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Abstract

We extend the theory of input-output conformance (IOCO) testing to accommodate behavioral models of software
product lines (SPLs). We present the notions of residual and spinal testing. These notions allow for structuring the
test process for SPLs by taking variability into account and extracting separate test suites for common and specific
features of an SPL. The introduced notions of residual and spinal test suites allow for focusing on the newly introduced
behaviour and avoiding unnecessary re-test of the old one. Residual test suites are very conservative in that they require
retesting the old behaviour that can reach to new behavior. However, spinal test suites more aggressively prune the old
tests and only focus on those test sequences that are necessary in reaching the new behaviour. We show that residual
testing is complete but does not usually lead to much reduction in the test-suite. In contrast, spinal testing is not
necessarily complete but does reduce the test-suite. We give sufficient conditions on the implementation to guarantee
completeness of spinal testing. Finally, we specify and analyze an example regarding the Ceiling Speed Monitoring
Function from the European Train Control System.

Keywords: Model based testing, Input-output conformance testing, Software product lines, Input-output featured
transition systems

1. Introduction

1.1. Motivation
Software product lines (SPLs) have been proposed as a response to the ever-increasing demand for mass pro-

duction and mass customization of software. Since their introduction, SPLs have gained popularity and have been
increasingly used in the practice of software development. Briefly, an SPL consists of a variety of computer systems
(products) that are built upon a common base (platform). The products share several core features, but also differ from
each other in some features, commonly referred to as variability points.

Testing such SPLs is known to be very challenging due to the large spectrum of variability and the complexity of
products. There have been several attempts to provide a structured discipline for testing SPLs. However, it appears
from the recent surveys [3–7] that several fundamental approaches to model-based testing are not yet fully adapted to
and adopted in this domain (also see Section 1.2 for a brief overview of the related work).

The theory of input-output conformance (IOCO) testing [8] is one such fundamental approach that uses labeled
transition systems for model-based testing. The testing hypothesis of this approach is that the behaviour of the imple-
mentation under test can be viewed as an (unknown) input-output labeled transition system that is input-enabled, i.e.,
can accept any input action. We are not aware of any prior work in adapting the theory of IOCO to cater for variability
in SPLs. The present paper addresses this gap by extending IOCO to the setting of SPLs.
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To this end, we propose input-output featured transition systems (IOFTSs) as simple yet expressive behavioural
models of SPLs and adapt the traditional IOCO theory to allow for using IOFTSs (instead of plain input-output
transition system models) as test models for model-based testing. Our approach preserves the testing hypothesis of
IOCO; although we include more information in our test models to capture the structure of SPLs, the interaction with
the system under test only goes via plain input and output actions and the internal structure of the product is not
revealed during the test execution. We define the test suite and the test cases that are generated from an IOFTS, which
can be used for checking conformance. Furthermore, we define two notions of refinement, one at the level of IOFTSs
and another one at the level of test suites, which allow for focusing on particular sets of features and eventually on a
particular product. We show that these two refinements interact nicely, in that they lead to the same set of test cases.
The techniques proposed in this paper are rather generic and we believe these techniques can be adapted to other
model-based testing theories (such as those proposed in [9–12].)

In addition, we take first step towards an efficient and coordinated test process for applying IOCO to SPLs. To
this end, we develop a theoretical framework of residual and spinal test suites. Intuitively, both residual and spinal
test suites are IOFTSs (whose underlying graph is tree-like), which allow one to test the common features once
and for all, and subsequently, only focus on the specific features when moving from one product configuration to
another. However, they differ in their testing power and efficiency: testing power refers to the possibility of rejecting
non-conforming implementations (ideally a test suite is complete, i.e., it can reject each and every non-conforming
implementation by generating at least one failing test case), and efficiency refers to the size of the test-suite. On one
hand, spinal test suites have strictly less testing power than residual test suites; on the other hand, spinal test suites
produce more compact test cases when compared to test cases produced by residual test suites. We show that residual
test suites are complete, i.e., for each product it is always sufficient to use the residual test suite with respect to the
features present in the afore-tested products, whereas spinal test suites are not necessarily complete. Lastly, we also
show that spinal test suites are exhaustive, i.e., they reject each and every non-conforming implementation under test,
when the implementation satisfies the orthogonality criterion. This is a rather mild criterion, which implies that old
features are not capable of disabling any enabled behaviour from the new features on their own and without involving
any interaction with the new feature’s components.

The proposed theory is the first step towards a feature-based analysis [13] of SPLs based on the IOCO theory. For
example, once a feature (combination) selection criterion is fixed, one can use the spinal testing method to focus test
those features (feature combinations) in a selection of concrete products.

1.2. Related work

Various attempts have been made regarding formal and informal modeling of SPLs, of which [14–18] provide
comprehensive surveys. By and large, the literature can be classified into two categories: structural modeling and
behavioural modeling techniques.

Structural models specify variability in terms of presence and absence of features (assets, artifacts) in various
products and their mutual inter-relations. Behavioural models, however, concern the working of features and their
possible interactions, mostly based on some form of finite state machines or labeled transition systems. The main
focus in behavioural modeling of SPLs (cf. [19–25]) has been on formal specification of SPLs and adaptation of
formal verification (mostly model checking) techniques to this new setting. Our notion of input-output featured
transition system is a slight extension of featured transition system [21]. There are few alternatives to FTSs that
could be used as behavioural test models for model-based testing [26]. Such models include the extensions of process
algebras- [24, 27] and Petri nets with features [28], modal transition systems [23, 29] and higher-level models such as
UML state- and sequence-diagrams [30–32].

In this paper, we assume a predefined structure of the SPL in terms of a feature diagram. The structural information
in the feature diagram is used to annotate the behavioural model and steer the test process. An alternative approach to
specifying and programming SPLs is the delta-oriented approach [11, 12, 33–35], where the SPL is specified in terms
of additions to, removals from, or modifications of the core product. Although our work is based on input-output
featured transition systems, we envisage that the ideas pursued in this paper can be adapted to other behavioural test
models and to other conformance testing theories, such as those on finite state machines [9, 10] and on delta-oriented
methods. For example, recently, in [12, 35] related techniques have been explored in the area of delta-oriented SPL
models. For higher-level modeling frameworks, our input-output featured transition systems can serve as a semantic
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domain; this way, our techniques can be applied to higher-level modeling and specification languages (such as UML
state diagrams or domain specific languages).

Several testing techniques have been adapted to SPLs, of which [3–6] provide recent overviews. Hitherto, most
fundamental approaches to formal conformance testing [10] have not been adapted sufficiently to the SPL setting.
The only exceptions that we are aware of are [11] and [36–38], which, respectively, present LTS- and FSM-based
incremental derivation of test suites by applying principles of delta-oriented modeling and incremental testing [33].

This paper integrates and extends the earlier conference and workshop publications of the authors [1, 2]. Namely,
we first proposed the extension of IOCO to Featured Transition Systems in [1] and the definition of spinal test suites
in [2]. The present paper includes complete proofs and more elaborate explanations, which could not be fitted into
the earlier publications due to space limitation. Additionally, the present paper also introduces the notion of residual
test suite as an intermediate step towards the notion of spinal test suite and studies its properties. It also improves
the earlier definition of spinal test suite to make it a subset of residual test suite. The improved definition is shown
to satisfy all its earlier properties. We also apply our theory to an example regarding the Ceiling Speed Monitoring
Function from the European Train Control System [39, 40].

1.3. Running Example

To motivate various concepts throughout the paper, we use the following running example. Consider an informal
description of a cruise controller, present in contemporary cars. The purpose of a cruise controller is to automatically
maintain the speed of the car as specified by the driver.

car

cc cac

Figure 1: Feature diagram of our running example: a cruise controller (cc) with an optional collision controller (cac)

The feature diagram of this example is depicted in Figure 1. We denote the basic feature of a cruise controller by
cc. This feature is mandatory for a car, which is reflected by the filled circle at the end of the relation between car and
cc. Cruise controllers also have an optional feature, called collision avoidance controller (cac), whose task is to react
to any obstacle detected ahead of the car within a danger zone. In case the collision avoidance feature is included in a
cruise controller and an obstacle is detected, the engine power is regulated using an emergency control algorithm. The
fact the cac is optional is depicted by the empty circle at the end of the relation between car and cac. In the feature
diagram, we also see that cac can only be included in products that also include cc; this is depicted by the dashed
arrow from the former feature to the latter.

1.4. Organization

In Section 2, we define the notion of input-output featured transition systems as our basic modeling framework.
In Section 3, a notion of refinement is proposed that allows for projecting the behaviour of an SPL into the behaviour
of a product or a product sub-line. In Section 4, we define the notions of test suite and test case. In Section 5, a notion
of refinement is given on test suites, which allows for deriving more specific test suites from the more generic ones.
In the same section, we show that

• the above-mentioned notions of refinement (i.e., on models and test suites) are consistent in that they lead to the
same set of test cases, and

• the intensional and extensional notions of conformance testing coincide, i.e., non-conformance can always be
established by means of running test-cases.
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We then turn our attention to efficient testing techniques for SPLs. In Section 6, we define the notion of residual test
suites and show that although residual test suites are complete, they do not result in much saving in test effort. In
Section 7, we define spinal test suites which are not necessarily complete, but result in more compact test cases. In
the same section, we show that the incompleteness of spinal test suites can be remedied by imposing mild conditions
on the implementation under test. In Section 8, we specify the Ceiling Speed Monitoring Function and illustrate the
different aspects of our proposed techniques using this example. In Section 9, we conclude the paper and outline the
direction of our ongoing research.

2. Input-Output Featured Transition Systems

Feature diagrams [41, 42] have been used to model variability constraints in SPLs using a graphical notation. A
feature diagram represents all valid products of an SPL in terms of features that are arranged hierarchically. (Note that
the hierarchical structure of features does not imply that the specified products are also arranged hierarchically: the
products are rather the result of interpreting the relations among the different features and hence, may not be related
in any hierarchical form.) Usually, feature diagrams are represented by a directed acyclic graph, of which each node
is a feature. There are different kinds of edges between a parent node (feature) and its children (sub-features), namely,
the ones representing the mandatory sub-features, and the others representing the optional sub-features. Furthermore,
a feature diagram can specify three additional type of constraints on features:

1. Alternative relationship, i.e., the designated sub-features can never be simultaneously present in any product.
2. Exclude relationship, i.e., different features (possibly at different levels of the hierarchy) can never be simulta-

neously present in any product.
3. Require relationship, i.e., if a feature is present in a product, the related feature should also be present in the

same product.

Alternative and exclude relationship are conceptually similar; their difference is in that the alternative relationship is
among sub-features of a single feature, while exclude can be between any two arbitrary features.

A feature diagram only specifies the structural aspects of variability in an SPL. To formally analyze the behaviour
of an SPL, we follow the approach of [21] in annotating the transitions of a labeled transition system with logical
constraints on the presence or absence of features. The features used in such logical constraints are assumed to be
already specified in a feature diagram. We slightly extend the featured transition system of [21] to cater for the
distinction between input and output actions. This is a necessary ingredient for extending the theories of testing, and
particularly IOCO, to this setting.

Let B = {>,⊥} be the set of Boolean constants and let B(F) be the set of all propositional formulae generated
by using the usual propositional logic connectives (e.g., negation, disjunction, conjunction, and implication) and by
interpreting the elements of the set F of features as propositional variables. For instance, in our running example, the
formula cc ∧ ¬cac asserts the presence of cruise controller and the absence of collision avoidance controller.

Definition 1. An input-output featured transition system (IOFTS) is a 6-tuple F = (S , s0, Aτ, F,T,Λ), where

1. S is a set of states.
2. s0 ∈ S is the initial state.
3. Aτ = AI]AO]{τ} is a set of actions, where AI and AO are disjoint sets of input and output actions, respectively,

and τ is the silent (internal) action.
4. F is a set of features.
5. T ⊆ S × Aτ × B(F) × S is the transition relation satisfying the following condition (for every s1, s2 ∈ S , a ∈

Aτ, ϕ, ϕ
′ ∈ B(F)):

(s1, a, ϕ, s2) ∈ T ∧ (s1, a, ϕ′, s2) ∈ T ⇒ ϕ = ϕ′.

Informally, this condition states that for any two transitions with the common source, target, and an action
label, a unique feature constraint is annotated. In practice, one can ensure this condition by the following
normalisation procedure: for each s, s′ ∈ S and a ∈ Aτ, replace all (s, a, ϕi, s′) ∈ T (for each i ∈ I) by
(s, a,

∨
i∈I ϕi, s′). We require this condition to stay close with the original formulation of featured transition

system as proposed in [21].
6. Λ ⊆ {λ : F → B} is a non-empty set of product configurations.
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Notation. We let ϕ, ϕ′ range over the set B(F) of feature constraints and reserve the symbols s, s′, s1, s′1, · · · to denote

the states of an IOFTS. In addition, we write s
a
−→ϕ s′ to denote an element (s, a, ϕ, s′) ∈ T . Graphically, we denote

the initial state of an IOFTS by an incoming arrow with no source state and we refer to an IOFTS by its initial state.
Note that IOFTS are not necessarily finite, e.g., they may be the result of unfolding a symbolic specification with

infinite data types. Our theory can deal with such infinite specifications; for practical applications, however, one needs
to tame the complexity, e.g., by considering finite fault models or finitely feasible model coverage metrics.

Definition 2. Let −→→ ⊆ S × A∗ × S denote the reachability relation of an IOFTS F = (S , s0, Aτ, F,T,Λ), inductively
defined in the following way:

s
ε
−→→>s

s
σ
−→→ϕs′ s′

τ
−→ϕ′ s′′ λ ∈ Λ λ |= ϕ ∧ ϕ′

s
σ
−→→ϕ∧ϕ′ s′′

s
σ
−→→ϕs′ s′

a
−→ϕ′ s′′ a , τ λ ∈ Λ λ |= ϕ ∧ ϕ′

s
σa
−−→→ϕ∧ϕ′ s′′

,

where λ |= ϕ denotes that valuation λ of features satisfies feature constraint ϕ. The set of reachable states from a state
s ∈ S by a trace σ ∈ A∗ is denoted by Reach(s, σ) = {s′ | ∃ϕ s

σ
−→→ϕs′}. Furthermore, we fix Reach(s) = {s′ | ∃σ,ϕ s

σ
−→→

ϕs′} and, for brevity, we write s
a
−→→ s′ if and only if ∃ϕ s

a
−→→ϕs′.

We say an IOFTS F is deterministic if and only if the set Reach(s0, σ) (for any σ ∈ A∗) is singleton. Furthermore,
an IOFTS F is B-enabled (for B ⊆ Aτ) if and only if for every reachable state s ∈ Reach(s0) and an action a ∈ B, we
find a feature constraint ϕ ∈ B(F), a product configuration λ ∈ Λ, and a state s′ ∈ S such that s

a
−→→ϕs′ and λ |= ϕ.

Lastly, we say an IOFTS F is input-enabled, whenever F is AI-enabled.

Our notion of Reach(s, σ) is similar to the corresponding notion of after(s, σ) in the theory of IOCO [8]; the only
difference is that in our notion, the states should be reachable through paths whose constraints are satisfied by some
valid product.

Example 1. Recall our running example of a cruise controller described in Section 1.3. Consider the IOFTS of the
cruise controller, drawn in Figure 2, where inputs and outputs are prefixed with symbols ? and !, respectively, and
the feature constraints are attached to the action labels by the symbol /. Please note that the feature constraints refer
to the features present in the feature diagram depicted in Figure 1, namely, cc stands for the cruise controller feature
and cac stands for the collision avoidance controller feature. (Note that ? and ! are not part of the action names and
are left out when the type of the action is irrelevant or clear from the context.) The regulate action, indicated by rgl,

s0 s1 s2

?on/cc

?off/cc !rgl/cc

?det/cac

?nor/cac

!srgl/cac

Figure 2: IOFTS of the cruise controller.

regulates the engine power of the car when the cruise controller is activated. Furthermore, when cac is included in
a product, some additional behaviour may emerge. Namely, while the cruise controller is on, if an object is detected
within a danger zone, then the cruise controller regulates the engine power in a safe manner denoted by srgl. When
the sensor signals a normal state, the cruise controller returns to the normal regulation regime. (For a realistic case
study of a cruise controller and its formal model, we refer to [43].)

The set of product configurations for this IOFTS includes two products: one including only car and cc, and the
other including car, cc, and cac.

3. Refinement of Models

In [21], a family of operators, parameterised by product configuration, were introduced to project an FTS into a
labeled transition system describing the behaviour of a specific product. In this paper, we generalise this approach by
defining a family of product derivation operators (parameterised by feature constraints), which project the behaviour
of an IOFTS into another IOFTS representing a selection of products (a product sub-line).
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Definition 3. Given a feature constraint ϕ ∈ B(F) and an IOFTS F = (S , s0, Aτ, F,T,Λ), the projection of F into ϕ,
denoted by ∆ϕ(F ), induces an IOFTS (∆ϕ(S ),∆ϕ(s0), Aτδ, F,T ′,Λ′), where

1. ∆ϕ(S ) = {∆ϕ(s) | s ∈ S } is the set of states (N.B. in the set comprehension ∆ϕ(s) is just a new name for the state
and does not have any semantical connotation),

2. ∆ϕ(s0) is the initial state,
3. Aτδ = Aτ ∪ {δ} is the set of actions, where δ is the special action label modeling quiescence [8],
4. T ′ is the smallest relation satisfying:

s
a
−→ϕ′ s′

∃λ (λ ∈ Λ ∧ λ |= (ϕ ∧ ϕ′))

∆ϕ(s)
a
−→ϕ∧ϕ′ ∆ϕ(s′)

(1)
Λ̄ = {λ ∈ Λ | λ |= ϕ ∧Q(s, λ)} Λ̄ , ∅

∆ϕ(s)
δ
−→ϕ∧(

∨
λ∈Λ̄ λ) ∆ϕ(s)

(2)

where the predicate Q(s, λ) holds if and only if ∀s′,a,ϕ′
(
s

a
−→ϕ′ s′ ∧ a ∈ AO ∪ {τ}

)
⇒ λ 6|= ϕ′.

5. Λ′ = {λ ∈ Λ | λ |= ϕ} is the set of product configurations.

Intuitively, rule (1) describes the behaviour of those valid products that satisfy the feature constraint ϕ in addition
to the original annotation of the transition emanating from s. Rule (2) models quiescence (the absence of outputs and
internal actions) from the state ∆ϕ(s). Namely, it specifies that the projection with respect to ϕ is quiescent, when
there exists a valid product λ that satisfies ϕ and is quiescent, i.e., it cannot perform any output or internal transition.
Quiescence at state s for a feature constraint λ is formalised using the predicate Q(s, λ), which states that from state
s there is no output or silent transition with a constraint satisfied by λ. In the conclusion of the rule, a δ self-loop is
specified and its constraint holds when ϕ holds and the feature constraint of at least one quiescent valid product holds.

The ability to observe quiescence is crucial in defining the input-output conformance relation between a specifi-
cation and an implementation. In the original IOCO theory, quiescence is used reject those implementations that fail
to produce any output when they in fact should produce some. In the SPL setting the issue of detecting quiescence
becomes more intricate; namely, at a high level of abstraction, the SPL specification is more allowing (for producing
different outputs) and hence admits less quiescent states. As the SPL specification is refined towards concrete prod-
ucts, the domain of outputs in states becomes more and more restricted and hence, more quiescent states appear. The
way quiescence is defined in rule (2) is essential in the top-down testing methodology prescribed by the refinement
relation: one can start with a more generic test suite and move on to more specific test suites using the refinement
operator and the test results using the more generic test suite remain sound with respect to the more specific test suite
(cf. Section 4 for quiescence in test suites).

Example 2. Consider the feature constraint ϕ = cc ∧ ¬cac. The IOFTS generated by projecting the IOFTS of cruise
controller (in Figure 2) using feature constraint ϕ is depicted in Figure 3. As mentioned before, this represents the
product that has the basic cruise controller functionality but does not contain collision avoidance controller.

s0 s1

δ/cc ∧ ¬cac

?on/(cc ∧ ¬cac)

?off/(cc ∧ ¬cac)

!rgl/(cc ∧ ¬cac)

Figure 3: Cruise controller after projecting with feature constraint cc ∧ ¬cac.

In the sequel, we use the phrase “a feature specification ∆ϕ(s)” to mean an IOFTS (Reach(∆ϕ(s)),∆ϕ(s), Aτδ, F,T,
Λ), where Reach(∆ϕ(s)) is the reachable set of states in products satisfying ϕ given in Definition 2. We interpret the
original IOFTS of Definition 1 as ∆>(s0); this has the implicit advantage of always including quiescence in appropriate
states.

We end this section by the following proposition which relates the traces in the refined specification to those of
the original (more generic) specification. This proposition has been formulated in a slightly different context earlier
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in [44]. As a corollary, it follows that the set of traces of a refined feature specification is a subset of the traces of the
more generic specification.

Proposition 1. For any σ ∈ Aδ
∗ we have, if ∆ϕ∧ϕ′ (s)

σ
−→→ ∆ϕ∧ϕ′ (s′) then ∆ϕ(s)

σ
−→→ ∆ϕ(s′).

Proof. By induction on the depth of the derivation leading to ∆ϕ∧ϕ′ (s)
σ
−→→ ∆ϕ∧ϕ′ (s′) (see Definition 2). The induction

basis, i.e., when σ = ε and derivation is due the left-most axiom, holds trivially. For the induction steps, it suffices
to show that ∆ϕ(s′′)

a
−→ ∆ϕ(s′) whenever ∆ϕ∧ϕ′ (s′′)

a
−→ ∆ϕ∧ϕ′ (s′) for some a ∈ Aτδ. (Once we prove this claim, using

the induction hypothesis, the proven claim, and the last deduction rule used in the derivation of the
σ
−→→ , we obtain

∆ϕ(s)
σ
−→→ ∆ϕ(s′).) We distinguish the following cases based on the type of action.

1. Let a ∈ Aτ. It follows from ∆ϕ∧ϕ′ (s′′)
a
−→ ∆ϕ∧ϕ′ (s′) that there exists a ϕ′′ such that ∆ϕ∧ϕ′ (s′′)

a
−→ϕ∧ϕ′∧ϕ′′ ∆ϕ∧ϕ′ (s′).

From the latter statement and rule (1) in Definition 3, we obtain:

∆ϕ∧ϕ′ (s′′)
a
−→ϕ∧ϕ′∧ϕ′′ ∆ϕ∧ϕ′ (s′)

⇒ s′′
a
−→ϕ′′ s′ ∧ ∃λ∈Λ λ |= ϕ ∧ ϕ′

⇒ s′′
a
−→ϕ′′ s′ ∧ ∃λ∈Λ λ |= ϕ

⇒ ∆ϕ(s′′)
a
−→ϕ∧ϕ′′ ∆ϕ(s′) .

2. Let a = δ. Then, using rule (2) in Definition 3, we obtain

Λ̄ = {λ ∈ Λ | λ |= ϕ ∧ ϕ′ ∧Q(s′′, λ)} ∧ Λ̄ , ∅

⇒ Λ̄′ = {λ ∈ Λ | λ |= ϕ ∧Q(s′′, λ)} ∧ Λ̄′ , ∅

⇒ ∆ϕ(s′′)
δ
−→ϕ∧(∨λ∈Λ̄′ ) ∆ϕ(s′) .

4. Test suite and test cases

The IOCO testing theory [8] formalises model-based testing in terms of a conformance relation between a model
and a system under test (SUT). This relation can be checked by constantly providing the SUT with inputs that are
deemed relevant by the model (expressed as an IOTS: input-output labeled transition system) and observing outputs
from the SUT and comparing them with the possible outputs prescribed by the model. The IOCO theory is based on
the testing assumption that the behaviour of the system under test can be expressed by an input-enabled IOTS, which
is unknown to the tester. In addition to the above-sketched extensional definition of IOCO, there is an equivalent
intensional definition, which relies on comparing the traces of the underlying IOTSs.

In what follows, we first extend the intensional notion of conformance between any two feature specifications
(Definition 5). To be consistent with the theory of IOCO, we base our theory on the same testing assumption as
IOCO. In particular, our testing hypothesis requires that no product under test refuses any input. Then, using the
concept of test suite (Definition 6), we give an extensional definition of the class of test cases for a given specification
∆ϕ(s).

To formally define both the intensional and the extensional notion of IOCO, we need the notion of suspension
traces [8] in an IOFTS. Informally, a suspension trace is a trace that may also contain quiescence. For example, in the
IOFTS of Example 2, δ ?on !rgl is a suspension trace starting from the initial state s0.

Definition 4. The set of suspension traces of a feature specification ∆ϕ(s) is defined as:

Straces(∆ϕ(s)) =
{
σ ∈ Aδ

∗ | Reach(∆ϕ(s), σ) , ∅
}
.

Intuitively, the IOCO relation asserts that the experiments derived from a feature specification (i.e., the suspension
traces of a feature specification) and executed on the implementation under test, result in outputs among those that are
prescribed by the feature specification.
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Definition 5. An implementation modeled as a feature specification ∆ϕ(i) is input-output conforming to a specification
modeled as a feature specification ∆ϕ′ (s), denoted by ∆ϕ(i) vioco ∆ϕ′ (s), if and only if

out(Reach(∆ϕ′ (s), σ)) ⊆ out(Reach(∆ϕ(i), σ)),

for every suspension trace σ ∈ Straces(∆ϕ′ (s)), where out(X) denotes the set of output enabled from the states in the
set X, i.e., out(X) = {a ∈ AO ∪ {δ} | ∃s∈X,s′ s

a
−→ s′}.

Next, with the help of the following theorem, we establish a formal link between the refinement of feature con-
straints and the IOCO relation (cf. Corollary 1).

Theorem 1. Let Λ be the set of valid products of a feature specification ∆ϕ(s). Then, the following statements hold.

1. If ∆ϕ(s)
σ
−→→ϕ̄ ∆ϕ(s′) (for some σ, ϕ̄, s′) then ∃λ∈Λ λ |= ϕ̄.

2. Let ϕ′ be a feature constraint such that ∀λ λ |= ϕ =⇒ λ |= ϕ′. If ∆ϕ(s)
σ
−→→ϕ̄ ∆ϕ(s′) and λ |= ϕ̄ (for λ ∈ Λ), then

∃ϕ̂ ∆ϕ′ (s)
σ
−→→ϕ̂ ∆ϕ′ (s′) ∧ λ |= ϕ̂.

3. Let ϕ′ be a feature constraint such that ∀λ λ |= ϕ =⇒ λ |= ϕ′. Then, Straces(∆ϕ(s)) ⊆ Straces(∆ϕ′ (s)).

Proof. Item (1) follows directly from the induction on ϕ and the definition of reachability relation. Next, again
using induction on σ we prove (2). Let Λ,Λ′ be the set of valid products of the feature specifications ∆ϕ(s),∆ϕ′ (s),
respectively. Without loss of generality, assume σ = σ′a, for some σ′ ∈ Straces(∆ϕ(s)), a ∈ Aδ (the case when σ = ε

holds vacuously). Then there are states s′, s′′ such that ∆ϕ(s)
σ
−→→ϕ̄ ∆ϕ(s′)

a
−→ϕ̄∧ϕ̄′ ∆ϕ(s′′). We distinguish the following

two cases:

• Let a ∈ Aτ. Then ϕ̄′ is the feature constraint associated with the triple (s′, a, s′′). By the definition of reachability
relation and the semantics of ∆, we find a product λ ∈ Λ such that λ |= ϕ̄∧ ϕ̄′. Thus, λ |= ϕ̄′. Moreover, from the
inductive hypotheis we find a feature constraint ϕ̂ such that ∆ϕ′ (s)

σ
−→→ ϕ̂ ∆ϕ′ (s′) and λ |= ϕ̂. Thus, we conclude

that ∆ϕ′ (s)
σa
−−→→ϕ̂∧ϕ̄′∆ϕ′ (s′′) and λ |= ϕ̂ ∧ ϕ̄′.

• Let a = δ. Then, by the semantics of ∆ we know that ϕ̄′ = ϕ ∧
∨
λ̄∈Λ̄ λ and Λ̄ = {λ̄ ∈ Λ | λ̄ |= ϕ ∧Q(s′, λ̄)} , ∅.

Moreover, using the definition of reachability relation we find a product λ ∈ Λ such that λ |= ϕ̄ ∧ ϕ̄′. I.e., there
is a λ ∈ Λ̄ such that λ |= ϕ̄ ∧ ϕ ∧

∨
λ̄∈Λ̄ λ̄. Using the assumption on ϕ′, we have λ |= ϕ′ (since λ |= ϕ). Consider

the set Λ̄′ = {λ′ ∈ Λ′ | λ′ |= ϕ′ ∧Q(s′, λ′)}. Clearly, λ ∈ Λ̄′ and thus, Λ̄′ , ∅.

Moreover, from the induction hypothesis we find a feature constraint ϕ̂ such that ∆ϕ′ (s)
σ
−→→ϕ̂ ∆ϕ′ (s′) and λ |= ϕ̂.

Let ϕ̂′ = ϕ′ ∧
∨
λ′∈Λ̄′ λ

′. Then, we find ∆ϕ′ (s)
σδ
−−→→ϕ̂∧ϕ̂′∆ϕ′ (s′) and λ |= ϕ̂ ∧ ϕ̂′.

(3) directly follows from (1) and (2), i.e., symbolically, (1) ∧ (2) =⇒ (3).

Corollary 1. Let ϕ, ϕ′ be two feature constraints such that ∀λ λ |= ϕ ⇒ λ |= ϕ′. If ∆ϕ′′ (s′) vioco ∆ϕ′ (s) ∧ ∆ϕ(s) vioco
∆ϕ(s), for some ϕ′′, s′, then ∆ϕ′ (s′) vioco ∆ϕ(s).

Proof. Let σ ∈ Straces(∆ϕ(s)). Then, we need to show that out(Reach(∆ϕ′ (s′), σ)) ⊆ out(Reach(∆ϕ(s), σ)).
From Theorem 1, we know that σ ∈ Straces(∆ϕ′ (s)). Thus, we have

out(Reach(∆ϕ′′ (s′), σ)) ⊆ out(Reach(∆ϕ′ (s), σ)) ⊆ out(Reach(∆ϕ(s), σ)).

Next we give an operational definition (in the sense of [45]) of test suites, which allows for generating a test suite
for a product line and refining it into test suites for more specific sub-lines (and eventually generating test cases for a
specific product).

Definition 6. The test suite for an IOFTS (Reach(∆ϕ(s)),∆ϕ(s), Aτδ, F,T,Λ), denoted by T (s, ϕ), is the IOFTS (X ∪
{pass, fail}, (X0, ε), Aδ, F,T ′,Λ), where
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1. X =
{(
{s′ | ∆ϕ(s)

σ
−→→ ∆ϕ(s′)}, σ

)
| σ ∈ Straces(∆ϕ(s))

}
is the set of intermediate states and {pass, fail} is the set

of verdict states,
2. (X0, ε) is the initial state of the test suite, where X0 = {s′ | ∆ϕ(s)

ε
−→→ ∆ϕ(s′)},

3. Aδ = A ] {δ} is the set of actions, and
4. the transition relation T ′ is defined as the smallest relation satisfying the following rules.

a ∈ Aδ

(X, σ), (Y, σa) ∈ X

(X, σ)
a
−→ϕ (Y, σa)

(3)

a ∈ AO ∪ {δ}
(X, σ)

a
−→ϕ (Y, σ′)

(X, σ)
a
−→ϕ pass

(4)

a ∈ AO ∪ {δ}

¬

(
(X, σ)

a
−→ϕ pass

)
(X, σ)

a
−→ϕ fail

(5)
a ∈ AO ∪ {δ}

pass
a
−→ϕ pass

fail
a
−→ϕ fail

(6)

Intuitively, the test suite for a feature specification is an IOFTS (possibly with an infinite number of states) which
compactly represents all possible test cases that can be generated. Rule (3) states that if X and Y are nonempty sets
of reachable states from s (under feature restriction ϕ) with the suspension traces σ and σa, respectively, then there
exists a transition of the form (X, σ)

a
−→ϕ (Y, σa) in the test suite.

Rules (4) and (5) model, respectively, the successful and the unsuccessful observation of outputs and quiescence.
Note that input actions are not included in rules (4) and (5) because the implementation is assumed to be input-enabled
[8]; hence, they are only covered in rule (3). Rule (6) states that the verdict states contain self-loop for every output
action and quiescence. Our notion of test-suite bears some resemblance to the notion of suspension automaton in [8];
the former is an extension of the latter with verdicts and with feature constraints.

{s0}, ε· · ·

fail{s1}, on{s0}, on off

· · ·

fail

{s1}, on off on

{s2}, on off on det

· · ·

{s2}, on det

· · ·

{s1}, on rgl

{s2}, on rgl det

· · ·

rgl, srgl

δ

δ, srgl

on

off
δ

rgl, srgl

on

det

srgl

det

srgl

rgl

det

srgl

Figure 4: The test suite of the cruise controller example. Note that, for the sake of readablity, only two failed verdict states are drawn.

Example 3. The test suite for the IOFTS of Example 2 is (partially) depicted in Figure 4.

The following properties are immediate from the rules given in Definition 6.

Lemma 1. If (X, σ)
σ′

−−→→ (Y, σ′′) then σ′′ = σσ′.

Proof. By induction on σ′. The base case, when σ′ = ε, holds trivially. For the induction step, let σ′ = σ′1a and

(X, σ)
σ′1
−−→→ (Z, σ1)

a
−→ (Y, σ2) for some σ1, σ

′
1, σ2 ∈ Aδ

∗, a ∈ Aδ. Then by the induction hypothesis we have σ1 = σσ′1.
Moreover, from rule 3 we obtain σ2 = σ1a which further implies that σ2 = σ1a = σ(σ′a) = σσ′, which was to be
shown.

9



Lemma 2. Let (X0, ε) be the initial state of the test suite generated from a feature specification ∆ϕ(s). If (X0, ε)
σ
−→→

(X, σ) then ∀s′ ∆ϕ(s)
σ
−→→ ∆ϕ(s′) ⇔ s′ ∈ X.

Proof. Direct from the construction of intermediate states in Definition 6(1).

Lemma 3. Let (X0, ε) be the initial state of the test suite generated from a feature specification ∆ϕ(s). If ∆ϕ(s)
σ
−→→

∆ϕ(s′) for some s′ then ∃X (X0, ε)
σ
−→→ (X, σ) ∧ s′ ∈ X.

Proof. Direct from the construction of intermediate states in Definition 6(1) because the set X = ({s′ | ∆ϕ(s)
σ
−→→

∆ϕ(s′)}, σ), whenever σ ∈ Straces(∆ϕ(s)).

Lemma 4. If (X, σ)
σ′

−−→→ (Y, σσ′) and (X, σ)
σ′

−−→→ (Z, σσ′) then Y = Z.

Proof. By induction on σ′. The base case, when σ′ = ε, holds trivially because X = Y = Z. For the inductive case, let

σ′ = σ′′a (for σ′′ ∈ Aδ
∗, a ∈ Aδ), (X, σ)

σ′

−−→→ (Y, σσ′), and (X, σ)
σ′

−−→→ (Z, σσ′). By the induction hypothesis we have

(X, σ)
σ′′

−−→→ (Y ′, σσ′′) and (X, σ)
σ′′

−−→→ (Z′, σσ′′) with Y ′ = Z′ and (Y ′, σσ′′)
a
−→ (Y, σσ′′a), (Y ′, σσ′′)

a
−→ (Z, σσ′′a).

Furthermore, from deduction rule 3 in Definition 6, we obtain Y = Z.

Note that our test suites are inherently infinite structures (if the system allowed for infinite interactions) and hence,
to obtain the traditional notion of finite test cases, we need to restrict them to a certain depth. Next, we formalise the
intuition that a test case is a finite projection of a test suite, plus the restriction that at each moment of time at most
one input can be fed into the system under test (cf. [8]).

Definition 7. Given a test suite T (s, ϕ) with initial state (X0, ε), the set of test cases of T up depth n, denoted by
tn(X0, ε), is an IOFTS whose transition relation is the minimal relation satisfying the following two deduction rules:

(X, σ)
a
−→ϕ (Y, σ′) |σ′| < n

tn(X, σ)
a
−→ϕ tn(Y, σ′)

(7)
(X, σ)

a
−→ϕ Y Y ∈ {pass, fail}

tn(X, σ)
a
−→ϕ Y

(8),

and the following restrictions due to Tretmans [8]:

1. For any reachable state X such that tn(X0, ε)
σ
−→→ X, either ι(X) = {a} ∪ AO (for some a ∈ AI) or ι(X) = AO ∪ {δ},

where ι(X) = {a | ∃Y X
a
−→ Y}.

2. For any reachable state X such that tn(X0, ε)
σ
−→→ X, if X

a
−→ pass then ∀Y X

a
−→ Y ⇒ Y = pass.

A test case of depth n for a feature specification ∆ϕ(s) is tn(X0, ε), where (X0, ε) is the initial state of the test suite
generated from ∆ϕ(s).

Example 4. Recall the feature specification ∆>(s0) from Figure 2. A test case of depth 1 generated from the test suite
of the feature specification ∆ϕ(s1) is shown in Figure 5.

({s0}, ε)

pass fail({s1}, on)

on

δ, srglrgl

δ rgl, srgl

Figure 5: A test case of the cruise controller.

A reader familiar with the original IOCO theory [8] will immediately notice that our definition of a test suite
(Definition 6) is nonstandard. In particular, a test suite is defined as a set of test cases (i.e., input-output transition
systems with certain restrictions) with a finite number of states in [8]; whereas we represent a test suite by an IOFTS,
possibly with an infinite number of states. Nevertheless, we defined a test case to be a finite projection of a test-suite
with the additional restriction that at each moment of time at most one input can be fed into the system under test.
(Note that inputs to the system are represented as outputs of the test suite / test case and vice versa.) As a result, our
test cases are structurally similar to Tretmans’ formulation of the test cases, by which we mean that:
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• a test case is always deterministic and input enabled (Proposition 2).

• a test case has no cycles except those in the verdict states pass and fail (Proposition 3).

Another notable difference, which is key to define the concepts of Section 7, is that the states of a test suite (or test
case) carry a structure (i.e., denote the sets of reachable states and the trace of actions to reach them), whereas the
states of a test case in [8] are abstract and carry no structure.

Proposition 2. A test case is always deterministic and AO ∪ {δ}-enabled.

Proposition 3. A test case has no cycles except those in the verdict states pass and fail.

Next, we show that our intensional and extensional notions of testing coincide. To do so, we recall the definition
of the synchronous parallel composition operator e| that allows for modeling a test run on an implementation (cf. [8]).
The synchronous parallel composition operator e| is defined over a test suite and an IOFTS (the implementation under
test) as follows. Note that the calligraphic letters X,Y in the following rules range over the states of a test suite.

X
a
−→ Y ∆ϕ(s)

a
−→ ∆ϕ(s′) a ∈ A

Xe|∆ϕ(s)
a
−→> Ye|∆ϕ(s′)

(9)
∆ϕ(s)

τ
−→ ∆ϕ(s′)

Xe|∆ϕ(s)
τ
−→> Xe|∆ϕ(s′)

(10)
X

δ
−→ Y ∆ϕ(s)

δ
−→ ∆ϕ(s′)

Xe|∆ϕ(s)
δ
−→> Ye|∆ϕ(s′)

(11)

By having a notion of running a test suite on a feature specification (representing the behaviour of the implementation
under test), we can now define what it means for a feature specification to pass (fail) a test suite. Informally, a test
suite is passed by a feature specification if and only if no interaction between the test suite and the feature specification
leads to the fail verdict state.

Definition 8. Let (X0, ε) be the initial state of the test suite T (s, ϕ). A feature specification ∆ϕ′ (s′) passes the test
suite T (s, ϕ) if and only if

∀σ∈Aδ∗,s′′,X (X0, ε)e|∆ϕ′ (s′)
σ
−→→ Xe|∆ϕ′ (s′′)⇒ X , fail

Next we prove that the intensional and the extensional characterization of the vioco relation coincide, i.e., vioco can
always be checked by means of the generated test suite.

Theorem 2. A feature specification ∆ϕ′ (s′) passes the test suite T (s, ϕ) if and only if ∆ϕ′ (s′) vioco ∆ϕ(s).

Proof. (⇐) Suppose the feature specification ∆ϕ′ (s′) passes the test suite T (s, ϕ) whose initial state is (X0, ε) and
∆ϕ(s) 6vioco ∆ϕ′ (s′). Then, for some suspension trace σ ∈ Straces(∆ϕ(s)) and a ∈ AO ∪ {δ} we have

a ∈ out(Reach(∆ϕ′ (s′), σ)) and a < out(Reach(∆ϕ(s), σ)).

Thus, ∃s′′ (X0, ε)e|∆ϕ′ (s′)
σa
−−→→ faile|∆ϕ′ (s′′). But, ∆ϕ′ (s′) passes the test suite; hence, a contradiction follows.

(⇒) Suppose ∆ϕ′ (s′) vioco ∆ϕ(s). Then we prove by contradiction that the feature specification ∆ϕ′ (s′) passes the
test suite T (s, ϕ) whose initial state is (X0, ε). Without loss of generality, let (X0, ε)e|∆ϕ′ (s′)

σ
−→→ (X, σ)e|∆ϕ′ (s′1)

a
−→

faile|∆ϕ′ (s′2), for some X, σ, s′1, s
′
2, a ∈ AO ∪ {δ}. From Lemma 2 we have σ ∈ Straces(∆ϕ(s)). Furthermore, from

the semantics of a test suite and by the definition of reachability relation we have a < out(Reach(∆ϕ(s), σ)) and
a ∈ out(Reach(∆ϕ′ (s′), σ)), respectively. Thus, ∆ϕ′ (s′) 6vioco ∆ϕ(s), which leads to contradiction.

We end this section by giving an application of the above theorem.

Example 5. Recall the feature specification ∆ϕ(s) of the cruise controller from Example 2. Consider a faulty imple-
mentation of the cruise controller as shown in Figure 6, where all the transitions are labelled with feature constraint
>. Note that this implementation is faulty because δ ∈ out(Reach(t), on) whereas δ < out(Reach(∆ϕ(s)), on). Then,
Theorem 2 suggests that such an information can be inferred by interacting the faulty implementation with the test
suite of the feature specification. In particular, when we compose the faulty implementation in Figure 6 in parallel

with the test suite depicted in Figure 4, the trace ({s0}, ε)e|t
on
−−→ ({s1}, on)e|t′

δ
−→ faile|t′ leads to fail verdict state.

11



t t′
on

offδ δ

Figure 6: A faulty implementation of the cruise controller.

5. Refinement of test suites

In this section, we define the notion of refinement on test suites, to project them into more specific product sub-
lines and eventually into products. As the main result of this section, we show that the two notions of refinements (the
one on IOFTS as models defined in Section 2 and the other defined in this section) are consistent. More precisely, we
show that restricting a test suite of the feature specification ∆ϕ(s) by a feature constraint ϕ′ is isomorphic to the test
suite of the feature specification ∆ϕ∧ϕ′ (s).

Definition 9. Two states X and Y are isomorphic, denoted X � Y, if there exists a bijection f : Reach(X) →
Reach(Y) such that f preserves the transition structure, i.e.,

∀X1,X2∈Reach(X),a X1
a
−→ X2 ⇔ f (X1)

a
−→ f (X2).

Next, we introduce the projection operator ∆t
ϕ that restricts the behaviour of the test suite of the feature specifica-

tion ∆ϕ(s) by ϕ′.

Definition 10. Let (X ∪ {pass, fail}, (X0, ε), Aδ, F,T,Λ) be the test suite generated from a feature specification ∆ϕ(s).
For a feature constraint ϕ′, the test-projection operator ∆t

ϕ′ (_) induces an IOFTS

({∆t
ϕ′ (x) | x ∈ X} ∪ {pass, fail},∆t

ϕ′ (X0, ε), Aδ, F,T ′,Λ′),

where the transition relation T ′ is defined as the smallest relation satisfying the following rules.

(X, σ)
a
−→ϕ (Y, σ′)

∃λ (λ ∈ Λ ∧ λ |= ϕ′)

∆t
ϕ′ (X, σ)

a
−→ ∆t

ϕ′ (Y, σ
′)

(12)

a ∈ AO ∪ {δ}
∆t
ϕ′ (X, σ)

a
−→ϕ ∆t

ϕ′ (Y, σ
′)

∆t
ϕ′ (X, σ)

a
−→ pass

(13)

a ∈ AO ∪ {δ}

¬

(
∆t
ϕ′ (X, σ)

a
−→ϕ pass

)
∆t
ϕ′ (X, σ)

a
−→ fail

(14)
a ∈ AO ∪ {δ}

pass
a
−→ϕ pass

fail
a
−→ϕ fail

(15)

The component Λ′ is defined as Λ′ = {λ ∈ Λ | λ |= ϕ′}.

Note that, similar to Definition 3, the notation ∆t
ϕ′ (x) in the set comprehension in Definition 10, is used to give a

new name to the states of the refined test suite and does not have any semantical connotation.
Intuitively, rule (12) states that if an a-transition can be executed in the test suite for the specification ∆ϕ(s) (i.e.,

(X, σ)
a
−→ (Y, σa)) and there exists a product configuration in the test suite that satisfies ϕ′ then the a-transition can be

executed in the restricted test suite. Rules (13) and (14) model the successful and the unsuccessful observations of
outputs and quiescence, respectively.

The remainder of this section is devoted to proving the main result (see Figure 7) of this section which states that
restricting a test suite leads to an isomorphic test suite by restricting a feature specification.

Theorem 3. Let (X0, ε) and (X′0, ε) be the initial states of the test suites T (s, ϕ) and T (s, ϕ ∧ ϕ′), respectively. Then,
∆t
ϕ′ (X0, ε) � (X′0, ε).
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∆ϕ(s) (X0, ε)

∆ϕ∧ϕ′ (s) (X′0, ε) � ∆t
ϕ′ (X0, ε)

test suite generation

test suite generation

∆ϕ′ (_) ∆t
ϕ′ (_)

Figure 7: An illustration of Theorem 3

The main idea is to construct a bijection between the reachable states of the two test suites such that it preserves
the transition structure. Consider the following definition of a mapping f : Reach(∆t

ϕ′ (X0, ε)) → Reach(X′0, ε) as a
candidate for the isomorphism:

f (∆t
ϕ′ (X, σ)) = (Y, σ) if ∆t

ϕ′ (X0, ε)
σ
−→→ ∆t

ϕ′ (X, σ) ∧ (X′0, ε)
σ
−→→ (Y, σ);

f (pass) = pass;
f (fail) = fail.

(1)

In the following, through a series of lemmas, we prove some properties on the restriction of test suite of the specifica-
tion ∆ϕ(s) under ϕ′ that ensures the above mapping is a bijection.

Lemma 5. The mapping f defined in (1) is a function.

Proof. Direct from Lemma 4.

Lemma 6, which is similar to Lemma 4, states that a unique state is always reachable for every trace in the
restricted test suite. This lemma is required to show that the function f is indeed injective.

Lemma 6. Let (X0, ε) be the initial state of the test suites T (s, ϕ). Then,

∆t
ϕ′ (X0, ε)

σ
−→→ ∆t

ϕ′ (Y, σ) ∧ ∆t
ϕ′ (X0, ε)

σ
−→→ ∆t

ϕ′ (Z, σ) ⇒ Y = Z.

Proof. Direct from Lemma 4.

Lemma 7 states that any reachable state in the test suite of the specification ∆ϕ∧ϕ′ (s) is a subset of a reachable state
in the restricted test suite (see Figure 8 for an illustration, where the subset relationship is indicated by a partition).
Lemma 7 together with Lemma 4 ensure that the function f defined in (1) is indeed surjective.

(X′0, ε)∆t
ϕ′ (X0, ε) (X, σ) ∆t

ϕ′ (Y, σ)σ

Figure 8: An illustration of Lemma 7, where X0 and X′0 are the initial states of the test suites generated from ∆ϕ(s) and ∆ϕ∧ϕ′ (s), respectively.

Lemma 7. Let (X0, ε) and (X′0, ε) be the initial states of the test suites T (s, ϕ) and T (s, ϕ ∧ ϕ′), respectively. If

(X′0, ε)
σ
−→→ (X, σ) then ∃Y ∆t

ϕ′ (X0, ε)
σ
−→→ ∆t

ϕ′ (Y, σ) ∧ X ⊆ Y.

Proof. We prove this lemma by induction on σ. We identify the following cases:

1. Let σ = ε. We need to show that X′0 ⊆ X0.

s′ ∈ X′0 (Assumption)

⇒ ∆ϕ∧ϕ′ (s)
ε
−→→ ∆ϕ∧ϕ′ (s′) (Lemma 2)

⇒ ∆ϕ(s)
ε
−→→ ∆ϕ(s′) (Proposition 1)

⇒ s′ ∈ X0 (Lemma 2) .
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2. Let σ , ε. Suppose (X′0, ε)
σ
−→→ (X, σ)

a
−→ (X′, σa). By the induction hypothesis we have

∃Y ∆t
ϕ′ (X0, ε)

σ
−→→ ∆t

ϕ′ (Y, σ) ∧ X ⊆ Y.

Furthermore, by construction of sets X, X′ we have

∃s1∈X,s2∈X′∆ϕ∧ϕ′ (s1)
a
−→ ∆ϕ∧ϕ′ (s2)

⇒ s1 ∈ Y ∧ ∆ϕ(s1)
a
−→ ∆ϕ(s2) (X ⊆ Y and Proposition 1)

⇒ ∃Y ′ (Y, σ′)
a
−→ (Y ′, σ′a) ∧ s2 ∈ Y ′ (Lemma 3)

⇒ ∆t
ϕ′ (Y, σ

′)
a
−→ ∆t

ϕ′ (Y
′, σ′a) (12).

Next, we need to show that X′ ⊆ Y ′. Let s′2 ∈ X′, for some s′2 ∈ S . Then there is a transition ∆ϕ∧ϕ′ (s1)
a
−→

∆ϕ∧ϕ′ (s′2), for some s1 ∈ X. And from Proposition 1 we get ∆ϕ(s1)
a
−→ ∆ϕ(s′2). But, we know that X ⊆ Y and

from Lemma 2 we get s′2 ∈ Y ′; hence, X′ ⊆ Y ′.

Lastly, the following lemma states that a trace in the test suite T (s, ϕ) when restricted under ϕ′ is a suspension
trace of the specification ∆ϕ∧ϕ′ (s).

Lemma 8. Let (X0, ε) be the initial state of the test suiteT (s, ϕ). If ∆t
ϕ′ (X0, ε)

σ
−→→ ∆t

ϕ′ (X, σ) thenσ ∈ Straces(∆ϕ∧ϕ′ (s)).

Proof. Suppose ∆t
ϕ′ (X0, ε)

σ
−→→ ∆t

ϕ′ (X, σ). Then by construction of X we have ∃s′∈X ∆ϕ∧ϕ′ (s)
σ
−→→ ∆ϕ∧ϕ′ (s′). Thus,

σ ∈ Straces(∆ϕ∧ϕ′ (s)).

Proof of Theorem 3. Recall the mapping f from (1). Clearly, Lemmas 4, 6, and 7 ensure that f is a bijection from
Reach(∆t

ϕ′ (X0, ε)) to Reach(X′0, ε). Thus, it remains to be shown that f preserves the transition structure. Let X
a
−→ Y,

for some X,Y ∈ Reach(∆t
ϕ′ (X0, ε)). The case when X is either pass or fail is trivial. Hence, the interesting case is

when X = ∆t
ϕ′ (X, σ). We further distinguish the following cases:

1. Let Y = ∆t
ϕ′ (Y, σ

′). Then, from Lemma 8 we know that σ′ ∈ Straces(∆ϕ∧ϕ′ (s)); thus, there exists Y ′ such

that (X′0, ε)
σ′

−−→→ (Y ′, σ′). Hence, f (Y) = (Y ′, σ′). For the converse, suppose f (X)
a
−→ (Y ′, σ′), for some

(Y ′, σ′) ∈ Reach(X0, ε). Using Lemmas 6 and 7 we have f (Y) = (Y ′, σ′), for some Y ∈ Reach(X0, ε).
2. Let Y = pass. Then,

X
a
−→ pass

⇔ ∃Y,σ′X
a
−→ ∆t

ϕ′ (Y, σ
′) (rule (13))

⇔ f (X)
a
−→ f (∆t

ϕ′ (Y, σ
′)) (Case 1)

⇔ f (X)
a
−→ pass (rule (4)).

3. Let Y = fail. Suppose otherwise f (X)
a
−→ pass. Then, from rule (4) we know that there exist Y ′, σ′ such that

f (X)
a
−→ (Y ′, σ′). And by Lemma 7 we have ∃Y X

a
−→ (Y, σ). But, X

a
−→ fail; hence, a contradiction follows.

For the converse, suppose X
a
−→ pass and f (X)

a
−→ fail. Then, from rule (13) we know that there exist Y, σ′ such

that X
a
−→ ∆t

ϕ′ (Y, σ
′). And from Case 1 we know that f (X)

a
−→ f (Y, σ′), which again leads to a contradiction

because f (X)
a
−→ fail.

Corollary 2. Let (X0, ε) be the initial state of the test suite T (s, ϕ). If (X0, ε)e|∆ϕ′′ (s′)
σ
−→→ faile|∆ϕ′′ (s′) then, for every

ϕ′, we have
∆t
ϕ′ (X0, ε)e|∆ϕ′′ (s′)

σ
−→→ faile|∆ϕ′′ (s′).

Proof. The result follows directly from the fact that ∆t
ϕ′ (X0, ε)

σ
−→→ fail, whenever (X0, ε)

σ
−→→ fail.
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6. Residual test suites

As mentioned in the introduction, one of the challenges in testing a software product line is to minimise the test
effort. The idea pursued in this section and the next one is to organise the test process of a product line incrementally.
This is achieved by reusing the test results of an already tested product to test a product with similar features, thereby
dispensing with the test cases targeted at the common features. To this end, we introduce the notion of residual test
suite, which prunes away the behaviour of a specified set of features from an abstract test suite T (s, ϕ) with respect to
a concrete test suite T (s, λ) of the already tested product λ. We begin with the definition of the predicate newλ(σ, a)
asserts whether there is an a-transition after the suspension trace σ that is “new” with respect to the tested product λ.
Formally,

newλ(σ, a)⇔ σ ∈ Straces(∆λ(s)) ∧ ∃s′,s′′ ∆ϕ(s)
σ
−→→ ∆ϕ(s′)

a
−→ϕ′ ∆ϕ(s′′) ∧ λ 6|= ϕ′.

newλ(σ)⇔ ∃a∈Aδ newλ(σ, a).

As an example, consider the product λ which enables the basic feature of cruise controller and disables the optional
feature of collision avoidance controller, i.e., λ(cc) = > and λ(cac) = ⊥. Then, the predicate newλ(on, det) holds for
the feature specification given in Figure 2, because from the state the event det is enabled, whose feature constraint is
not satisfied by λ. In other words, after the suspension trace on of the feature specification, some new behaviour can
emerge with respect to the product specified by λ.

Now we are ready to formally define a residual test suite.

Definition 11. Let (X ∪ {pass, fail}, (X0, ε), Aδ, F,T,Λ) be the test suite generated from a feature specification ∆ϕ(s)
and let λ be a product such that λ |= ϕ. Then a residual test suite with respect to λ, denoted by Rλ(s, ϕ), is an IOFTS
(X′ ∪ {pass, fail}, (X0, ε), Aδ, F,T ′,Λ′), where

1. The set of non-verdict states X′ is defined as the smallest set satisfying the following conditions:
(a) If (X, σ) ∈ X ∧ newλ(σ) then (X, σ) ∈ X′.
(b) If (X, σ) ∈ X′ and (Y, σ′) ∈ Reach(X, σ) then (Y, σ′) ∈ X′.
(c) If (Y, σ′) ∈ X′ and (Y, σ′) ∈ Reach(X, σ) then (X, σ) ∈ X′.

2. The set of transition relations T ′ is defined as

T ′ = {(X, a,Y) ∈ T | X,Y ∈ X}.

3. The set of product configurations Λ′ = Λ \ {λ}.

Intuitively, condition 1(a) asserts that if a state of the given test suite has new behaviour with respect to the product
λ then this state is also a state of a residual test suite. Condition 1(b) asserts that all states that are reachable from a
state with new behaviour (w.r.t. λ) are also the states of a residual test suite. Lastly, condition 1(c) asserts that if a
state ((X, σ) ∈ X) of the given test suite leads to a state that has new behaviour (w.r.t. λ) then the state (X, σ) is also a
state of a residual test suite. (Note that due to tree structure of test-suites, the backward path from any new state to the
initial state is unique.) Next, we define the notion of residual test case, which exploits a residual test suite in order to
test the new features.

Definition 12. A residual test case of Rλ(s, ϕ) is any finite projection of a residual test-suite satisfying the following
conditions:

1. from each state, there is at most one outgoing input transition,
2. all leaves are labeled either pass or fail, and
3. from every non-leave state, there is a state (X, σ) reachable such that newλ(σ) holds.

Unfortunately, with the notion of residual test suite there is little gain in discarding the ‘common’ transitions. For
instance, the residual test suite does not allow to prune any transition from the original test suite (Figure 4) of the
cruise controller specification. However, using an example, we explain when residual test suites actually removes
some transitions from a given test suite. Consider the feature specification ∆>(s1) drawn in Figure 9 and two products
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a′/ f ′ a/ f

b′/ f ′ c′/ f ′ b/ f c/ f

Figure 9: An example illustrating when residual test suites prunes away transitions from the original test suite.

λ, λ′ defined as λ( f ) = >, λ( f ′) = ⊥ and λ′( f ) = ⊥, λ′( f ′) = >. Now while constructing the residual test suite R′λ(s,>)
we note that all of the paths labelled with a′, a′b′c′, a′b′c′b′, · · · will be pruned from the original test suite T (s,>).

Thus, in hindsight, a residual test suite Rλ(s, ϕ) prunes only those paths in the test suite T (s, ϕ) that do not lead
to any new behaviour with respect to an already tested product λ. Therefore, in the next section, we explore a notion
of spinal test suite in which it is possible to prune more behaviour than a residual test suite. We end this section by
showing that our notion of residual testing is complete (Theorem 4), i.e., a concrete test suite of a tested product λ
together with a residual test suite Rλ(s, ϕ) has the same testing power as the test suite T (s, ϕ).

Theorem 4. If a feature specification ∆ϕ′ (s′) passes the test suites T (s, λ) and Rλ(s, ϕ) with λ |= ϕ, then ∆ϕ′ (s′) passes
the test suite T (s, ϕ).

Proof. We will prove this theorem by contradiction. Let ∆ϕ′ (s′) pass the test suites T (s, λ) and Rλ(s, ϕ), whose initial
states are (X′0, ε) and (X0, ε), respectively. Suppose ∆ϕ′ (s′) fails in passing the test suite T (s, ϕ). Then, there exists

the following sequences of transitions (X0, ε)
σ
−→→ fail and ∆ϕ′ (s′)

σ
−→→ ∆ϕ′ (s′′) (for some σ, s′′) in the test suite T (s, ϕ)

and the feature specification ∆ϕ′ (s′). (Note that the initial states of the test suite T (s, ϕ) and Rλ(s, ϕ) are identical by
construction.) There are two possibilities:

1. Either σ ∈ Straces(∆λ(s)), then there is a path (X′0, ε)
σ
−→→ (X, σ), for some X, in the test suite T (s, λ). Since

λ |= ϕ then there is a path (X0, ε)
σ
−→→ (Y, σ), for some Y , in the test suite T (s, ϕ). But this contradicts the

above-mentioned transition (X0, ε)
σ
−→→ fail.

2. Or σ < Straces(∆λ(s)), then the sequence of transitions (X0, ε)
σ
−→→ fail can be decomposed in the following way:

(X0, σ)
σ′

−−→→ (X, σ′)
σ′′

−−→→ fail with σ = σ′σ′′ and newλ(σ′). Thus, X0
σ′σ′′

−−−−→→ fail is a transition in the residual
test suite Rλ(s, ϕ) and the feature specification ∆ϕ′ (s′) fails to pass the residual test suite Rλ(s, ϕ); hence, a
contradiction follows.

7. Spinal test suites

In the previous section, we pruned test suites by allowing only those reachable states in the abstract test suite from
which a new behaviour relative to the already tested product emanates. However, we noticed there that, despite the
completeness result (Theorem 4), such a strategy does not result in any considerable saving in the test effort.

For example, consider the test suite depicted in Figure 4 and suppose we have already tested the cruise controller
without collision avoidance feature and now are interested in the correct implementation of the collision avoidance fea-
ture. By following the aforementioned strategy of pruning, none of the following states ({s1}, on), ({s1}, on off on), · · ·
will be removed because event det is enabled from each of these states. On the other hand, since we know that cruise
controller without collision avoidance feature was already tested, it is safe to consider the new suspension traces (or
testing experiments) from only one state in {({s1}, on), ({s1}, on off on), · · · }.

Definition 13. Let X0 be the initial state of a test suite T (s, ϕ). An execution X0
σ
−→→ (X, σ) is a spine of an execution

X0
σ′

−−→→ (X, σ′), denoted by σ†σ′, when σ is a sub-trace of σ′ (obtained by removing zero or more action from σ′)
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and no two states visited in the former execution (during the trace σ) have the same X-component; this is formalised
by the predicate bt(X, σ), defined below:

∀σ1,σ2,σ3,Y,Z
(
X0

σ1
−−→→ (Y, σ1)

σ2
−−→→ (Z, σ2)

σ3
−−→→ (X, σ) ∧ σ2 , ε ∧ σ = σ1σ2σ3

)
⇒ Y , Z.

Furthermore, we let bt(X0) = >.

Example 6. Recall the feature specification given ∆ϕ(s0) in Example 2, where ϕ = cc ∧ ¬cac. Since collision
avoidance controller is an optional feature, we know that there exists a product configuration λ with λ(cc) = > and
λ(cac) = ⊥. Then, the execution labelled “on” (in the test suite drawn in Figure 4) is a spine of the execution labelled
“on off on” because they both reach to a common X-component {s1} in the test suite and bt({s1}, on) = >.

Definition 14. Let (X∪{pass, fail},X0, Aδ, F,T,Λ) be a test suite T (s, ϕ) and let λ be a product such that λ |= ϕ. Then
a spinal test suite with respect to a product λ, denoted by S(ϕ, λ), is an IOFTS (X′ ∪ {pass, fail},X0, Aδ, F,T ′,Λ′),
where

1. The set of non-verdict states X′ is defined as X′1 ∪ X′2, where

X′1 = {(X, σ) ∈ X | σ ∈ Straces(∆λ(s)) ∧ bt(X, σ)}

X′2 = {(Y, σaσ′) ∈ X | newλ(σ, a) ∧ ∃X (X, σ) ∈ X′1 ∧ (X, σ)
aσ′
−−→→ (Y, σaσ′)}.

2. The set of transition relations T ′ is defined as

T ′ = {(X, a,Y) ∈ T | X,Y ∈ X′}.

3. The set of product configurations Λ′ = Λ \ {λ}.

Intuitively, Condition 1 defines X′ to be a set of non-verdict states of the form (X, σ) such that σ is a suspension
trace of the already tested product ∆λ(s) and the predicate bt(X, σ) holds; whereas, X′′ is the set of non-verdict states
reachable from a state in X′ by a trace that is not a suspension trace of the tested product ∆λ(s). Condition 2 and 3 are
self-explanatory.

As an example, the spinal test suite generated from the test suite in Figure 4 is partially drawn in Figure 10.

{s0}, εpass fail

{s1}, on failpass

{s2}, on det fail· · ·

· · ·

rgl, srglδ

δ, srgl

on

rgl

δ, rgl

det

nor

sgl

Figure 10: Spinal test suite of the cruise controller

The spinal test suite S(ϕ, λ) contains the spines of those executions from the test suite T (s, ϕ) that lead to new
behaviour w.r.t. to the already-tested product λ. Next, we show that the spinal test suite S(ϕ, λ) is not necessarily
exhaustive for an arbitrary implementation under test, i.e., it may have strictly less testing power than the test suite
T (s, ϕ). We exemplify this through the following example.
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nor

det
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srgl

Figure 11: A faulty implementation of the cruise controller with control avoidance.

Example 7. Consider an implementation of a cruise controller with a collision avoidance feature modeled as the
IOFTS depicted in Figure 11. Clearly, this implementation is a faulty one as the action ‘rgl’ must be prohibited after
detecting an obstacle, i.e., after executing the transition labeled ‘det’.

As soon as we place the test suite (Figure 4) in parallel (e|) with the above-given implementation, we observe that
the following synchronous interactions emerge: on.off.on.det.rgl, which lead to the fail verdict state. However, note
that the aforementioned fault in the implementation cannot be detected while interacting with the spinal test suite of
Figure 10, because there are no transitions labeled with off in the spinal test suite. Thus, a spinal test suite S(ϕ, λ) has
strictly less testing power than the test suite T (s, ϕ).

Next, we explore when a spinal test suite S(ϕ, λ) (where λ |= ϕ) together with a concrete test suite T (s, λ) have
the same testing power as the abstract test suite T (s, ϕ).

Definition 15. Let λ |= ϕ. A feature specification ∆ϕ′ (s′) is orthogonal w.r.t ∆ϕ(s) and the product λ iff

∀s1,σ′,a,σ′′

(
newλ(σ′, a) ∧ ∆ϕ′ (s′)

σ′aσ′′
−−−−−→→ ∆ϕ′ (s1)

)
⇒ ∃s2,σ ∆ϕ′ (s′)

σaσ′′
−−−−→→ ∆ϕ′ (s2) ∧ σ†σ′.

Example 8. Recall the feature specification ∆ϕ(s0) and the product λ (which omits the control avoidance feature)
from Example 6. Note that the implementation given in Figure 11 is not orthogonal w.r.t the feature specification
∆ϕ(s0) and the product λ because the underlined subsequence in “on off on det rgl” cannot be extended with the spine
sequence on.

In the remainder, we prove the main result (Theorem 5) of this section that an orthogonal implementation passes
the test suite T (s, ϕ) whenever it passes the concrete test suite T (s, λ) and the spinal test suite S(ϕ, λ).

Lemma 9. Let (X0, ε) be the initial state of a test suite T (s, ϕ) and let λ be a product with λ |= ϕ. If (X0, ε)
σ′aσ′′
−−−−−→→ fail,

newλ(σ′, a), and σ†σ′ then (X0, ε)
σaσ′′
−−−−→→ fail.

Proof sketch. Let us first decompose the sequence of transitions (X0, ε)
σ′σ′′

−−−−→→ fail as (X0, ε)
σ′

−−→→ (X, σ′)
σ′′

−−→→ fail,
for some X. Then by definition of a spine execution we get (X0, ε)

σ
−→→ (X, σ). Next, it is straightforward to show by

induction on σ′′ that (X, σ)
aσ′′
−−−→→ fail, whenever (X, σ′)

aσ′′
−−−→→ fail and newλ(σ′, a).

Theorem 5. Let ∆ϕ′ (s′) be orthogonal w.r.t. to ∆ϕ(s) and λ. If ∆ϕ′ (s′) passes the test suites T (s, λ) and S(ϕ, λ), then
∆ϕ′ (s′) passes the test suite T (s, ϕ).

Proof. Let X0 be the initial state of the test suite T (s, ϕ). We will prove this theorem by contradiction. Let ∆ϕ′ (s′)
pass the test suites T (s, λ) and S(ϕ, λ). Suppose ∆ϕ′ (s′) fails in passing the test suite T (s, ϕ). Then, there exists the
following sequences of transitions (X0, ε)

σ
−→→ fail and ∆ϕ′ (s′)

σ
−→→ ∆ϕ′ (s′1) (for some σ, s′1) in the test suite T (s, ϕ) and

the feature specification ∆ϕ′ (s′). Now there are two possibilities:

1. Either, σ ∈ Straces(∆λ(s)). Similar to the corresponding case of Theorem 4.
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2. Or, σ < Straces(∆λ(s)). Then, the sequence of transitions (X0, ε)
σ
−→→ fail can be decomposed in the following

way: (X0, ε)
σ1aσ2
−−−−→→ fail with σ = σ1aσ2 and newλ(σ1, a). Since the feature specification ∆ϕ′ (s′) is orthogonal

w.r.t. ∆ϕ(s) and λ, we have

∃s′2,σ
′
1

∆ϕ′ (s′)
σ′1aσ2
−−−−→→ ∆ϕ′ (s′2) ∧ σ′1†σ1.

Then, by applying Lemma 9 we get the following execution in the spinal test suite: X0
σ′1aσ2
−−−−→→ fail. Thus, ∆ϕ′ (s′)

fails to pass the spinal test suite S(ϕ, λ); hence, a contradiction.

8. The Ceiling Speed Monitoring Function - A Case-Study

In this section, we apply the residual and spinal testing techniques to a part of an actual software system taken
from [39, 40]. The goal is to give an empirical estimate in the reduction of testing effort when comparing the spinal
test suites with the residual test suites. In addition, we will also show how a model checker can be used to generate
(residual/spinal) test suites up to finite depth. To this end, we exploit the model-checker within the mCRL2 toolset.
(mCRL2 [46, 47] is a specification language based on ACP-style process algebra that incorporates data-enriched
behavioural modelling of computer systems.)

To demonstrate these points, we test the Ceiling Speed Monitoring (CSM) system – a part of the European Train
Control System [39, 40] – that ensures the maximal speed allowed abides by the current most restrictive speed profile.

As stated before, the case study is supposed to serve two purposes: firstly, to provide a proof of concept for our
test technique and an initial evidence / refutation of its efficiency gain and secondly, to give an idea how our technique
can be implemented using an off-the-shelf state-space generation or reachability analysis tool.

8.1. Modeling

A reason for selecting this case-study is the challenge – identified by the authors of [39] – in automated derivation
of the test cases that are insensitive to change in a parameter which marks the availability of service brakes. Typical
hardware configuration of a train is as follows: a train must have an emergency brake feature; however, a train may
have a service brake feature. The idea is that a train without service brake feature must use emergency brake feature
to decrease the speed of a train regardless of the situation, whereas the train with service brake feature must use
emergency brake feature only in an emergency situation.

In Figure 12, an IOFTS modelling the CSM system is depicted. This model is derived from the Mealy machine
obtained in [39, 40] after employing the equivalence class partitioning technique of [48] on the original SysML model
of the CSM system. The translation from Mealy machine to an IOFTS is as follows: every transition of the form

s
a/b
−−→ s′ is interpreted as s

?a
−→> ◦

!b
−→> s′ in the IOFTS. Thus, the states depicted as rounded rectangles in Figure 12

correspond to the states of the Mealy machine of the CSM system, whereas the states depicted as white dots in
Figure 12 are the intermediate states which are introduced due to our translation from the Mealy machine of the CSM
system. Lastly, the variability in the CSM model is reflected by the presence/absence of service brakes, which is
modelled by the proposition s and its negation.

8.2. Generating Test Suites

Without further elaborating the details of the CSM model, in the remainder, we discuss how to generate test suites
in the sense of Definition 6. The key observation is that if we forget the verdict states (pass and fail) from the test
suite of feature specification ∆ϕ(s), then this mathematical structure is nothing but an unfolding of the determinised
version of ∆ϕ(s). Although constructing a deterministic transition system from a nondeterministic one is an expensive
procedure, automated tools such as mCRL2 are capable of achieving this. Furthermore, the unfolding operation can
be easily encoded as the synchronous parallel composition between a transition system and an unbounded queue that
only grows in one direction and synchronises on every action (regardless of input and output polarity) of the transition
system. Next, we formalise these ideas and present a method to generate a test suite from a feature specification.
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Figure 12: An abstract IOFTS modelling the ceiling speed monitor. For the sake of readability, the quiescent transitions (self-loops) and the true
feature constraint > are not drawn.

Consider a feature specification ∆ϕ(s) with F and Λ as the set of features and the set of valid products, respectively.
We write ∆ϕ(s) after σ = {∆ϕ(s)′ | ∆ϕ(s)

σ
−→→ ∆ϕ(s)′} (for σ ∈ Aδ

∗) as the set of reachable states via the trace σ. Next,
we associate a transition relation between the sets of reachable states:

∆ϕ(s) after σ
a
−→ϕ ∆ϕ(s) after σ′ ⇐⇒ σ′ = σa.

Then, the obtained structure (
⋃
σ∈Straces(∆ϕ(s)) ∆ϕ(s) after σ,∆ϕ(s) after ε, Aδ, F,→ϕ,Λ) forms a deterministic IOFTS

associated with a given feature specification ∆ϕ(s). Such structures in the literature are called suspension automata
(cf. [8] and also Section 4 in this paper). Note that a suspension automaton in general may violate the tree property.

Proposition 4. The suspension automaton of a feature specification is always deterministic.

Now in order to handle the verdict states, we add pass and fail states in the states of a suspension automaton and
enrich the transition relations of a suspension automaton with the following conditions akin to rules (4), (5), and (6).

1. If σ,σa ∈ Straces(∆ϕ(s)) and a ∈ AO ∪ {δ}, then add the transition ∆ϕ(s) after σ
a
−→ pass.

2. If σ ∈ Straces(∆ϕ(s)), σa < Straces(∆ϕ(s)), and a ∈ AO ∪ {δ}, then add the transition ∆ϕ(s) after σ
a
−→ fail.

3. Add self-loops for every a ∈ AO ∪ {δ} at the verdict states, i.e., pass
a
−→ pass and fail

a
−→ fail.

We call such structures extended suspension automata.
Consider the following definition of queue as a form of transition system: (Aδ

∗, {σ
a
−→ σa | σ ∈ Aδ

∗, a ∈ Aδ}, ε)
with ε as the initial state. Furthermore, consider the following synchronous parallel composition between an extended
suspension automaton and the queue defined as the smallest relation satisfying (where X,Y are states in an suspension
automaton):

X
a
−→ϕ Y σ

a
−→ σa

X | σ
a
−→ϕ Y | σa

.

As a result, we have the following method to generate test suites from a feature specification.
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Theorem 6. The test suite generated by a feature specification is isomorphic to the synchronous parallel composition
between the extended suspension automaton and the queue ε. Furthermore, the test suite generated by a feature
specification up to depth n is isomorphic to the synchronous parallel composition between the extended suspension
automaton and the bounded queue up to length n.

Proof. Let (X0, ε) be the initial state of the test suite generated by a feature specification ∆ϕ(s). Let ∆ϕ(s) after ε
be the initial state of the extended suspension automaton associated with the feature specification ∆ϕ(s). Notice that
the sets of features and valid products in the two IOFTSs (i.e., the generated test suite and the extended suspension
automaton) are identical by construction. Thus, it remains to find a witnessing isomorphism between the two. To
prove this, we define a function

f : Reach(X0, ε)→
⋃

σ∈Straces(∆ϕ(s))

{∆ϕ(s) after σ | σ} ∪ {pass, fail}

as follows: f (X) = Y if and only if

• If X ∈ {pass, fail}, then Y = X.

• If X = (X, σ), then Y = ∆ϕ(s) after σ | σ.

It is then straightforward to verify that the function f is a witnessing isomorphism between the test suite and the
parallel composition of the extended suspension automaton with the empty queue.

We took the following steps (using the mCRL2 tool-set) to obtain a bounded test case from the IOFTS given in
Figure 12.

• Firstly, the IOFTS depicted in Figure 12 was manually translated into a set of guarded linear process equations,
where the guards model the feature constraints.

• Secondly, the verdict states and their associated transitions (cf. rules (4), (5), and (6)) are manually added into
the mCRL2 specification. Note that the original IOFTS model is deterministic, so the suspension automaton
remains isomorphic to the IOFTS drawn in Figure 12.

• Thirdly, a queue process term is defined whose data structure is a (finite) list over the alphabet of the CSM
model. Lastly, the queue process term is composed with the mCRL2 specification modelling the CSM model.

8.3. Generating Residual and Spinal Test Suites

Next, we show how to use the mCRL2 model checker to generate residual test suites. Recall that a residual test
suite prunes away the behaviour of a specified set of features from an abstract test suite T (s, ϕ) with respect to a
concrete test suite T (s, λ) of the already tested product λ |= ϕ. The idea is to lift this pruning operation to an extended
suspension automaton, instead of applying it directly on the abstract test suite T (s, ϕ) (cf. Definition 11).

Definition 16. Let T (s, ϕ) be a test suite generated by a feature specification ∆ϕ(s) with F and Λ be the set of
features and the set of valid products, respectively. Furthermore, let λ |= ϕ be an already tested product and let
∆ϕ(s) after ε be the extended suspension automaton. Then, a residual suspension automaton (w.r.t. λ) is an automaton
(X ] {pass, fail},∆ϕ(s) after ε, Aδ, F,→ϕ,Λ \ {λ}) satisfying:

1. The set of non verdict states X is defined as the smallest set satisfying:
(a) If newλ(σ) then ∆ϕ(s) after σ ∈ X.
(b) If ∆ϕ(s) after σ ∈ X and σ � σ′ then ∆ϕ(s) after σ′ ∈ X.
(c) If ∆ϕ(s) after σ ∈ X and σ′ � σ then ∆ϕ(s) after σ′ ∈ X.

2. The transition relation is defined just like in the case of extended suspension automaton.

As a result, we have the following alternative way to generate residual test suites from a feature specification.
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Theorem 7. The residual test suite generated by a feature specification is isomorphic to the synchronous parallel
composition between the residual suspension automaton and the queue ε. Furthermore, the residual test suite gen-
erated by a feature specification up to depth n is isomorphic to the synchronous parallel composition of the residual
suspension automaton and the bounded queue up to length n.

Proof. Similar to Theorem 6. Function f defined in Theorem 6 is a witnessing isomorphism between the residual test
suite and the synchronous parallel composition of a residual suspension automaton with the empty queue.

We now turn our attention to the generation of spinal test suites using the mCRL2 tool set.
The stark point differentiating spinal test suites from residual test suites is that the former only keeps the spinal

executions of the already tested product that lead to new behaviour, rather than keeping all executions leading to new
behaviour. In order to encode spinal executions in mCRL2, we introduce a concept of spinal queues, which maintains
the lists of actions and processes as its data structure.

Definition 17. Let ∆ϕ(s) be a feature specification with the set of features F and the set of valid products Λ. Fur-
thermore, let X = {∆ϕ(s) after σ | σ ∈ Straces(∆ϕ(s))} whose elements are ranged over by the symbols X,Y . Then,
a spinal queue for a feature specification ∆ϕ(s) and an already tested product λ |= ϕ is an automaton (Aδ

∗ × X∗ ×
B, (ε,∆ϕ(s) after ε,⊥), Aδ, F,→ϕ,Λ \ {λ}), whose initial state is (ε,∆ϕ(s) after ε,⊥) and the transition relation→ϕ is
defined as the smallest relation satisfying the following rules:

X
a
−→ϕ Y newλ(σ, a)

(σ, ρX,⊥)
a
−→ϕ (σa, ρXY,>)

X
a
−→ϕ Y

(σ, ρX,>)
a
−→ϕ (σa, ρXY,>)

X
a
−→ϕ Y ¬newλ(σ) Y < ρ

(σ, ρX,⊥)
a
−→ϕ (σa, ρXY,⊥)

.

Theorem 8. The spinal test suite generated by a feature specification is isomorphic to the synchronous parallel com-
position between the extended suspension automaton and the spinal queue. Furthermore, the spinal test suite gener-
ated by a feature specification up to depth n is isomorphic to the synchronous parallel composition of the extended
suspension automaton and the bounded spinal queue up to length n.

Proof. Let (X0, ε) be the initial state of the spinal test suite generated by a feature specification ∆ϕ(s) w.r.t. an already
tested product λ |= ϕ. Let ∆ϕ(s) after ε be the initial state of the extended suspension automaton associated with the
feature specification ∆ϕ(s). Notice that the sets of features and valid products in the two IOFTSs (i.e., the generated
spinal test suite and the extended suspension automaton) are identical by construction. Thus, it remains to find a
witnessing isomorphism between the two. To prove this, we define a function

f : Reach(X0, ε)→
⋃

σ∈Straces(∆ϕ(s))

{∆ϕ(s) after σ | (σ, ρ, b)} ∪ {pass, fail}

as follows: f (X) = Y if and only if

• If X ∈ {pass, fail}, then Y = X.

• If X = (X, σ) and σ ∈ Straces(∆λ(s)), then Y = ∆ϕ(s) after σ | (σ, ρ,⊥), where ρ is the list of X-component
traversed in the order of the executions σ from the initial state (X0, ε).

• If X = (X, σ), σ ∈ Straces(∆ϕ(s)) and σ < Straces(∆λ(s)), then Y = ∆ϕ(s) after σ | (σ, ρ,>), where ρ is the list
of X-component traversed in the order of the execution σ from the initial state (X0, ε).

It is straightforward to verify that the function f is a witnessing isomorphism between the test suite and the parallel
composition of the extended suspension automaton with the empty queue.
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Test case depth Test suite type Number of states Number of transitions

n = 2 Normal / Residual 1804 1839
Spinal 1535 1565

n = 3 Normal / Residual 22805 23128
Spinal 16396 16649

n = 4 Normal / Residual 294594 295673
Spinal 175167 175870

Table 1: A comparison of different test suites for the CSM model generated by mCRL2 tool-set.

8.4. Results and discussion

We used the above-given models to generate traditional IOCO, residual, spinal test-cases of depths 2 to 4. The
mCRL2 toolset was able to efficiently handle such models and generate state spaces in the order of a few seconds to
a few minutes on an off-the-shelf ordinary laptop.

In Table 1, we report the state space, i.e., test case, sizes of the given depths for our CSM model. As it can be
noted, applying the definitions of residual test suite/suspension automaton on the CSM model does not remove any
state or transition from the original model (Figure 12). This is to be expected because the whole specification is a
strongly connected component and all paths can potentially lead to new behavior with the emergency break. However,
spinal test suites do bring about a reduction in the state space and the reduction increases from ca. 15% in the case of
test cases of depth 2 to ca. 40% for test cases of depth 4.

The reduction introduced by spinal test suites seems substantial. We envisage that combining the idea of spinal test
suites with firstly, a feature selection and combination criteria, and secondly, a feature interaction detection mechanism
(e.g., a syntactic method for checking orthogonality) can lead to a practical testing technique for SPLs.

This is a small scale case study and in order to evaluate the practical applicability of our method, we need to
model various larger case studies and combine our method with different feature selection criteria (e.g., pairwise
feature selection and maximal feature selection).

9. Conclusions

In this paper, we extended the theory of input-output conformance (IOCO) to use behavioural models of software
product lines for conformance testing. In addition, we developed a theoretical framework for generating test suites
incrementally based on the features included in different products. To this end, we defined the notions of residual
and spinal test suites, which reach to the untested behaviour through a trace of already tested behaviour. In residual
testing all such traces are included, which in practical cases, will lead to little or no saving in test effort. However,
spinal testing allows for saving test effort by only going through a minimal set of tested traces to cover the untested
behaviour. We showed that residual testing is always exhaustive, while spinal testing is only exhaustive under some
(rather mild) conditions.

In the future, we would like to study orthogonality at a higher level of abstraction (i.e., in a modeling or pro-
gramming language) and identify sufficient syntactic conditions for the orthogonality criterion. Also, implementing
the notion of spinal test-suite and applying it to practical cases is another item in our future to-do list. To this end,
reachability analysis and satisfiability solving can be used to check for new behaviour in the definition of spinal test
suites. Moreover, when orthogonality fails, e.g., due to feature interaction, we would like to identify the semantic
differences and include them as an input to the test-case generation process.

Adapting the model-based coverage criteria to the SPL setting and incorporating them into the notion of test suite
is another item in our agenda in order to make our theory of conformance testing applicable to practical case studies.

The notion of exhaustiveness used in IOCO and adopted in our theory is only of theoretical interest. For real-
world applications, one has to come up with a finitely feasible notion of coverage, e.g., fault coverage [49] or model
coverage [50, 51] to refine the test case generation- and the test case execution method and tame their complexity.
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