
Integrating Model-Based and Constraint-Based Testing Using SpecExplorer

Vivek Vishal, Mehmet Kovacioglu, and Rachid Kherazi
Philips Healthcare

Best, The Netherlands
Email: {vivek.vishal,rachid.kherazi,

mehmet.kovacioglu}@philips.com

Mohammad Reza Mousavi
Eindhoven University of Technology

Eindhoven, The Netherlands
Email: m.r.mousavi@tue.nl

Abstract—We report on our experience with model-based
testing using SpecExplorer within the Flat X-Ray Detection
(FXD) Department of Philips Healthcare. Our initial exper-
iments showed a practical obstacle in combining traditional
functional testing techniques with model-based testing using
SpecExplorer. We overcome this obstacle by specifying the con-
straints on our data domain in a spreadsheet and interfacing
SpecExplorer with a constraint solver in order to generate
concrete test data for the behavioral specifications. We report
on some empirical results obtained from our experiments.

Keywords-Model-Based Testing, Decision-Table-Based Test-
ing, Constraint-Based Testing, SpecExplorer;

I. INTRODUCTION

A. Problem domain

Flat X-Ray Detection (FXD) group of Philips Healthcare
is responsible for the subsystem which generates, detects
and translates X-Rays into medical images. The subsystem
consist of a controller and a flat X-Ray detector (a digital
photo-sensitive plate with layers that convert X-Ray to
light). There are many different medical applications that
use different configurations of this subsystem. The customers
are system developers in the medical domain who integrate
the subsystem to manufacture a complete X-Ray system.
Stringent requirements enforced by regulatory authorities
(such as the Food and Drug Administration, FDA, in the
United States) in the medical domain include providing
consistent tracking of requirements to implementation and
tests. Hence, the present work is carried out in a strictly
regulated domain, which requires a clear, traceable and
effective test and quality assurance process.

The current test environment consists of an infrastructure
that can simulate (parts of) the hardware used by the subsys-
tem and a set of test-scripts based on a well known unit-test
framework (NUnit) to perform semi-automatic tests. This
environment is also used to generate clear and consistent
test logging and tracing. Although the current setup of the
test environment has provided a flexible solution for semi-
automatic testing of various configurations and setups, there
is still ample room for increasing the effectiveness and the
efficiency of the tests (with respect to the effort spent on
different phases of testing, as well as various notions of
coverage versus testing time). Model-Based Testing (MBT)

is considered as a serious candidate for this purpose, be-
cause it offers a promising approach in automating test
generation. Using MBT, testers can update the model and
rapidly regenerate a new test suite, avoiding tedious and
error-prone editing of the suite of hand-crafted test. It is
particularly effective in the current System Under Test (SUT)
as its specification changes frequently and various products
may have to be tested with slightly varying models or
configurations.

B. Problem definition

We perform a controlled experiment in applying MBT
to our domain and compare its efficiency and effectiveness
with the traditional semi-automatic approach. To this end,
we use the SpecExplorer tool from Microsoft Corporation
and build the infrastructure to interface it directly with our
SUT. A major complicating factor (as it turned out during the
experiment) is the inter-dependencies between the behavioral
model and the data model used for parameter values, which
determine the amount of X-Ray generated. Since exposure
to X-Ray is harmful to human beings, it has to be made sure
that they are well within their prescribed range. Testing this
aspect involves choosing data values for different parameters
of the system. As the SUT has a large number of parameters,
testing all combinations of parameters soon becomes infea-
sible. Also, the standard data selection techniques provided
by SpecExplorer fail due to combinatorial explosion in our
setting. Moreover, the parameters are not independent and
selection of one value of a parameter determines the valid
range of other parameters, while the built-in techniques from
SpecExplorer are suitable for independent data parameters.
Hence, in addition to applying MBT to this domain, we
aim at firstly, developing a framework that can automat-
ically combine the behavioral model with an appropriate
data model, and secondly, applying it to our setting and
measuring its efficiency and effectiveness.

C. Summary of the results

Using SpecExplorer, we have successfully applied MBT
to our domain (see [10] for another experience report);
we have interfaced our testing framework with a constraint
solver in order to efficiently select test data from our data



model. Our empirical results show that the final framework
(henceforth called MBT+CBT, for Model-Based Testing +
Constraint-Based Testing) saves, respectively, about 80%
and about 20% of the total test effort compared to the
semi-automatic and the plain MBT approach (without con-
straint solving), while the final framework shows significant
improvements with respect to different coverage metrics
compared with the other two techniques.

D. Related work

Constraint-based solving is a well-studied research area
going back to seminal work in the early 90’s such as
those of [6], [7]. The general idea is to feed a data model
to a constraint solver and use the constraint solver to
generate data values automatically. For example, in [6],
this ideas is developed in the context of mutation testing,
where necessary data to kill a mutant is expressed as an
algebraic expression, which is then solved by a constraint
solver in order to generate test cases. In [7] the idea of
constraint-based testing is developed for a formal testing
framework based on state-based specifications (particularly,
in the Vienna Development Methods, VDM).

Using behavioral models in MBT usually calls for abstract
models (in terms of finite-state machines, or labelled tran-
sition systems) which focus on the input-output behavior of
the SUT and hide the details about its state variables and
their exact valuations (cf. [5], [12]). Although this abstrac-
tion level is useful in building compact representations of
system behavior, in most practical applications data and data
valuations have to be accommodated in such models. Theo-
retical extensions of behavioral models have been developed
and used in the context of MBT in the past few years,
see, for example, [2], [3], [9], [11]. Also the SpecExplorer
framework provides some support for integrating data with
behavioral modeling, but it only provides support for a few
standard data selection mechanisms. In our experiments,
none of the provided techniques were applicable due to
the combinatorial explosion of the combination of data
parameters. (This has been observed in earlier experiments
with other tools, see, for example [2], which applies other
techniques than what we explored in this paper for restricting
the test data selection.) Hence, we were forced to design our
own framework for combining data models with MBT using
SpecExplorer. We could not find any similar framework in
the context of SpecExplorer in the literature.

E. Structure of the paper

In Section II, some more information about the problem
domain and the SUT is provided. In Section III, we report
on our approach to applying MBT to our problem domain.
Subsequently, in Section IV, we describe how we have
applied CBT on our data model and integrated it with MBT.
Empirical results regarding different test frameworks are

presented in Section V. Concluding remarks as well as some
avenues for future research are presented in Section VI.

II. BACKGROUND

X-Rays systems are used for medical imaging in various
cardiovascular-, and neurological procedures. The system
under test is the Flat Detector Subsystem (FD) also known
as the Image Detection Subsystem (IDS) responsible for
generation, detection and translation of X-Rays to images.

The IDS consists of following components:
• A flat detector for detecting X-Rays,
• An anti-scatter grid for ensuring that X-Rays fall per-

pendicularly on the flat detector,
• A temperature control unit maintaining the temperature

of the flat detector, and
• A flat detector controller for a number of control activ-

ities, including: dose measurement and control, image
preprocessing and transformation, subsystem timing
generation and temperature control.

We are only concerned with testing the flat detector
controller, which will be called the SUT in the remainder of
the paper. An example of the IDS and the SUT is depicted
in Figure 1.

Figure 1. System and Flat Detector

In the traditional setting, the SUT is wrapped around
by a test environment known as Bellephoron (Bello). Bello
contains everything (Hardware/Software) that is needed to
test the SUT. It is also responsible for creating an environ-
ment which enables the test script to communicate with the
different interfaces of the SUT.

III. APPLYING MBT

Three main activities have to be carried out in order to
apply MBT to our SUT:

1) constructing models,



2) building an adaptor, and
3) dealing with data parameters.

We briefly describe each of the activities in the remainder
of this section. The last activity led to the observation that
the current framework, as supported by SpecExplorer, is not
sufficient for our purpose, which is the motivation for the
extension reported in the next section.

A. Constructing models

A major problem in MBT is constructing models that
are correct and correct with respect to (and traceable to)
the requirement specification. This is a non-trivial task
as the requirement specification is informal and naturally
ambiguous. To develop the model of the subsystem, we
follow an iterative and incremental approach, as depicted in
Figure 2. We used rounds of reviews both for the graphical
representations of our models as well as for the generated
test cases and their outcomes. Requirement engineers pro-
vided useful insight, which led to corrections of the initial
models.

Figure 2. Iterative & incremental development model

We initially considered a basic set of requirements in the
specification, design a model to capture those requirements,
generate a test suite from the model and evaluate the results
after executing the test suite. This cycle continues until
all the requirements have been covered correctly, i.e., all
requirements are reflected in the model. In addition to
interaction with the requirement engineer, we also had ac-
cess to a detailed Product Requirement Specification (PRS)
document, which helped us in checking and validating our
models.

B. Implementing an adapter

The MBT infrastructure is shown in Figure 3. The infras-
tructure for MBT requires the creation of the test adapter,
which is a thin software layer that sits between the model
and the SUT.

Finally test cases covering about 10000 transitions (re-
sulting from a different sequence of actions) were generated
from the model within seconds. The execution of those test
cases took less than 10 minutes.

C. Dealing with data

Data is an important aspect of testing for our SUT.
In the SUT, there are more than 20 parameters, which

Figure 3. MBT Infrastructure

comprise a particular configuration of the subsystem. Most
of the parameters are independent of each other and can be
tested in isolation. However, there are parameters that are
interdependent on each other, e.g., through an expression of
the following form:

MinV alue < A ∗ (B/100) ∗ C ≤MaxV alue,

where MinValue and MaxValue are determined based on
the values of other parameters. There are about 200 such
MinValue and MaxValue pairs, based on different valuations
of other parameters.

SpecExplorer has various built-in techniques for data
combination, such as pairwise, n-wise, interaction, seeded,
and isolated. However, it does not provide support for user-
defined combination strategies. The built-in combination
strategies of SpecExplorer do not provide any means for
reflecting dependencies among parameters. Nevertheless, we
tried the pairwise data selection technique from SpecEx-
plorer to experiment with our developed framework. The
results of our experiments (reported in Section V) did show
improvement over the existing infrastructure in terms of test
effort but left some of the coverage measures unchanged.
An analysis of this results led to the conclusions that an
extension of the current infrastructure with genuine support
for a data model (reflecting dependencies among parameters)
is worthwhile. We report on this extension in the next
section.

IV. INTEGRATING WITH CBT

As explained in the previous section, our attempt to
apply MBT to our application domain revealed essential
dependencies between the behavioral model and its data
parameters. We used a traditional data modeling technique,
i.e., decision tables [8], to specify our data model. The
choice is motivated by their ease of use and similarity to
the spreadsheets used for requirement specification in our
domain. A decision table is a table consisting of conditions,



Evaluator Write
Test Suite

Decision
Table

Constraint
Solver

Output

Extract columns

Translation
Concrete values

Figure 4. Architecture

rules and expected outcomes. Part of a decision table for the
following constraint (discussed in Section III-C) is given in
Table I.

MinV alue < A ∗ (B/100) ∗ C ≤MaxV alue,

Note that MinV alue and MaxV alue in our actual model
depend on a number of other parameters and hence are
represented by MinV alue(D,E) and MaxV alue(D,E),
respectively, to represent these dependencies.

c1: MinValue(D,E) < A * (B / 100) * C T T F F ...
c2: A * (B / 100) * C ≤ MaxValue(D,E) T F T F ...
a1:Value out of range × × ×
a2:Valid dose ×

Table I
DECISION TABLE FOR A TYPICAL CONSTRAINT

In order to interface the decision tables with our MBT
framework we need to generate concrete data values and
feed them into our behavioral models. We built an automatic
translator from the spreadsheet format to the input language
of a constraint solver. For our experiments, we used a simple
constraint solver in C# (called ZogSolver: http://zogsolver.
sourceforge.net), but any other constraint- or SMT-solver can
be used for this purpose.

V. RESULTS

In this section, we discuss the results obtained during
our experiment with Model-Based Testing of the controller
component in the Image Detection Subsystem. We compare
the result of the MBT experiment with the current practice

Figure 5. Comparison: Effort

of semi-automated testing. We gathered empirical metrics in
two different categories:

• Effort involved
• Coverage achieved

A. Effort

We mainly measured the effort involved in designing
(models required to generate) the test-suite and implement-
ing them, as well as its execution and adaptation (mainte-
nance). We did not take the effort involved in implementing
the test infrastructure, as the traditional infrastructure has
evolved throughout years of testing practice and is difficult
to compare with the relatively lightweight infrastructure we
built for the MBT and its combination with CBT. Figure
5 shows a comparison of the effort involved in the three
approaches.

Test design effort reported in Figure 5 refers to the logical
design of test suits, which involves extracting information
from the PRS and phrasing it in terms of scenarios and
data models. Implementation concerns extracting concrete
test-scripts (in case of the semi-automatic method), and
behavioral models (in case of MBT and MBT+CBT). Note
that in the case of MBT+CBT some effort is spent in de-
signing a data model at the design phase and hence concrete
data values need not be implemented in the implementation
model, that is why MBT+CBT shows a significant improve-
ment in the implementation effort over the MBT approach.
Maintenance activity refers to amount of effort required to
reuse the implementation when a new configuration of the
subsystem is available. In the current semi-automated testing
the data values for the scripts have to be manually modified.
In MBT, maintenance requires a few lines of change in the
model code and some (considerable) changes in the data
values. Maintenance in MBT+CBT just requires a few lines
of change in the model code and possibly some modification
of the symbolic constraints.

1) Coverage: In order to measure the effectiveness of our
approach, we measure the coverage of our test-suites based



Figure 6. Comparison: Coverage

on both implementation (code) and model coverage metrics.
To this end, we used and measured the following metrics:

• Code (statement) coverage is the metric that denotes the
percentage of statements exercised by the test suite.

• Decision coverage is a metric that denotes the branches
that are exercised by the test suite.

• Predicate coverage is a model coverage metric which
measures the percentage of the boolean expressions (in
the data model) evaluated both to true and false.

• Clause coverage is a model coverage which measure
the percentage of atomic boolean expressions (not con-
taining any logical operators) that are evaluated both to
true and false.

• Boundary coverage is a model coverage metric, which
measures the percentage of the boundaries that have
been tested.

In order to compute the code coverage and the decision
coverage, we instrumented our SUT with a code coverage
analyzer tool Bullseye (http://www.bullseye.com/).

For the semi-automatic approach we had to calculate the
model coverage metrics manually by inspecting the data
values used in the test scripts. In the current automated tests
or MBT, boundaries for only independent parameters are
tested. No test is conducted in order to verify the correct
implementation of boundaries at MinValue and MaxValue.
When MBT is used along with the data combination tool, all
boundaries for each MinValue and MaxValue pair is tested.
The comparision in form of chart is shown in Figure 6

2) Other Metrics: A number of other metrics for com-
parison are also used measured. The metrics along with their
comparison are given in Table II.

• Testing technique used: Automated tests combine the
parameters on the basis of Boundary Value Analysis
(BVA) and Elementary Comparison Test (ECT). How-
ever, interdependent boundaries are not tested and ECT
is applied only for few MinValue and MaxValue pair as
it has to be done manually. While conducting MBT we
have used the inbuilt combination strategies (pairwise
combination) of SpecExplorer. MBT + CBT uses BVA

Metrics Automated test MBT MBT + CBT
Testing technique BVA + ECT Pairwise DT+CBT

Test cases generated ∼100 ∼13000 ∼1000
Test execution time 1 minute 43 minutes 7 minutes

Perceived effectiveness Low Medium High
Additional bugs found - 2 2

Table II
COMPARISON

along with Decision Table (DT) and random testing.
The boundaries of the dependencies are tested.

• Number of test cases generated: Automated tests
generate less number of test cases than MBT or
MBT+CBT. MBT generates about 13000 test cases
as it combines all the parameter value provided to it.
However, most of the combinations result in an invalid
combination. MBT + tool generates about 1000 test
cases, half of which results in valid combinations (tests
are expected to pass).

• Test execution time: Test execution time is measured
by the difference between the starting time of a test
and the time at which it completes the execution. Both
start time and end time of a test are retrieved from the
logging information available in the test infrastructure.

• Perceived effectiveness: The effectiveness of the semi-
automated test is considered low as it generates less
number of test cases with high effort. MBT generates
a lot of test cases, however most of them are invalid.
The effort involved is also medium as one has to give
values for the parameters manually from the require-
ment specification. The effectiveness of MBT + CBT
is considered high as a reasonable number of “smart”
test cases are generated with very low effort.

• Additional bugs found: Using MBT or MBT along
with CBT, two additional bugs were detected that were
overlooked by the current semi-automated tests.

VI. CONCLUSIONS

We applied Model-Based Testing using Spec Exlorer to
the Image Detection Subsystem responsible for generation,
detection and translation of X-rays to images. We used an
existing test infrastructure to communicate with the SUT
and developed an adapter, that acts as a wrapper around the
whole infrastructure. We designed a model of the subsystem
using its requirement specification in the input language of
SpecExplorer. A number of test cases were generated from
the model automatically. The execution of these test cases
were done in few minutes.

Model-Based Testing has obvious advantages over current
semi-automatic testing techniques with respect to the spent
effort and the coverage achieved. One of the advantages of
MBT is its ability to retrace long walks through of the
SUT using the test cases automatically derived from the
model. The main cost involved is learning MBT and building



models, which are investments requiring a certain abstract
view of the specification and the system under test.

One of the critical issues we encountered while applying
MBT concerned data parameters and their interdependen-
cies. SpecExplorer provides some built-in data selection
mechanisms which turned out to be insufficient for our
purpose. Hence, we developed our own tool that interfaces
SpecExplorer with a constraint solver in order to generate
concrete test data for the behavioral model.

Our framework is currently being used in the practice
of testing at the FXD Department at Philips Healthcare.
We still need to address a number of open issues in order
to improve the effectiveness of our MBT practice. Proper
visualization of the generated test data and developing a
method for establishing correctness of our models are also
important issue, which needs to be addressed.
Acknowledgments. The authors would like to thank the
members and the management of the FXD department
for their support. The authors would also like to thank
the members of the SpecExplorer Forum for their prompt
feedback.

REFERENCES

[1] P. Ammann, and J. Offutt. Introduction to Software Testing.
Cambridge University Press, 2008.

[2] T. Bauer, R. Eschbach, M. Großl, T. Hussain, D. Streitferdt,
and F. Kantz. Combining Combinatorial and Model-based Test
Approaches for Highly Configurable Safety-critical Systems.
CTIT Workshop Series WP09-08, pages 9–22, CTIT, 2009.

[3] A. Beer and S. Mohacsi. Efficient Test Data Generation for
Variables with Complex Dependencies. In ICST’08, 1st Int.
Conf. on Software Testing, Verification and Validation, pages
3-11, IEEE, 2008.

[4] A. Bertolino, G. De Angelis, L. Frantzen, and A. Polini.
Model-Based Generation of Testbeds for Web Services. In
TESTCOM/FATES’08, Int. Conf., volume 5047 of LNCS,
pages 266-282. Springer, 2008.

[5] M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, and A.
Pretschner. (Eds.) Model-Based Testing of Reactive Systems.
volume 3472 of LNCS, Springer, 2005.

[6] R.A. DeMillo and A.J. Offutt. Constraint-Based Automatic
Test Data Generation. IEEE Transactions on Software Engi-
neering 17(9):900-910, 1991.

[7] J. Dick and A. Faivre. Automating the generation and sequenc-
ing of test cases from model-based specifications. In FME93,
Int. Conf. on Industrial Strength Formal Methods, volume 670
of LNCS, pages 268 - 284, Springer, 1993.

[8] J. B. Goodenough, and S. L. Gerhart. Toward a theory of test
data selection. ACM SIGPLAN Notices, 10(6):493–510, 1975.

[9] A. Gotlieb. Euclide: A constraint-based testing platform for
critical C programs. In ICST’09, 2nd Int. Conf. on Software
Testing, Validation and Verification (ICST’09), pages 151-160,
IEEE, 2009.

[10] W. Grieskamp, N. Kicillof, K. Stobie, V. A. Braberman.
Model-based quality assurance of protocol documentation:
tools and methodology. Softw. Test., Verif. Reliab. 21(1):55-71,
2011.

[11] S. Mohacsi and J. Wallner. A Hybrid Approach for Model-
Based Random Testing, In VALID’2010, 2nd Int. Conf. Ad-
vances in System Testing and Validation Lifecycle, pages 10-
15, IEEE, 2010.

[12] J. Tretmans. Model Based Testing with Labelled Transition
Systems, In Formal Methods and Testing 2008, volume 4949
of LNCS, pages 1–38, Springer, 2008.


