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We study the problem of deriving a specification for a third-party component, based on the specifi-
cation of the system and the environment in which the component is supposed to reside. Particularly,
we are interested in using component specifications for conformance testing of black-box compo-
nents, using the theory of input-output conformance (ioco) testing. We propose and prove sufficient
criteria for decompositionality, i.e., that components conforming to the derived specification will al-
ways compose to produce a correct system with respect to the system specification. We also study the
criteria for strong decomposability, by which we can ensure that only those components conforming
to the derived specification can lead to a correct system.

1 Introduction

Enabling reuse and managing complexity are among the major benefits of using compositional ap-
proaches in software and systems engineering. This idea has been extensively adopted in several different
subareas of software engineering, such as product-line software engineering. One of the cornerstones of
the product-line approach is to reuse a common platform to build different products. This common plat-
form should ideally comprise different types of artifacts, including test-cases, that can be re-used for
various products of a given line. In this paper, we propose an approach to conformance testing, which
allows to use a high-level specification and derive specifications for to-be-developed components (or sub-
systems) given the platform on which they are to be deployed. We call this approach decompositional
testing and refer to the process of deriving specifications as quotienting (inspired by its counterpart in
the domain of formal verification).

We develop our approach within the context of input-output conformance testing (ioco) [13], a
model-based testing theory using formal models based on input-output labeled transition systems (IOLTSs).
An implementation i is said to conform to a specification s, denoted by i ioco s, when after each trace in
the specification, the outputs of the implementation are among those prescribed by the specifications.

For a given platform (environment) ē, whose behavior is given as an IOLTS, a quotient of a speci-
fication s̄ by the platform ē, denoted by s̄/ē, is the specification that describes the system after filtering
out the effect of ē. The structure of a system consisting of ē and unknown component c̄ is represented
in Figure 1, whose behavior is described by a given specification s̄. We would like to construct s̄/ē such
that it captures the behavior of any component c̄ which, when deployed on ē (put in parallel and possibly
synchronize with ē) conforms to s̄. Put formally, s̄/ē is the specification which satisfies the following
bi-implication:

http://dx.doi.org/10.4204/EPTCS.??.2
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∀c̄, ē. c̄ ioco s̄/ē ⇔ c̄||ē ioco s̄

The criteria for the implication from left to right, which is essential for our approach, are called de-
composability. The criteria for the implication from right to left guarantee that quotienting produces
the precise specification for the component and is called strong decomposability. We study both criteria
in the remainder of this paper. Moreover, we show that strong decomposability can be combined with
on-the-fly testing, thereby avoiding constructing the witness to the decomposability explicitly upfront.

platform ē component c̄U ′e

I′e
Uv

Iv

U ′c

I′c

Figure 1: Strucure of a system composed of platform ē and component c̄ whose behavior is defined by
a given specification s̄. The language of platform ē comprises (I′e∪Uv)∪ (U ′e∪ Iv). Similarly, (I′c∪ Iv)∪
(U ′c∪Uv) is the language of component c̄. The platform ē and component c̄ interface via Iv and Uv which
are hidden from the viewpoint of an external observer.

Related Work. The study of compositional and modular verification for various temporal and modal
logics has attracted considerable attention and several compositional verification techniques have been
proposed for such logics; see, e.g., [2, 7, 10, 6]. Decompositional reasoning aims at automatically decom-
posing the global property to be model checked into local properties of (possibly unknown) components,
a technique that is often called quotienting. The notion of quotient introduced in the present paper is
inspired by its corresponding notion in the area of (de)compositional model-checking, and is substan-
tially adapted to the setting for input-output conformance testing, e.g., by catering for the distinction
between input and output actions and taking care of (relative) quiescence of components. In the area of
model-based testing, we are aware of a few studies dedicated to the issue of (de)composition [3, 5, 14],
of which we give an overview below.

In [3] the compositionality of the ioco-based testing theory is investigated. Assuming that implemen-
tations of components conform to their specifications, the authors investigate whether the composition of
these implementations still conforms to the composition of the specifications. They show that this is not
necessarily the case and they establish conditions under which ioco is a compositional testing relation.

In [5], Frantzen and Tretmans study when successful integration of components by composing them
in certain ways can be achieved. Successful integration is determined by two conditions: the integrated
system correctly provides services, and interaction with other components is proper. For the former,
a specification of the provided services of the component is assumed. Based on the ioco-relation, the
authors introduce a new implementation relation called eco, which allows for checking whether a com-
ponent conforms to its specification as well as whether it uses other components correctly. In addition,
they also propose a bottom-up strategy for building an integrated systems.

Another problem closely related to the problem we consider in this paper is testing in context, also
known as embedded testing [14]. In this setting, the system under test comprises a component c̄ which is
embedded in a context ū. Component c̄ is isolated from the environment and all its interactions proceed
through ū (which is assumed to be correctly implemented). The implementation ī and specification s̄ of
the system composed of ū and c̄, are assumed to be available. The problem of testing in context then
entails generating a test suite that allows for detecting incorrect implementations ī of component c̄.
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Although testing in context and decomposability share many characteristics, there are key differences
between the two. We do not restrict ourselves to embedded components, nor do we assume the platforms
to be fault-free. Contrary to the testing in context approach, decomposing a monolithic specification is
the primary challenge in our work; testing in context already assumes the specification is the result of
a composition of two specifications. Moreover, in testing in context, the component c̄ is tested through
context ū whereas our approach allows for testing the component directly through its deduced specifi-
cation. As a result, we do not require that the context is always available while testing the component,
which is particularly important in case the platform is a costly resource.

For similar reasons, asynchronous testing [11, 8, 15], which can be considered as some form of
embedded testing, is different from the work we present in this paper.

Structure. We give a cursory overview of ioco-based formal testing in Section 2. The notions of de-
composability and strong decomposability are formalized in Section 3. We present sufficient conditions
for determining whether a given specification is decomposable in Section 4 and whether it is strongly
decomposable in Section 5. We conclude in Section 6. Additional examples and results, together with
all proofs for the lemmata and theorems can be found in [9].

2 Preliminaries

Conformance testing is about checking that the observable behavior of the system under test is included
in the prescribed behavior of the specification. In order to formally reason about conformance testing, we
need a model for reasoning about the behaviors described by a specification, and assume that we have
a formal model representing the behaviors of our implementations, so that we can reason about their
conformance mathematically.

In this paper, we use variants of the well-known Labeled Transition Systems as a behavioral model
for both the specification and the system under test. The Labeled Transition System model assumes that
systems can be represented using a set of states and transitions, labeled with events or actions, between
such states. A tester can observe the events leading to new states, but she cannot observe the states. We
assume the presence of a special action τ , which we assume is unobservable to the tester.

Definition 1 (IOLTS) An input-output labeled transition system (IOLTS) is a tuple 〈S, I,U,→, s̄〉, where
S is a set of states, I and U are disjoint sets of observable inputs and outputs, respectively,→⊆ S× (I∪
U ∪{τ})×S is the transition relation (we assume τ /∈ I∪U), and s̄ ∈ S is the initial state. The class of
IOLTSs ranging over inputs I and outputs U is denoted IOLTS(I,U).

Throughout this section, we assume an arbitrary, fixed IOLTS 〈S, I,U,→, s̄〉, and we refer to this
IOLTS by referring to its initial state s̄. We write L for the set I∪U . Let s,s′ ∈ S and x ∈ L∪{τ}. In line
with common practice, we write s x−→ s′ rather than (s,x,s′) ∈→. Furthermore, we write s x−→ whenever
s x−→ s′ for some s′ ∈ S, and s 6 x−→ when not s x−→. A word is a sequence over the input and output symbols.
The set of all words over L is denoted L∗, and ε is the empty word. For words σ ,ρ ∈ L∗, we denote the
concatenation of σ and ρ by σρ . The transition relation is generalized to a relation over words by the
following deduction rules:

s ε
=⇒ s

s σ
=⇒ s′′ s′′ x−→ s′ x 6= τ

s σx
==⇒ s′

s σ
=⇒ s′′ s′′ τ−→ s′

s σ
=⇒ s′
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We adopt the notational conventions we introduced for → for =⇒. A state in the IOLTS s̄ is said to
diverge if it is the source of an infinite sequence of τ-labeled transitions. The IOLTS s̄ is divergent if one
of its reachable states diverges. Throughout this paper, we confine ourselves to non-divergent IOLTSs.

Definition 2 Let s′ ∈ S and S′ ⊆ S. The set of traces, enabled actions and weakly enabled actions for s
and S′ are defined as follows:

• traces(s) = {σ ∈ L∗ | s σ
=⇒}, and traces(S′) =

⋃
s′∈S′

traces(s′).

• init(s) = {x ∈ L∪{τ} | s x−→}, and init(S′) =
⋃

s′∈S′
init(s′).

• Sinit(s) = {x ∈ L | s x
=⇒}, and Sinit(S′) =

⋃
s′∈S′

Sinit(s′).

Quiescence and Suspension Traces. Testers often not only have the power to observe events produced
by an implementation, they can also observe the absence of events, or quiescence [13]. A state s ∈ S is
said to be quiescent if it does not produce outputs and it is stable. That is, it cannot, through internal
computations, evolve to a state that is capable of producing outputs. Formally, state s is quiescent,
denoted δ (s), whenever init(s)⊆ I. In order to formally reason about the observations of inputs, outputs
and quiescence, we introduce the set of suspension traces. To this end, we first generalize the transition
relation over words to a transition relation over suspension words. Let Lδ denote the set L∪{δ}.

s σ
=⇒ s′

s σ
=⇒δ s′

δ (s)

s δ
=⇒δ s

s σ
=⇒δ s′′ s′′

ρ
=⇒δ s′

s
σρ
==⇒δ s′

The following definition formalizes the set of suspension traces.

Definition 3 Let s ∈ S and S′ ⊆ S. The set of suspension traces for s, denoted Straces(s) is defined as
the set {σ ∈ L∗

δ
| s σ

=⇒δ}; we set Straces(S′) =
⋃

s′∈S′
Straces(s′).

Input-Output Conformance Testing with Quiescence. Tretmans’ ioco testing theory [13] formalizes
black box conformance of implementations. It assumes that the behavior of implementations can always
be described adequately using a class of IOLTSs, called input output transition systems; this assumption
is the so-called testing hypothesis. Input output transition systems are essentially plain IOLTSs with the
additional assumption that inputs can always be accepted.

Definition 4 (IOTS) Let 〈S, I,U,→, s̄〉 be an IOLTS. A state s ∈ S is input-enabled iff I ⊆ Sinit(s); the
IOLTS s̄ is an input output transition system (IOTS) iff every state s ∈ S is input-enabled. The class of
input output transition systems ranging over inputs I and outputs U is denoted IOTS(I,U).

While the ioco testing theory assumes input-enabled implementations, it does not impose this require-
ment on specifications. This facilitates testing using partial specifications, i.e., specifications that are
under-specified. We first introduce the main concepts that are used to define the family of conformance
relations of the ioco testing theory.

Definition 5 Let 〈S, I,U,→, s̄〉 be an IOLTS. Let s ∈ S, S′ ⊆ S and let σ ∈ L∗
δ
.
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• s after σ = {s′ ∈ S | s σ
=⇒δ s′}, and S′ after σ =

⋃
s′∈S′

s′ after σ .

• out(s) = {x ∈ Lδ \ I | s x
=⇒δ}, and out(S′) =

⋃
s′∈S′

out(s′).

The family of conformance relations for ioco are then defined as follows, see also [13].

Definition 6 (ioco) Let 〈R, I,U,→, r̄〉 be an IOTS representing a realization of a system, and let IOLTS
〈S, I,U,→, s̄〉 be a specification. Let F ⊆ L∗

δ
. We say that r̄ is input output conform with specification s̄,

denoted r̄ iocoF s̄, iff
∀σ ∈ F : out(r̄ after σ)⊆ out(s̄ after σ)

The iocoF conformance relation can be specialized by choosing an appropriate set F . For instance, in
a setting with F = Straces(s), we obtain the ioco relation originally defined by Tretmans in [12]. The
latter conformance relation is known to admit a sound and complete test case generation algorithm,
see, e.g., [12, 13]. Soundness means, intuitively, that the algorithm will never generate a test case that,
when executed on an implementation, leads to a fail verdict if the test runs are in accordance with the
specification. Completeness is more esoteric: if the implementation has a behavior that is not in line with
the specification, then there is a test case that, in theory, has the capacity to detect that non-conformance.

Suspension automata. The original test case generation algorithm by Tretmans for the ioco relation
relied on an automaton derived from an IOLTS specification. This automaton, called a suspension au-
tomaton, shares many of the characteristics of an IOLTS, except that the observations of quiescence are
encoded explicitly as outputs: δ is treated as an ordinary action label which can appear on a transition.
In addition, Tretmans assumes these suspension automata to be deterministic: any word that could be
produced by an automaton leads to exactly one state in the automaton.

Definition 7 (Suspension automaton) A suspension automaton(SA) is a deterministic IOLT S 〈S, I,U ∪
{δ},→, s̄〉; that is, for all s ∈ S and all σ ∈ L∗, we have |s after σ | ≤ 1.

Note that determinism implies the absence of τ transitions. In [12], a transformation from ordinary
IOLTSs to suspension automata is presented; the transformation ensures that trace-based testing using
the resulting suspension automaton is exactly as powerful as ioco-based testing using the original IOLTS.

The transformation is essentially based on the subset construction for determinizing automata. Given
an IOLTS, the transformation ∆ defined below converts any IOLTS into an SA.

Definition 8 Let 〈S, I,U,→, s̄〉 ∈ IOLTS(I,U). The SA ∆(s̄) = 〈Q, I,U ∪{δ},→, q̄〉 is defined as:
• Q = P(S)\{ /0}.
• q̄ = s̄ after ε .

• →⊆ Q×Lδ ×Q is the least relation satisfying:
x ∈ L q ∈ Q

q x−→ {s′ ∈ S | ∃s ∈ q• s x
=⇒ s′}

q ∈ Q

q δ−→ {s ∈ q | δ (s)}

Example 1 Consider the IOLTS s̄ depicted in Figure 2 on page 22. The IOLTS s̄ is a specification of a
malfunctioning vending machine which sells tea for one euro coin (c). After receiving money, it either
delivers tea (t), refunds the money (r) or does nothing. Its suspension automaton ∆(s̄), with initial state
q̄, is depicted next to it. Note that the suspension traces of s̄ and the traces of suspension automaton ∆(s̄)
are identical.



Noroozi, Mousavi & Willemse 21

In general, a suspension automaton may not represent an actual IOLTS; for instance, in an arbitrary
suspension automaton, it is allowed to observe quiescence, followed by a proper output. This cannot
happen in an IOLTS. In [16], the set of suspension automata is characterized for which a transformation
to an IOLTS is possible. Such suspension automata are called valid. Proposition 1 of [16] states that for
any IOLTS s̄, the suspension automaton ∆(s̄) is valid. Conversely, Theorem 2 of [16] states that any valid
suspension automaton has the same testing power (with respect to ioco) as some IOLTS. This essentially
means that the class of valid suspension automata can be used safely for testing purposes.

Parallel Composition. A software or hardware system is usually composed of subunits and modules
that work in an orchestrated fashion to achieve the desired overall behavior of the software or hardware
system. In our setting, we can formalize such compositions using a special operator || on IOLTSs: two
IOLTSs can interact by connecting the outputs sent by one IOLTS to the inputs of the other IOLTS. We
assume that such inputs and outputs are taken from a shared alphabet of actions. For the non-common
actions the behavior of both IOLTSs is interleaved.

Definition 9 (parallel composition) Let 〈S1, I1,U1,→1, s̄1〉 and 〈S2, I2,U2,→2, s̄2〉 be two IOLTSs with
disjoint sets of input labels I1 and I2, and disjoint sets of output labels U1 and U2. The parallel composi-
tion of s̄1 and s̄2, denoted s̄1||s̄2 is the IOLTS 〈Q, I,U,→, s̄1||s̄2〉, where:

• Q = {s1||s2 | s1 ∈ S1,s2 ∈ S2}.
• I = (I1∪ I2)\ (U1∪U2) and U =U1∪U2.

• →⊆ Q× (L∪{τ})×Q is the least relation satisfying:

s1
x−→1 s′1 x 6∈ L2

s1||s2
x−→ s′1||s2

s2
x−→2 s′2 x 6∈ L1

s1||s2
x−→ s1||s′2

s1
x−→1 s′1 s2

x−→2 s′2 x 6= τ

s1||s2
x−→ s′1||s′2

The interaction between components is typically intended to be unobservable by a tester. This is not
enforced by the parallel composition, but can be specified by combining parallel composition with a
hiding operator, which is formalized below.

Definition 10 (hiding) Let 〈S, I,U,→, s̄〉 be an IOLTS, and let V ⊆U. The IOLTS resulting from hiding
events from the set V , denoted by hide[V ] ins is the IOLTS 〈S, I,U \V,→′, s̄〉, where→′ is defined as the
least relation satisfying:

s x−→ s′ x 6∈V

hide[V ] ins x−→
′
hide[V ] ins′

s x−→ s′ x ∈V

hide[V ] ins τ−→
′
hide[V ] ins′

Note that the hiding operator may turn non-divergent IOLTSs into divergent IOLTSs. As divergence is
excluded from the ioco testing theory, we must assume such divergences are not induced by composing
two implementations in parallel and hiding all successful communications. Since implementations are
assumed to be input enabled, this can only be ensured whenever components that are put in parallel never
produce infinite, uninterrupted runs of outputs over their alphabet of shared output actions. Implemen-
tations adhering to these constraints are referred to as shared output bounded implementations. From
hereon, we assume that all the implementions considered are shared output bounded.
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3 Decomposibility

Software can be constructed by decomposing a specification of the software in specifications of smaller
complexity. Reuse of readily available and well-understood platforms or environments can steer such a
decomposition. Given the prevalence of such platforms, the software engineering and associated testing
problem thus shifts to finding a proper specification of the system from which the platform behavior has
been factored out. Whether this is possible, however, depends on the specification; if so, we say that a
specification is decomposable.

The decomposability problem requires known action alphabets for both the specification and the
platform. Hence, we first fix these alphabets and illustrate how these are related. Hereafter, Ls denotes
the action alphabet of the specification s̄ and Le denotes the action alphabet of the platform ē. The actions
of Le not exposed to s̄ are contained in action alphabet Lv, i.e., we have Lv = Le \Ls. The action alphabet
of the quotient will be denoted by L, i.e. L = (Ls \Le)∪Lv. The relation between the above alphabets is
illustrated in Figure 1 in the introduction.

Definition 11 (Decomposability) Let s̄ ∈ IOLTS(Is,Us) be a specification, and let ē ∈ IOTS(Ie,Ue) be
an implementation. Let Lv = Iv ∪Uv be a set of actions of ē not part of s̄. Specification s̄ is said to be
decomposable for IOTS ē iff there is some specification s̄′ ∈ IOLTS((Is \ Ie)∪ Iv,(Us \Ue)∪Uv) for which
both:

• ∃c̄ ∈ IOTS((Is \ Ie)∪ Iv,(Us \Ue)∪Uv) • c̄ ioco s̄′, and

• ∀c̄ ∈ IOTS((Ie \ Ie)∪ Iv,(Ue \Ue)∪Uv) • c̄ ioco s̄′ =⇒ hide[Lv] in c̄||ē ioco s̄

Decomposability of a specification s̄ essentially ensures that a specification s̄′ for a subcomponent ex-
ists that guarantees that every ioco-correct implementation of it is also guaranteed to work correctly in
combination with the platform.

s̄

s1

c

r

τ

t

τ

(a) IOLTS s̄

q̄ cδ

r

δ
t

δ

δ

(b) SA ∆(s̄)

ēerror c order

τ

τ

(c) IOTS ē

r̄error c order

τ

τ

error

r

τ

(d) IOTS r̄

m̄
order

error
t

(e) IOLTS m̄

p̄
order

error
t

error

τ

(f) IOLTS p̄

c̄
order

error
t
order

order

error

order

(g) IOTS c̄

Figure 2: A specification of a vending machine (s̄), two behavioral models of an implemented money
component (ē and r̄) and two specifications for a drink component (m̄ and p̄) with the behavioral model
of an implementation of the drink component (c̄).

Example 2 Consider IOLTSs depicted in Figure 2. The IOTS ē 2(c) presents the behavioral model of an
environment which after receiving a coin (c) either orders drink (order) or does nothing. Upon receiving
an error signal (error), never refunds the money (r). Component ē interacts with another component
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through actions ‘order’ and ‘error’; together, the components implement a vending machine for which
IOLTS s̄ 2(a) is the specification. The IOLTS m̄ 2(e) is a specification of a drink component which
delivers tea after receiving a drink order. If it encounters a problem in delivering the drink, it signals
an error. Specification m̄ guarantees that the combination of component ē with any drink component
implementation conforming to m̄, also conforms to s̄.

It may, however, be the case that an implementation, in combination with a given platform, perfectly
adheres to the overall specification s̄, and, yet fails to pass the conformance test for s̄′. As a consequence,
non-conformance of an implementation to s̄′ may not by itself be a reason to reject the implementation.

Example 3 Consider IOLTSs in Figure 2. The IOLTS m̄ 2(e) is a witness for decomposability of IOLTS
s̄2(a) for platform ē2(c). Thus, any compound system built of IOTS ē and a component conforming to m̄
is guaranteed to be in conformance with IOLTS s̄. Now, consider IOTS c̄ 2(g) which incorrectly imple-
ments the functionality specified in IOLTS m̄ 2(e), as it sends ‘error’ twice. Observe that, nevertheless,
hide[{error,order}] in c̄||ē still conforms to s̄.

It is often desirable to consider specifications s̄′ for which one only has to check whether an imple-
mentation c̄ adheres to s̄′, i.e., specifications for which it is guaranteed that a failure of an implementation
c̄ to comply to s̄′ also guarantees that the combination c̄||ē will violate the original specification s̄. We
can obtain this by considering a stronger notion of decomposability.

Definition 12 (Strong Decomposability) Let s̄∈ IOLTS(I,U) be a specification, and let ē∈ IOTS(Ie,Ue)
be an implementation. Let Lv = Iv∪Uv be a set of actions of ē not part of s̄. Specification s̄ is said to be
strongly decomposable for IOTS ē iff there is some specification s̄′ ∈ IOLTS((Is \ Ie)∪ Iv,(Us \Ue)∪Uv)
for which both:

• ∃c̄ ∈ IOTS((Is \ Ie)∪ Iv,(Us \Ue)∪Uv) • c̄ ioco s̄′, and

• ∀c̄ ∈ IOTS((Is \ Ie)∪ Iv,(Us \Ue)∪Uv) • c̄ ioco s̄′⇐⇒ hide[Lv] in c̄||ē ioco s̄

Example 4 Consider the IOLTSs p̄ and ē in Figure 2; specification p̄ is such that the combination of
component ē with any shared output bounded component that does not conform to p̄, fails to comply to s̄.

4 Sufficient Conditions for Decomposibility

Checking whether a given specification is decomposable is a difficult problem. However, knowing that a
specification is decomposable in itself hardly helps a design engineer. Apart from the question whether
a specification is decomposable, one is typically interested in a witness for the decomposed specifica-
tion, or quotient. Our approach to the decomposability problem is therefore constructive: we define a
quotient and we identify several conditions that ensure that the quotient we define is a witness for the
decomposability of a given specification.

One of the problems that may prevent a specification from being decomposable for a given platform
ē is that the latter may exhibit some behavior which unavoidably violates the specification s̄. We shall
therefore only consider platforms for which such violations are not present. We formalize this by check-
ing whether the behavior of ē is included in the behavior of s̄; that is, we give conditions that ensure
that ē in itself cannot violate the given specification s̄. Moreover, we assume that the input-enabled
specification of ē is available.
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Assuming that the behavior of ē is included in the behavior of the given specification s̄, we then pro-
pose a quotient s̄′ of s̄ for ē and prove sufficient conditions that guarantee that s̄ is indeed decomposable
and s̄′ is a witness to that.

4.1 Inclusion relation

We say that the behavior of a given platform ē is included in a specification s̄ if the outputs allowed by
s̄ subsume all outputs that can be produced by ē. For this, we need to take possible communications
between ē and the to-be-derived quotient over the action alphabet Lv into account. Another issue is that
we are dealing with two components, each of which may be quiescent. If component ē is quiescent, its
quiescence may be masked by outputs from the component with which it is supposed to interact. We
must therefore consider a refined notion of quiescence. We say state s in specification s̄ is relatively
quiescent with respect to alphabet Le, denoted by δē(s), if s produces no output of Le, i.e. out(s)∩Le = /0.

Analogous to δ , the suspension traces of s̄ can be enriched by adding the rule s δē=⇒δ s for δē(s) to be
able to formally reason about the possibility of being relatively quiescent with respect to Le. We write
Stracesē(s̄) to denote this enriched set of suspension traces of s̄.

Since the suspension traces of s̄ and ē differ as a result of different alphabets, we introduce a projec-
tion operator which allows us to map the suspension traces of s̄ to suspension traces of ē. The operator
↓Le

is defined as (xσ)↓Le
= xσ↓Le

if x ∈ Le; (xσ)↓Le
= δ (σ↓Le

), if x ∈ {δ ,δē}; otherwise, (xσ)↓Le
= σ↓Le

.

Definition 13 Let IOTS 〈Se, Ie,Ue,→, ē〉 be an implementation. Let IOLTS 〈Ss, Is,Us,→, s̄〉 be a specifi-
cation. We say the behavior of ē is included in s̄, denoted by ē incl s̄ iff

∀σ ∈ Stracesē(s̄) : out(hide[Lv] in ē after σ↓Le
)⊆ out(s̄ after σ)

Example 5 Consider the IOLTSs in Figure 2. We have ē incl s̄. Consider the IOLTS r̄ which has the
same functionality with IOLTS ē except that upon receiving an error signal (error), it may or may not
refund the money (r). The behavior of r̄ is not included in s̄, because of observing the output r in r̄ after
executing (ct)↓Le

while s̄ after execution of ct reaches to a quiescent state.

4.2 Quotienting

We next focus on deriving a quotient of the specification s̄, factoring out the behavior of the platform ē.
A major source of complexity in defining such a quotient is the possible non-determinism that may be
present in s̄ and ē. We largely avert this complexity by utilizing the suspension automata underlying s̄
and ē.

Another source of complexity is the fact that we must reason about the states of two systems running
in parallel; such a system synchronizes on shared actions and interleaves on non-shared actions. We
tame this conceptual complexity by formalizing an executes operator which, when executing a shared
or non-shared action, keeps track of the set of reachable states for the (suspension automata) of s̄ and ē.
Formally, the executes operator is defined as follows.

Definition 14 Let 〈Qs, Is,Us ∪{δ},→s, q̄s〉 be a suspension automaton underlying specification IOLTS
s̄, and let 〈Qe, Ie,U ∪{δ},→e, q̄e〉 be a suspension automaton underlying platform IOLTS ē. Let q ∈
P(Qs×Qe) be a non-empty collection of sets and let x ∈ Ls \ (Le \Lv).
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q executes x =



⋃
σ∈L∗e

⋃
(s,e)∈q

{(q′s,q′e) | s
σ−−→s q′s and e σx−−→e q′e} if x ∈ Lv⋃

σ∈L∗e

⋃
(s,e)∈q

{(q′s,q′e) | s
σx−−→s q′s and e σ−−→e q′e} if x 6∈ Lv⋃

σ∈L∗e

⋃
(s,e)∈q

{(q′s,q′e) | s
σδ−−→s q′s and e σδ−−→e q′e} if x = δ

Using the executes operator, we have an elegant construction of an automaton, called a quotient au-
tomaton, see below, which allows us to define sufficient conditions for establishing the decomposability
of a given specification.

Definition 15 (Quotient Automaton) Let 〈Qs, Is,Us∪{δ},→s, q̄s〉 be a suspension automaton underly-
ing specification s̄, and let 〈Qe, Ie,Ue ∪{δ},→e, q̄e〉 be a suspension automaton underlying platform ē.
The quotient of s̄ by ē, denoted by s̄/ē is a suspension automaton 〈Q, I,U ∪{δ},→, q̄〉 where:

• Q= (P(Qs×Qe)\{ /0})∪Qδ , where Qδ = {qδ | q∈P(Qs×Qe),q 6= /0}; for q /∈Qδ , we set q−1 = q
and for qδ ∈ Qδ , we set q−1

δ
= q.

• q̄ = {(q̄s, q̄e)}.

• I = (Is \ Ie)∪ (Ue \Us) and U = (Us \Ue)∪{δ}∪ (Ie \ Is).

• →⊆ Q×L×Q is the least set satisfying:

a ∈ I q−1 executes a 6= /0

q a−→ q−1 executes a
[I1]

x ∈Uv q /∈ Qδ q−1 executes x 6= /0

q x−→ q−1 executes x
[U1]

x ∈U \Uv ∀(s,e) ∈ q,σ ∈ traces(s)∩ traces(e)∩ (L∗
δ
\L∗

δ
δ ) : x ∈ out(s after σ)

q x−→ q−1 executes x
[U2]

∀(s,e) ∈ q−1,σ ∈ traces(s)∩ traces(e) : δ ∈ out(s after σ)

q δ−→ q−1 executes δ

[δ1]

We briefly explain the construction of a quotient automaton. A non-shared input action is added to a
state in the quotient automaton s̄/ē if an execution of the corresponding state in ē leads to a state in s̄ at
which that action is enabled (I1, in combination with the second case in Definition 14). A shared input
action obeys the same rule except that a state of ē has to be reachable where that input action is taken (I1,
in combination with the first case in Definition 14). Note that a shared input action of s̄/ē is an output
action from the viewpoint of ē. In contrast, a non-shared output action is allowed at a state of s̄/ē only
if it is allowed by s̄ after any possible execution of ē (U2) and a similar rule is applied to quiescence
(δ1). Analogous to the shared input actions, a shared output action is considered as an action of a state
whenever a valid execution of the correspondent states in ē leads to a state at which that output action
is enabled (U1). Because the shared actions are hidden in s̄, a shared output action, in s̄/ē, may also be
enabled at a state reached by δ transitions. Such a sequence of events is invalid due to the definition
of quiescence. The observed problem is solved by adding a special set of states Qδ to the states of the
quotient automaton. These states represent quiescent states corresponding to the reachable states after
executing δ in s̄/ē. Moreover, no shared output action is added to these states.
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ī
ordererror

t

error
δ

error

δ

error

error

δ

error order error

δ

δ

(b) SA ī

Figure 3: Two quotient automata derived using Definition 15

The quotient automaton derived from specification s̄ and platform ē is a suspension automaton: it
is deterministic and it has explicit δ labels. Yet, the quotient automata we derive are not necessarily
valid suspension automata. (As we recalled in Section 2, only valid suspension automata have the same
testing power as ordinary IOLTSs.) We furthermore observe that there some quotient automata that are
valid suspension automata but nevertheless only admit non-shared output bounded implementations as
implementations that conform to the quotient. As observed earlier, such implementations unavoidably
give rise to divergent systems when composed in parallel with the platform.

Example 6 Consider SAs depicted in Figure 3, IOLTSs s̄ and ē in Figure 2 and IOLTS l̄ derived by
removing the internal transition from state s1 to the initial state in s̄. SA r̄ is the quotient of s̄ by ē.
Likewise, SA ī is the quotient of l̄ by ē. Suspension automata r̄ and ī are valid SA regarding the definition
of validity of suspension automata presented in [16] . Assume an arbitrary shared output bounded IOTS
c̄ whose length of the longest sequence on the shared output is n, i.e. out(c̄ after σ)⊆ {tea,δ} for σ =
{error}n. Clearly, c̄���ioco ī, because out(ī after σ) = {error}. However, for any n≥ 0, there is always a
shared output bounded IOTS that conforms to r̄.

In view of the above, we say that a quotient automaton is valid if it is a valid suspension automaton and
strongly non-blocking.

Definition 16 Let s̄/ē be a quotient automaton derived from a specification s̄ and an environment ē. We
say that s̄/ē is valid iff both:

• s̄/ē is a valid suspension automaton, and

• s̄/ē is strongly non-blocking, i.e. ∀q ∈ s̄/ē •out(q)∩((U \Uv)∪{δ}) 6= /0.

Strongly non-blocking ensures that the quotient automaton always admits a shared output bounded im-
plementation that conforms to it. Furthermore, valid quotient automata are, by definition, also valid
suspension automata. Since every valid suspension automaton underlies at least one IOLTS, we there-
fore have established a sufficient condition for the decomposability of a specification.

Theorem 1 Let s̄ ∈ IOLTS(Is,Us) be a specification and let ē ∈ IOTS(Ie,Ue) be an environment. Then s̄
is decomposable for ē if s̄/ē is a valid quotient automaton and ē incl s̄.

Note that the IOLTS underlying the quotient automaton is a witness to the decomposability of the spec-
ification; we thus not only have a sufficient condition for the decomposability of a specification but also
a witness for the decomposition.
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Figure 4: A schematic view of the EFT Switch, a suspension automata of simplified behavioral models
of the EFT switch s̄ and an implementation of the financial component ē, and the quotient of s̄ w.r.t. ē

4.3 Example

To illustrate the notions introduced so far, we treat a simplified model of an Electronic Funds Transfer
(EFT) switch, which we have studied and tested using ioco-based techniques [1]. A schematic view of
this example is depicted in Figure 4(a). An EFT switch provides a communication mechanism among
different components of a card-based financial system. On one side of the EFT switch, there are compo-
nents, with which the end-user deals, such as Automated Teller Machines (ATMs), Point-of-Sale (POS)
devices and e-Payment applications. On the other side, there are banking systems and the inter-bank
network connecting the switches of different financial institutions.

The various involving parties in every transaction performed by an EFT switch in conjunction with
the variety of financial transactions complicate the behavioral model of the EFT switch. Similar to any
other complex software system, the EFT switch comprises many different components, some of which
can be run individually.

A part of the simplified communication model of the EFT switch with a banking system in the
purchase scenario is depicted in Figure 4(b). The scenario starts by receiving a purchase request from a
POS; this initial part of the scenario is removed from the model, for the sake of brevity. Subsequently, the
EFT switch sends a purchase request (p rq) to the banking system. The EFT switch will reverse (rev rq)
the sent purchase request if the corresponding response (p rs) is not received within a certain amount of
time (e.g, an internal time-out occurs, denoted by τ). Due to possible delays in the network layer of the
EFT switch, an external observer (tester) may observe the reverse request of a purchase even before the
purchase request which is pictured in Fig 4(b).

The EFT switch is further implemented in terms of two components, namely, the financial component
and the reversal component. A simplified behavioral model of the financial component is given in Figure
4(c). Comparing the two languages of s̄ and ē, t action (representing time-out) is considered as an internal
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interface between ē and a to-be-developed implementation of the reversal component. Observe that
for every sequence σ in {p rq(δe|rev rq)∗, p rq(δe|rev rq)∗rev rq(δ |δe)

∗, p rq p rs(δe|rev rq)∗(δ |δe)
∗,

(δe|rev rq)∗,(δe|rev rq)∗rev rq(rev rq|p rq)∗(δ |δe)
∗}, it holds that out(hide[t] in ē after σ↓Le

) ⊆
out(s̄ after σ); thus, the behavior of ē is included in s̄. We next instigate investigate decomposability of
s̄ with ē, by constructing the quotient s̄/ē. Note that t is the only shared action which is an input action
from the view point of s̄/ē. The resulting quotient automaton, obtained by applying Definition 15 to s̄
and ē is depicted in Figure 4(d). We illustrate some steps in its derivation. The initial state of the quotient
automaton is defined as the {(s̄, ē)}. Below, we illustrate which of the rules of Definition 15 are possible
from this initial state; doing so repeatedly for all reached states will ultimately produce the reachable
states of the quotient automaton.

1. We check the possibility of adding input transitions to the initial state, i.e. q0 = {(s̄, ē)}. Following
q0 executes t = {(s1,e2)} and deduction rule I1 in Definition 15, the transition q0

t−→ q1 is added
to the transition relation of s̄/ē where q1 = {(s1,e2)} (state 1 in Figure 4(d)).

2. We check the possibility of adding output transitions to q0 = {(s̄, ē)}. We observe that rev rq ∈
out(s̄ after σ) for every σ ∈ {ε, p rq, p rq p rs}. Regarding deduction rule U2, the transition
q0

rev rq−−−→ q2 is added to the transition relation of s̄/ē where q2 = {(s5, ē),(s2,e1),(s2,e3)} (state 2
in Figure 4(d)).

3. Following deduction rule δ1 and δ 6∈ out(s̄ after ε), δ -labeled transition is not added to q0.

The constructed quotient automaton s̄/ē is valid: it is both a valid suspension automaton and strongly
non-blocking. As a result, s̄ is decomposable with respect to ē and s̄/ē is a witness to that.

5 Strong Decomposibility

It is a natural question whether the quotient automaton that we defined in the previous section, along with
the sufficient conditions for decomposability of a specification provide sufficient conditions for strong
decomposability. The proof of Theorem 1 gives some clues to the contrary. A main problem is in the
notion of quiescence, and, in particular in the notion of relative quiescence, which is unobservable in the
standard ioco theory. More specifically, the platform ē may mask the (unwanted) lack of outputs of the
quotient automaton.

A natural solution to this is to consider a subclass of implementations called internal choice IOTSs,
studied in [8, 15]: such implementations only accept inputs when reaching a quiescent state. The propo-
sition below states that strong decomposability can be achieved under these conditions.

Theorem 2 Let s̄ ∈ IOLTS(Is,Us) be a specification and let ē ∈ IOTS(Ie,Ue) be an environment. If s̄ is
decomposable and ē is an internal choice IOTS then s̄ is strongly decomposable and s̄/ē is a witness to
this.

As a result of the above theorem, testing whether the composition of a component c̄ and a platform ē
conforms to specification s̄ reduces to testing for the conformance of c̄ to s̄/ē. This can be done using the
standard ioco testing theory [13].

A problem may arise when trying this approach in practice. Namely, the amount of time and mem-
ory needed for derivation of the ioco test suit increases exponentially in the number of transitions in the
specification due to the nondeterministic nature of the test-case generation algorithm. We avoid these
complexities by presenting an on-the-fly testing algorithm inspired by [4]. Algorithm 1 describes the
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on-the-fly testing algorithm in which sound test cases are generated without constructing the quotient
automaton upfront. We partially explored the quotient automaton during test execution. We use the ex-
tended version of executes operator in Algorithm 1 which is defined on ordinary IOLTSs; the underlying
IOLTSs of suspension automata is used to avoid the complexity of constructing suspension automata, i.e.
executes : P(P(Ss)×P(Se))×Lδ ×P(P(Ss)×P(Se)).

Algorithm 1 Let s̄ ∈ IOLTS(Is,Us) be a specification and let ē ∈ IOTS(Ie,Ue) be an environment. Let
c̄ ∈ IOTS(LI,LU) be an implementation tested against s̄ with respect to ē by application of the following
rules, initializing S with ({(s̄ after ε),(ē after ε)}) and verdict V with None:
while (V 6∈ {Fail,Pass})
{ apply one of the following case:

1. (*provide an input*) Select an a∈ {a∈ LI | S executes a 6= /0}, then S = S executes a and provide
c̄ with a

2. (*accept quiescence*) If no output is generated by c̄ (quiescence situation) and
∀(s,e) ∈ S,σ ∈ Straces(s)∩Straces(e) : δ ∈ out(s after σ) , then S = S executes δ

3. (*fail on quiescence*) If no output is generated by c̄ (quiescence situation) and
(∃(s,e) ∈ S,σ ∈ Straces(s)∩Straces(e) : δ 6∈ out(s after σ)), then V = Fail

4. (*accept a shared output*) If x ∈Uv is produced by c̄ and S executes x 6= /0, then S = S executes x

5. (*fail on a shared output*) If x ∈Uv is produced by c̄ and S executes x = /0, then V = Fail

6. (*accept an output*) If x ∈U \Uv is produced by c̄ and ∀(s,e) ∈ S,σ ∈ Straces(s)∩Straces(e)∩
(L∗

δ
\L∗

δ
δ ) : x ∈ out(s after σ), then S = S executes x

7. (*fail on an output*) If x ∈U \Uv is produced by c̄ and
∃(s,e) ∈ S,σ ∈ Straces(s)∩Straces(e)∩ (L∗

δ
\L∗

δ
δ ) : x 6∈ out(s after σ), then V = Fail

8. (*nondeterministically terminate*) V = Pass }

Termination of the above algorithm with V = Fail implies that the composition of the implementation
under test with ē does not conform to s̄.

Theorem 3 Let s̄∈ IOLTS(Is,Us) be a specification and let ē∈ IOLTS(Ie,Ue) be an internal choice IOTS
environment whose behavior is included in s̄. Let V be the verdict upon termination of Algorithm 1 when
executed on an implementation c̄. If hide[Lv] in c̄||ē ioco s̄ then V = Pass.

6 Conclusions

We investigated the property of decomposability of a specification in the setting of Tretmans’ ioco theory
for formal conformance testing [12]. Decomposability allows for determining whether a specification
can be met by some implementation running on a given platform. Based on a new specification, to which
we refer to as the quotient, and which we derived from the given one by factoring out the effects of
the platform, we identified three conditions (two on the quotient and one on the platform) that together
guarantee the decomposability of the original specification.

Any component that correctly implements the quotient is guaranteed to work correctly on the given
platform. However, failing implementations provide no information on the correctness of the cooper-
ation between the component and the platform. We therefore studied strong decomposability, which
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further strengthens the decomposability problem to ensure that only those components that correctly
implement the quotient are guaranteed to work correctly on the given platform, meeting the overall spec-
ification. This ensures that testing a component against the quotient provides all information needed to
judge whether it will work correctly on the platform and meet the overall specification’s requirements.
However, the complexity of computing the quotient is an exponential problem. We propose an on-the-fly
test case derivation algorithm which does not compute the quotient explicitly. Components that fail such
a test case provably fail to work on the platform, meeting the overall specification, too.

Checking the inclusion relation of a platform may be expensive in practice. As for future work, we
would like to merge the two steps of checking the correctness of the platform and driving the quotient and
investigate whether the constraints on the platform can be relaxed by ensuring that the derived quotient
masks some of the unwanted behavior of the platform.
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