quantum Hoare Logic
is restricted in order to allow for more efficient verification and also
in the future, testing and debugging.

In this section, we first fix a syntax of our basic language for Q#
test properties and briefly and informally discuss its semantics. In
our language, a test comprises the following four parts:

(1) Test property name and parameters: A test property is
given a name and the following parameters used for test
case generation, execution, and analysis: the number of con-
crete test-cases to be generated from the property (i.e., in-
stantiation of variables used in the property); the statistical
confidence level for the property to hold (in test analysis);
and the number of measurements and experiments for each
concrete test case to obtain the data for statistical tests. Note
that the first and the last parameters are semantically differ-
ent: the first parameter refers to the number of generated
concrete test cases from each abstract property and the last
parameter refers to the number of experiments performed
for each concrete test case.

(2) Allocation and setup: In this phase a number of qubits or
qubit arrays are allocated. Subsequently, a pre-condition is
specified on the input qubits. Some initial operations may
bring the state of the allocated qubits to a particular state
or a region in the Bloch sphere, if at all needed. Note that

QSharpCheck is in charge of concretising the inputs if their
constraints do not define a unique value in this phase.

(3) Function call: The system under test will then be called
and the allocated and setup qubits are passed to it as its
arguments.

(4) Assert and de-allocate: Subsequently, assertions are used
to relate the pre- and post-states of the qubits. QSharpCheck
will take care of forming a statistical hypothesis that relates
these two states and verify the hypothesis using repetitive
measurements of pre- and post-states resulting from the
respective function calls.

The syntax of test properties is illustrated below:

// Preamble
Property name;
(numberOfTestCases , confidenceLevel ,

numberOfMeasurements , trials);

// Precondition and initialisation
{𝑞0 . . . 𝑞𝑛 : 𝑄𝑢𝑏𝑖𝑡 (\ interval)(𝜙 interval)};
{𝑏0 . . . 𝑏𝑛 : 𝐵𝑜𝑜𝑙 };

// Invoking system under test
operation_name (arguments) : return type;

// Postcondition
//Any combination of the following assertions
[AssertProbability(𝑞0, 0,proposed propability)];
[AssertEntangled(𝑞0, 𝑞1)];
[AssertEqual(𝑞0, 𝑞1)];
[AssertTeleported(𝑞0)];
[AssertTransformed(𝑞0 ,(\ interval)(𝜙 interval))];

We illustrate this syntax by means of the following example.

Example 1. State Transformation. Consider a hypothetical pro-
gram “TransformState” that applies a rotation to the \ of the input
qubit state around the y-axis by 72 degrees. A property of this pro-
gram is that it takes an input qubit in the subspace 36◦ ≤ \ ≤ 72◦
and 0◦ ≤ 𝜙 ≤ 360◦ to a qubit in the subspace 108◦ ≤ \ ≤ 144◦ and
0◦ ≤ 𝜙 ≤ 360◦. The corresponding test property in our syntax is
defined as follows:

1 Transform_Property;
2 (10, 99, 500, 300);
3
4 {q : Qubit (36 ,72) (0 ,360)};
5 TransformState(q);
6 [AssertTransformed(q,(108 ,144) (0 ,360))];

As specified before, the first two lines are the property name
and its parameters. The parameters are all optional. If they are
left unspecified, then they are given default values (specified in
the next section). The first parameter, in this case 10, refers to
the number of test cases that should be generated. The second
parameter, 99, is the confidence level for accepting or rejecting the
statistical hypothesis. The third and fourth arguments, in this case
500 and 300, respectively, specify the number of measurements (per
experiment) and the number of experiments per concrete test case.

Next we allocate and setup the input data. In this test, a single
qubit, q, is allocated and is setup in a subspace of the Bloch sphere
with the specified parameters: the two intervals correspond to the
\ and 𝜙 value ranges (in degrees), respectively. Next, the system
under test, i.e., “TransformState”, is called with the prepared qubit
as its argument.
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Finally, using a built-in assertion method of the QSharpCheck
library, it is checked whether the new qubit state lies in the expected
subspace. This assertion method takes two arguments. The first
argument is the qubit state following the transformation and the
second is the destination subspace identified in the same manner
as line 4. Ultimately, if all of the test cases are passed then the
appropriate message will be displayed as follows:

Testing "Transform_Property"
Number of test cases: 10
Confidence level: 99%
Number of measurements: 500
Number of experiments: 300
AssertTransformed was true in all test cases. Passed

10 tests.

If any of the test cases do not satisfy the property, the test will fail.
For example, changing the main code under test to rotate \ by 36
degrees instead of 72 degrees will not map the resulting state into
the expected subspace anymore. Therefore, if we test the program
with the previous test script, the result will be:

Testing "Transform_Property"
Number of test cases: 10
Confidence level: 99%
Number of measurements: 500
Number of experiments: 300
After 1 test , AssertTransformed was falsified when:
\ = 38 and 𝜙 = 5

To describe the semantics of tests, we provide a brief and informal
overview below.

The states of quantum programs are density matrices, intuitively
representing the probability distribution of finding the qubits in
one of the base vectors (e.g., |0⟩ and |1⟩) after measuring the state.
The predicates, used to specify the pre- and post-conditions of tests,
are observables that take their values in the interval [0, 1]. These
represent the expectations on finding variables in certain states. The
degree of satisfaction of predicates is specified by the expectation
of value, i.e., the trace of the correct observation applied to the
state. For a detailed mathematical treatment of these concepts (and
also their differences with similar concepts in pure probabilistic
programs), we refer to their accessible treatment by D’Hondt and
Panangaden [9]. Instead of dealing with the formal semantics of
programs and proving satisfaction or violation of traces, we rely on
the Q# compiler to correctly implement the semantics and use the
traces generated by the compiled program to evaluate the assertions
using statistical inference as described below.

3 QSHARPCHECK TOOL
In this section, we present the architecture of our QSharpCheck
tool and explain the process of test case generation, execution, and
analysis.

3.1 Tool Architecture
To check the properties of quantum programs, we have imple-
mented a statistical toolkit in our framework.

We start with an overview of the basic statistical method used
within our tool. The following basic facts need to be taken into
account when designing the tool [15]:

Test Case Generator

Concrete
Test Cases

Test Execution Engine Q# Program
under Test

Test Data
Statistical

Analysis Engine

Test Verdict

Test Properties

Figure 1: QSharpCheck Tool Architecture

• The exact state of the qubit before its measurement is un-
known.

• We have access to a fixed number of measurements.
• There are only two possible discrete outcomes after each
measurement: |0⟩ or |1⟩.

• Eachmeasurement is independent of the others, whichmeans
the probability of onemeasurement outcome does not impact
the probability of any other measurement result.

We use the statistical method of hypothesis testing [8], while
assuming a binomial distribution of measurement probabilities. We
have implemented this statistical check within our QSharpCheck
framework. A type of hypothesis suggesting that no statistically sig-
nificant difference between the observed counts and the predicted
amounts is made in a set of observations is called a null hypothesis
denoted by𝐻0[26]. The null hypothesis is presumed to be true until
it is refuted by a statistical inference of its complement, the alter-
native hypothesis denoted by 𝐻1. The hypothesis test is a method
whereby one of the two complementary hypotheses should be re-
jected according to the sample values [8]. QSharpCheck considers
the assertion provided in the last part of the test, to be the null
hypothesis on the basis of confidence interval provided as the initial
parameter and the measurement performed for each generated test
case [25]. To find the aforementioned interval, QSharpCheck ini-
tially calculates the lower critical value and the higher critical value
depending on the specified significance level during the two-tailed
test implementation [6]. The testers can specify the confidence level
as a parameter; however, if it is not provided, the framework will
use 0.99 as the default value.
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The overall architecture of our tool is depicted in Figure 1. The
QSharpCheck tool parses the test scripts and using the initial param-
eters concretises a number of test cases. If the number of test cases
is unspecified, it is set by default to 10. We experienced that tests
for quantum programs are substantially more demanding than tra-
ditional computer programs and hence we have chosen the default
number of test cases to be 10.

Subsequently, we organise a number of experiments and mea-
surements: each experiment involves a fixed number of measure-
ments and we treat each experiment as a separate data set to per-
form a statistical test across them. We set the default number of
measurements to be 350 per experiment and 300 as the number of
experiments per test case. The larger the values of the two argu-
ments, the more reliable the test results will be, but since the cost of
testing will increase, it is required to consider a reasonable trade-off
between accuracy and cost. If the specified value is not sufficient
for reaching a statistically significant verdict, an error message is
produced beforehand and the testing campaign is terminated.

Based on the given variables, their data types and their intervals
in the precondition part of the test script, the test case generator
produces the required number of random input data. For instance,
in Example 1, \ and 𝜙 intervals are (36,72) and (0,360), respectively.
It is also stated that the number of test cases is 10. The test case
generator generates 10 random \ values from 36 to 72 and the
corresponding number of 𝜙 values from 0 to 360. The concrete
test cases are then fed into the test execution engine to check the
specified assertions after performing measurements.

Finally, we perform hypothesis testing on the obtained test data,
as explained in the next section. We chose the default confidence
level to 99 percent as it is a common value in experiments [25].

3.2 Different Types of Assertions
Our search for the type of assertions in our test language started
with studying a number of typical quantum algorithms and their
correctness properties. Subsequently, we abstracted a minimal set
of assertions types that could cover these correct properties. These
formed the basis of our postconditions and assertion types, specified
further below. We expect that this basis will be extended further
oncewe perform amore extensive inventory of quantum algorithms
and their properties.

Measurement of qubits is common in quantum programming and
due to the probabilistic nature of quantum program states, we need
an assertion method that uses a robust statistical method to test
the probability of observing a qubit in a given state. QSharpCheck
is equipped with a method called AssertProbability which takes
three arguments: a qubit, a state and the expected probability of
observing the first argument (the qubit) in the second argument
(the state) after measurement. For instance, for AssertProbability(q,
0, 0.2), the suggested property claims that the probability of finding
𝑞 in state |0⟩ after measuring it, is 0.2.

Another important concept in the domain of quantum com-
putation is quantum entanglement. The usual way of creating
a two-qubit entanglement (Bell State) is by using a Hadamard
gate followed by the application of a CNOT gate. Due to corre-
lation between the entangled qubits, after measuring them the
states to which they collapse are also correlated. Therefore, what

QSharpCheck does is to check whether or not two qubits are cor-
related. AssertEntangled is the built-in assertion method of the
library that takes two qubits as its arguments to test whether or
not they are entangled. By making a sufficiently large number of
measurements (whether set by QSharpCheck or the tester), a statis-
tical testing technique, called “Chi-Square test for independence”
[15], is used to analyse the correlation between the distributions of
the measurement results of the two qubits. The null hypothesis in
this case is that there is no correlation between the two qubits, that
is, they are independent. This is complemented by the alternative
hypothesis that there is indeed a correlation between them.

In quantum computation, there are cases where the equality of
two qubits is of interest [16, 22, 24]. In order to test the equality of
two states in quantum programs, our library has a method called
AssertEqual which takes two qubits as its arguments to compare
their states. In this case, QSharpCheck utilises the “independent
samples t-test” to test whether the given two qubits states are
equivalent or not. Based on the outcome of the comparison between
the t critical value and the calculated t-value, the null hypothesis is
either rejected or failed to reject. The null hypothesis in this test is
that the two states are the same, while the alternative hypothesis
is that they are not.

There is another assertion method in QSharpCheck called As-
sertTeleported. We have created this method specifically to test
quantum teleportation as it is a significant protocol in the quantum
realm. AssertTeleported takes two arguments: the sent and the re-
ceived qubits, respectively. Initially, QSharpCheck starts allocating
qubits with different random states. In each test case, since the
amplitudes of the generated qubit state are known to QSharpCheck,
the probability of observing the qubit after measurement in either
states |0⟩ or |1⟩ is also known. For instance, if after measurement
the probability of finding the qubit in state |0⟩ is 𝑝0 then based on
𝑝0 the null hypothesis for checking the output qubit state is set. The
statistical back-end calculations of this part of AssertTeleported is
identical to that of AssertProbability method.

As illustrated in Example 1, the output of a quantum program
may be the result of applying a transformation on the input argu-
ments. To validate this, we have introduced AssertTransformed
method in our library. To test the validity of any unitary transfor-
mation, firstly QSharpcheck allocates qubits with random states
to generate concrete test cases. The amplitudes of these produced
qubits states are specified, the scope of the destination state sub-
space is also established. On the basis of these details, QSharpCheck
checks whether or not outcome qubits are in the predicted state
subspace.

4 CASE STUDIES
To evaluate the effectiveness of our tool and technique, we took
two typical quantum programs and defined a number of mutation
operators to inject potential faults in them and studied which mu-
tants could be killed by the test cases generated by our technique.
In both case studies, the number of test cases was 10. In testing the
teleportation system, since qubit calculations were required, the
default values preset in the library were used for confidence level
value, number of measurements and number of experiments. We ob-
tained these programs source code from the online documentation
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[20] and the repository [1] of Microsoft Q#. The types of mutation
operators we used were statement deletion, statement duplication,
replacement of Boolean relations, replacement of quantum oper-
ators, changing the order of quantum operators and replacement
of a variable with another compatible one. The QSharpCheck test
process is organised such that it stops if a test case fails. Otherwise,
all test cases are executed. Therefore, the running time of a killed
mutant is calculated up to the point where the first test case fails,
while for live mutants it is the entire running time of all test cases.

Example 2. Teleportation. Initially, QSharpCheck tested the origi-
nal Teleportation program and the tests passed. Next, QSharpCheck
tested the mutants. The following table summarises the obtained
results:

No. Main Code Mutant Code Result Run Time(ms) Executed
Test Cases

1 Z(there); X(there); killed 14826 1

2 X(there); Z(there); killed 15121 1

3 Z(there); H(there); killed 30997 2

4 X(there); H(there); killed 34816 2

5 H(here); H(there); killed 15890 1

6 H(msg); H(here); killed 14475 1

7 H(msg); Y(msg); not killed 179924 10

8 CNOT(msg, here); CNOT(there, here); killed 16910 1

9 CNOT(here, there); CNOT(there, here); killed 15542 1

10 M(msg) == One M(msg) != One killed 29448 2

11 M(here) == One M(here) != One killed 15437 1

12 if (M(here) == One)
{X(there);} deleted killed 15577 1

13 CNOT(msg, here); deleted not killed 169646 10

14 CNOT(here, there); deleted killed 14080 1

15 CNOT(msg, here); duplicate killed 30213 2

16 Z(there); duplicate not killed 162513 10

17 X(there); duplicate killed 31163 2

18 CNOT(msg, here);
H(msg);

H(msg);
CNOT(msg, here); killed 15547 1

19 H(here);
CNOT(here, there);

CNOT(here, there);
H(here); killed 15229 1

20 CNOT(msg, here);
–

CNOT(msg, here);
let m = M(msg); not killed 181276 10

The mutation score was 80% with the average execution time of
50932 milliseconds.

Example 3. Superdense Coding. No error was found by our frame-
work after checking the main Superdense coding program. How-
ever, the library could kill a number of the generated mutants. The
results are as follows:

No. Main Code Mutant Code Result Run Time(ms) Executed
Test Cases

1 H(q1);
CNOT(q1, q2);

CNOT(q1, q2);
H(q1); killed 63 1

2 Z(qAlice); Y(qAlice); killed 71 1

3 Z(qAlice); Y(qAlice); not killed 76 10

4 Z(qAlice); duplicate killed 67 1

5 Z(qAlice); duplicate not killed 106 10

6 X(qAlice); duplicate not killed 62 10

7 if (b1)
{Z(qAlice);} deleted killed 64 1

8 if (b1)
{Z(qAlice);} deleted not killed 60 10

9 if (b2)
{X(qAlice);} deleted killed 58 1

10 if (b2)
{X(qAlice);} deleted not killed 61 10

11 Adjoint Entangle
(qAlice, qBob); deleted killed 58 1

12 Adjoint Entangle
(qAlice, qBob);

Entangle
(qAlice, qBob) killed 64 1

13 MResetZ(qAlice)
== One

MResetZ(qAlice)
== Zero killed 57 1

14 MResetZ(qBob)
== One

MResetZ(qBob)
== Zero killed 61 1

15 MResetZ(qAlice)
== One

MResetZ(qAlice)
== Zero killed 65 1

16 Entangle
(qAlice, qBob)

Entangle
(qBob, qAlice) killed 61 1

17 Entangle
(qAlice, qBob)

Entangle
(qBob, qAlice) not killed 63 10

18 DecodeMessage
(q1, q2)

DecodeMessage
(q2, q1) not killed 65 10

19
Entangle(q1, q2);
EncodeMessage
(q1, message);

EncodeMessage
(q1, message);

Entangle(q1, q2);
killed 69 1

20
Entangle(q1, q2);
EncodeMessage
(q1, message);

EncodeMessage
(q1, message);

Entangle(q1, q2);
not killed 70 10
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In this example, the mutation score was 60% with the average
execution time of 66 milliseconds.

Mutation scores in Examples 2 and 3 are indicative of the effec-
tiveness of our approach. According to the results reported above, a
majority of the mutants were killed, while we suspect that a number
of remaining mutants are equivalent.

There are several threats to the validity of this study. One major
threat to the validity of our claim to effectiveness stems from the
mutation operators used in our study. We plan to provide more
empirical evidence whether these mutation operators represent
actual faults, by studying the faults introduced by programmers.
We would also like to develop an automated and effective mutation
tool for quantum programs that produces mutants with the right
distribution of faults informed by actual data. Another threat to the
validity of our result is due to the controlled simulation environment
used for our experiments. Since the distribution of the outputs is
considerably noisier on real quantum computers, a further study
of the effect of the noise introduced by physical implementations
remains as future work.

A lab package including the tool and the case studies will be
available via: https://github.com/ShahinHonarvar/QSharpCheck.

5 CONCLUSIONS
We introduced QSharpCheck, a property-based testing framework
for quantum programs written in Q#. We described our property
specification language, the architecture of the tool and the statistical
methods used to analyse test results. We have also applied our tool
to two case studies and measured the effectiveness of our approach
using a mutation score.

Much remains to be done in our ongoing research, as this is
only our first step in property-based testing of quantum programs.
Data generators that can efficiently satisfy preconditions and also
provide a quantitative measure of test coverage or diversity are
among our first priorities. Our property language is focused on
stateless (pre- and post-condition type) properties. Extending the
test property language is another important future extension of our
approach. This will in turn enable shrinking strategies and effective
debugging methods. Further studying the concept of mutation for
quantum programs and developing an effective mutation tool for
them remains another area for our future research.
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