
Compositional Learning for Interleaving Parallel Automata

Faezeh Labbaf1[0000−0002−8812−6702], Jan Friso Groote2[0000−0003−2196−6587],
Hossein Hojjat1,3[0000−0002−4743−8750], and Mohammad Reza Mousavi4[0000−0002−4869−6794]

1 Tehran Institute for Advanced Studies (TeIAS), Khatam University, Iran
f.labaf@khatam.ac.ir

2 Eindhoven University of Technology, The Netherlands
j.f.Groote@tue.nl

3 University of Tehran, Iran
hojjat@ut.ac.ir

4 King’s College London, UK
mohammad.mousavi@kcl.ac.uk

Abstract. Active automata learning has been a successful technique to learn the behaviour
of state-based systems by interacting with them through queries. In this paper, we develop
a compositional algorithm for active automata learning in which systems comprising inter-
leaving parallel components are learned compositionally. Our algorithm automatically learns
the structure of systems while learning the behaviour of the components. We prove that our
approach is sound and that it learns a maximal set of interleaving parallel components. We
empirically evaluate the effectiveness of our approach and show that our approach requires
significantly fewer numbers of input symbols and resets while learning systems. Our empirical
evaluation is based on a large number of subject systems obtained from a case study in the
automotive domain.

1 Introduction

Active automata learning has been successfully used to learn models of complex industrial systems
such as communication- and security protocols [11], biometric passports [2], smart cards [1], large-
scale printing machines [33], and lithography machines for integrated circuits [32,15]; we refer to
the recent survey by Howar and Steffen on the practical applications of active automata learning
[16]. Throughout these applications of automata learning, scalability issues have been pointed out
[32,15]. It has also been suggested that compositional learning, i.e., learning a system through
learning its components, is a promising approach to tame the complexity of learning [10,12].

Some early attempts have been recently made in learning structured models of systems [27,10]
(we refer to the Related Work for an in-depth analysis). For example, the approach proposed by
al-Duhaiby and Groote [10] decomposes the learning process into learning its parallel components;
however, it relies on a deep knowledge of the system under learning, and the intricate interaction of
the various actions being learned. In this paper, we propose an approach based on Dana Angluin’s
celebrated L∗ algorithm [6], to learn the components of a system featuring an interleaving parallel
composition. Our approach, called CL∗, does not assume any pre-knowledge of the structure and
the alphabet of these components; instead, we learn this information automatically and on-the-fly,
while providing a rigorous guarantee of the learned information. This is particularly relevant in the
context of legacy and black-box systems where architectural discovery is challenging [8,22].

The gist of our approach is to learn the System Under Learning (SUL) in separate components
with disjoint alphabets. We start with a partition comprising only singleton sets. The interleaving

2 F. Labbaf et al.

q0 q1

p0 p1

a/1

b/1 a/0

b/0

c/1

d/0

c/0

d/1

(a)

a/1

a/0 b/1

d/0

d/1

c/1

(b)

a/1

a/0

b/0
d/0

d/1

c/1

(c)

Fig. 1: (a) Initial system with two concurrent FSMs (b) Partition the input alphabet to 4 elements
and learn each component individually (c) Use the counter-example ab to merge two components

parallel composition of the components gives us the total behavior of the system. We pass the result
to the teacher, and by exploiting the counter-examples returned, we iteratively merge the alphabet
of the individual components.

Example. Figure 1(a) shows an example of two parallel Finite State Machines (FSMs) over the
input alphabet {a, b, c, d} and output alphabet {0, 1}. We start by partitioning the alphabet into
disjoint singleton sets of elements. The parallel composition of the 4 learned FSMs of Figure 1(b)
does not comply with the original system, and the teacher may return the counter-example ab.
The string ab generates the output sequence 10 in (a) but the output sequence in (b) is 11. The
counter-example suggests to merge the sets {a} and {b} and restart the learning process which
leads to the FSMs in Figure 1(c). One further merging step results in learning the original system.
We provide a theoretical proof of correctness of this compositional construction, meaning that it is
guaranteed to construct a correct system.

To study the effectiveness of our approach in practice, we designed an empirical experiment to
investigate the following two research questions:

RQ1 Does CL∗ require fewer resets, compared to L∗?

RQ2 Does CL∗ require fewer input symbols, compared to L∗?

Our research questions are motivated by the following facts: 1) Resets are a major contributing
factor in learning practical systems as they are immensely time- and resource consuming [31]. Hence,
reducing the number of resets can have a significant impact in the learning process. 2) The total
number of symbols used in interacting with the system under learning provides us with a total
measure of cost for the learning process and hence, reducing the total cost is a fair indicator of
improved efficiency [36,9].

To answer these questions, we use a benchmark based an industrial automotive system. We
design a number of experiments on learning various combinations of components in this system,
gather empirical data, and analyse them through statistical hypothesis testing. Our results indicate
that our compositional approach significantly improves the efficiency of learning compared to the
monolithic L∗ learning algorithm. The implementation of the algorithm, experiments, and their
results can be found on-line in our lab package [23] (https://github.com/faezeh-lbf/CL-Star).

https://github.com/faezeh-lbf/CL-Star

Compositional Learning for Interleaving Parallel Automata 3

The remainder of this paper is organised as follows. In Section 2, we review the related work and
position our research with respect to the state of the art. In Section 3, we present the preliminary
definitions that are used throughout the rest of the paper. In Section 4, we present our algorithm
and its proof of correctness and termination. We evaluate our algorithm on a benchmark from the
automotive domain in Section 5. We conclude the paper and present the directions of our ongoing
and future research in Section 6.

2 Related Work

Active automata learning is a technique used to find the underlying model of a black box system
by posing queries and building a hypothesis in an iterative manner. There is substantial early work
in this domain, e.g., under the name system identification or grammar inference; we refer to the
accessible introduction by Vaandrager [36] for more information. A seminal work in this domain
is the L∗ algorithm by Dana Angluin [6], which comes with theoretical complexity bounds for the
learning process using a representation called the “Minimally Adequate Teacher” (MAT).

MAT hypothesises a teacher that is capable of responding to membership queries (MQs) and
equivalence queries (EQs); the former checks the outcome of a sequence of inputs (e.g., with their
respective outputs, or with their membership in the language of the automaton) and the latter
checks whether a hypothesised automaton is equivalent to the system under learning. Our work
replaces a single MAT with multiple MATs that can potentially run in parallel and learn different
components of the black-box system automatically.

Learning structured systems and in particular, compositional learning of parallel systems has
been studied recently in the literature. Moerman [27] proposes an algorithm to learn parallel inter-
leaving Moore machines. Our algorithm differs from Moerman’s algorithm in that in the parallel
composition of Moore machines, the output of each individual component is explicitly specified,
because the output of the system is specified as a tuple of the outputs of its components. In other
words, the underlying structure is immediately exposed by considering the type of outputs pro-
duced by the system under learning. However, in our approach, we need to identify the components
and assign outputs to them on-the-fly since the decomposition is not explicit in parallel composi-
tion. Al-Duhaiby and Groote [10] learn parallel labelled transitions systems with the possibility of
synchronisation among them. In order to develop their algorithm, they assume a priori knowledge
of mutual dependencies among actions in terms of a confluence relation. This type of information
is difficult to obtain and the domain knowledge in this regard may be error prone. Particularly
for legacy and large black-box systems (e.g., binary code), architectural discovery has proven chal-
lenging [8,22]. We address this challenge and go beyond the existing approaches by learning about
confluence of actions on-the-fly through observing the minimal counter-examples generated by the
MAT(s).

Frohme and Steffen [12] introduce a compositional learning approach for Systems of Procedural
Automata [13]; these are collections of DFAs that may “call” each, akin to the way non-terminals
may be used in defining other non-terminals in a grammar. Their approach is essentially different
from ours in that the calls across automata are assumed to be observable and hence the general
structure is assumed to be known; in our approach, we learn the structure by observing implicit
dependencies among the learned automata through analysing counter-examples. Also their approach
is aimed at a richer and more expressive type of systems, namely pushdown systems, which justifies
the requirement for additional information.

4 F. Labbaf et al.

L∗ has been improved significantly in the past few years; the major improvements upon L∗ can
be broadly categorised into three categories: 1) improving the data structures used to store and
retrieve the learned information [21,31,19,37]; 2) improving the way counter-examples are processed
in refining the hypothesis [31,28,3,17]; 3) learning more expressive models, such as register- [18,14]
and timed automata [34,5]. This third category of improvements is orthogonal to our contribution
and extension of our approach can be considered in those contexts as well.

Two notable recent improvements, in the first two categories, are L# [37] and Lλ [17], respec-
tively. L# uses the notion of apartness to organise and maintain a tree-shaped data-structure about
the learned automaton. Lλ uses a search-based method to incorporate the information about the
counter-example into the learned hypothesis. The improvements brought about by Lλ can be readily
incorporated into our approach, particularly since our approach relies on finding minimal counter-
examples. Integrating our approach into L# requires a more careful consideration of maintaining
and composing tree-shaped data structures when detecting dependencies. We expect that both of
these combinations will further improve the efficiency of our proposed method.

3 Preliminaries

In this section, we review the basic notions used throughout the remainder of the paper. We start
by formalising the notion of a finite state machine, which is the underlying model of the system
under learning and move on to parallel composition and decomposition (called projection) as well
as the concept of (in)dependent actions, which are essential in identifying the parallel components.
Finally, we conclude this section by recalling the basic concepts of active automata learning and
the L∗ algorithm.

3.1 Finite State Machines (FSMs)

Finite state machines (also called Mealy machines), defined below, are straightforward generali-
sations of finite automata in which the transitions produce outputs (rather than only indicating
acceptance or non-acceptance):

Definition 1. (Finite State Machine) A Finite State Machine (FSM) M is a sixtuple (S, s0, I, O, δ, λ)
where :

– S is a finite set of internal states,
– s0 ∈ S is the initial state,
– I is a set of actions, representing the input alphabet,
– O is the set of outputs,
– δ : S × I → S is a total state transition function,
– λ : S × I → O is a total output function.

An FSM starts in the initial state s0 and accepts a word (a sequence of actions of its input
alphabet) in order to produce an equally-sized sequence of outputs. State transition- δ and output
function λ determine the next state and the output of an FSM upon receiving a single input. For

each s, s′ ∈ S, i ∈ I, and o ∈ O, we write s
i/o−−→ s′ when δ(s, i) = s′ and λ(s, i) = o.

State transitions are extended inductively from a single input i ∈ I, to a sequence of inputs
w ∈ I∗, i.e., we define δ(s, ϵ) = s and λ(s, ϵ) = ϵ where ϵ is the empty sequence; and for s ∈ S,w ∈ I∗,

Compositional Learning for Interleaving Parallel Automata 5

and a ∈ I, we have δ(s, wa) = δ(δ(s, wa), a) and λ(s, wa) = λ(s, w)λ(δ(s, w), a), where juxtaposition
of sequences denotes concatenation. For the sake of conciseness, we write δ(w) and λ(w) instead of
δ(s0, w) and λ(s0, w).

In much of the literature in active learning, the system under learning is assumed to be complete
and deterministic and we follow this common assumption in Definition 1 by requiring the state
transition and output relations to be total functions. While the determinism assumption is essential
for our forthcoming results to hold, we expect that the existing recipes for learning non-deterministic
state machines can be made compositional using a similar approach as ours.

3.2 (De)Composing FSMs

Our aim is to produce a compositional learning algorithm for systems composed of interleaving
parallel components, defined below. Due to the interleaving nature of parallel composition and
determinism of the system under learning, the alphabets of these components are assumed to be
disjoint.

Definition 2. (Interleaving Parallel Composition) For two FSMs Mi = (Si, s0i , Ii, Oi, δi, λi), with
i ∈ {0, 1}, where I0 ∩ I1 = ∅, the interleaving parallel composition of M0 and M1, denoted by
M0 || M1, is an FSM defined as

(S0 × S1, (s00 , s01), I0 ∪ I1, O0 ∪O1, δ, λ)

where δ and λ are defined by

δ((s0, s1), a) =

{
(δ0(s0, a), s1) if a ∈ I0,
(s0, δ1(s1, a)) otherwise, and

λ((s0, s1), a) =

{
λ0(s0, a) if a ∈ I0,
λ1(s1, a) otherwise.

For s0 ∈ S0, s1 ∈ S1, and a ∈ I0 ∪ I1

Next, we define the notions of projections for FSMs and for words; these notions are further
used in the notion of (in)dependence and eventually in our proof of correctness to establish that
the composed system has the same behaviour as the composition of the learned components.

Definition 3. (Projection of an FSM) The projection of an FSM M = (S, s0, I, O, δ, λ) on a set
of inputs I ′ ⊆ I denoted by P (M, I ′), is an FSM (S, s0, I

′, O′, δ′, λ′), where

– δ′(s, a) = δ(s, a) for a ∈ I ′,
– λ′(s, a) = λ(s, a) for a ∈ I ′, and
– O′ = {o ∈ O | ∃a ∈ I ′. ∃s ∈ S. λ(s, a) = o}.

Definition 4. (Projection of a word) The projection of a word w ∈ I∗ on a set of inputs I ′ ⊆ I,
denoted by PI′(w), is inductively defined as follows:

PI′(ϵ) := ϵ,

PI′(au) :=

{
aPI′(u) if a ∈ I ′,
PI′(u) otherwise.

Definition 5. (Projection of an output sequence) The projection of the output sequence w =
o1 . . . on with respect to an equally-sized sequence of inputs v = i1, . . . , in ∈ I∗ and a subset of
inputs I ′ ⊆ I, denoted by PI′(w, v), is defined as follows:

6 F. Labbaf et al.

PI′(ϵ, ϵ) := ϵ,

PI′(ow, av) :=

{
oPI′(w, v) if a ∈ I ′,
PI′(w, v) otherwise.

Definition 6. ((In)Dependent Actions) Consider an FSM M with a set of inputs I. The subsets
I0, . . . , In ⊆ I form an independent partition of I when for any u ∈ I∗, λP (M,I0)||...||P (M,In)(u) =
λM (u). Two inputs i0, i1 ∈ I are independent when they belong to two distinct subsets of an inde-
pendent partition. Two input actions are dependent, when they are not independent.

Example. The partition
{
{a}, {b}, {c, d}

}
in Figure 1(a) is not an independent partition because

λM (ab) = 10 but λP (M,{a})||P (M,{b})||P (M,{c,d})(ab) = 11.

It immediately follows from Definition 6 and associativity of parallel composition (with respect
to trace equivalence) that any coarser partitioning based on an independent partition is also an
independent partitioning; this is formalised in the following corollary.

Corollary 1. By combining two or more sets of an independent partition, the resulting partition
remains independent.

Moreover, it holds that any smaller subset of an independent partitioning is also an independent
partitioning of the original state machine projected on the alphabet of the smaller subset, as specified
and proven below.

Lemma 1. Consider an independent partition I0, . . . , In of inputs I for an FSM M ; then for
K ⊆ {0, . . . , n}, {Ii | i ∈ K} is an independent partition for P (M,

⋃
i∈K(Ii)).

Proof. Consider any subset K ⊆ {0, . . . , n} and {Ii | i ∈ K} and consider any input sequence
u ∈ (

⋃
i∈K Ii)

∗. Since u does not contain a symbol that is in any Ij for j /∈ K, we have that
λ||i∈KP (M,Ii)(u) = λP (M,I0)||...||P (M,In)(u). Since I0, . . . , In are independent, it follows likewise that
λP (M,I0)||...||P (M,In)(u) = λM (u). Using again that u has no symbol in any Ij for j /∈ K, we know
that λM (u) = λP (M,

⋃
i∈K(Ii))(u). Hence, λ||i∈KP (M,Ii)(u) = λP (M,

⋃
i∈K(Ii))(u), which was to be

shown.

■

Lemma 2. For any independent partition I0, . . . , In ⊆ I, w ∈ I∗ and 0 ≤ i ≤ n, and state s it
holds that PIi(λM (s, w), w) = λP (M,Ii)(s, PIi(w)).

Proof. The proof uses induction on the length of w. Instead of proving the thesis, we prove the
following stronger statement, which is possible because M can be viewed as the parallel construction
of independent components.

PIi(λM ((s0, . . . sn), w), w) = λP (M,Ii)((s
′
0, . . . , s

′
n), PIi(w)) with si = s′i.

Note that the lemma directly follows from this. Below we write s⃗ for s0, . . . , sn, and likewise for s⃗′

and s⃗′′.

The base case (|w| = 0) holds trivially as w = ϵ. For the induction step we assume that the
induction hypothesis holds for |w| = k and we show that it holds for w′ = aw for arbitrary a ∈ I.

Compositional Learning for Interleaving Parallel Automata 7

We first consider the case where a /∈ Ii. We derive

PIi(λM (s⃗, aw), aw) = PIi(λM (s⃗, a)λM (δ(s⃗, a), w), aw) Definition 1

= PIi(λM (δ(s⃗, a), w), w) Definition 5.

= λP (M,Ii)(s⃗
′, PIi(w)) Induction hypothesis.

= λP (M,Ii)(s⃗
′′, PIi(aw)) Definition 4.

By construction the i-th state in δ(s⃗, a) is equal to si as a /∈ Ii. Hence, using the induction hypoth-
esis, s⃗′i = si. By definition s⃗′ = δ(s⃗′′, a) and hence, s⃗′′i = s⃗′i = s⃗i as we had to show.

The other case we must consider is a ∈ Ii. Again the derivation is straightforward.

PIi(λM (s⃗, aw), aw) = PIi(λM (s⃗, a)λM (δ(s⃗, a), w), aw) Definition 1

= λM (s⃗, a)PIi(λM (δ(s⃗, a), w), w) Definition 5.

= λM (s⃗′, a)λP (M,Ii)(δ(s⃗
′, a), PIi(w)) Induction hypothesis.

= λP (M,Ii)(s⃗, PIi(aw)) Definition 4.

Using the induction hypothesis it follows that si = s′i, which concludes the proof. ■

3.3 Model Learning

Active model learning, introduced by Dana Angluin, was originally designed to formulate a hy-
pothesis H about the behavior of a System Under Learning (SUL) as an FSM. Model learning
is often described in terms of the Minimally Adequate Teacher (MAT). In the MAT framework,
there are two phases: (i) hypothesis construction, where a learning algorithm poses Membership
Queries (MQ) to gain knowledge about the SUL using reset operations and input sequences; and (ii)
hypothesis validation, where based on the model learned so far, the learner proposes a hypothesis
H about the “language” of the SUL and asks Equivalence Queries (EQ) to test it. The results
of the queries are organised in an observation table. The table is iteratively refined and is used to
formulate H .

Definition 7. (Observation Table) An observation table is a triple (S,E, T), where S ⊆ I∗ is a
prefix-closed set of input strings (i.e., prefixes); E ⊆ I+ is a suffix-closed set of input strings (i.e.,
suffixes); and T is a table where rows are labeled by elements from S ∪ (S.I), columns are labeled
by elements from E, such that for all pre ∈ S ∪ (S.I) and suf ∈ E, T (pre, suf) is the SUL’s output
suffix of size |suf| for the input sequence pre.suf.

The L∗ algorithm initially starts with S only containing the empty word ϵ, and E equals set
of inputs alphabet I. Two crucial properties of the observation table, closedness and consistency,
defined below, allow for the construction of a hypothesis.

Definition 8. (Closedness Property) An observation table is closed iff for all w ∈ S.I there is a
w′ ∈ S that for all suf ∈ E, T (w, suf) = T (w′, suf) holds.

Definition 9. (Consistency Property) An observation table is consistent iff for all pre1, pre2 ∈ S,
if for all suf ∈ E, T (pre1, suf) = T (pre2, suf), it holds that T (pre1.α, suf) = T (pre2.α, suf) for all
α ∈ I, suf ∈ E.

8 F. Labbaf et al.

MQs are posed until these two properties hold, and once they do, a hypothesis H is formulated.
After formulating H , L∗ works under the assumption that an EQ can return either a counter-
example (CE) exposing the non-conformance, or yes, if H is indeed equivalent to the SUL. When
a CE is found, a CE processing method adds prefixes and/or suffixes to the observation table and
hence refines H . The aforementioned steps are repeated until EQ confirms that H and SUL are
the same. In between MQs, we often need to bring the FSM back to a known state; this is done
through reset operations, which are one of our metrics for measuring the efficiency of the algorithm.
EQs are posed by running a large number of test-cases and hence they are (two- to three) orders of
magnitude larger than MQs. These test cases are generated through a random-walk of the graph
or through a deterministic algorithm that tests all states and transitions for a given fault model.
Two examples of deterministic test-case generation algorithms are the W- and WP-method [7].
It appears from recent empirical evaluations that for realistic systems deterministic equivalence
queries are not efficient [4].

Since we are going to be learning the system in terms of components with disjoint alphabets,
we define the following projection operator that removes all the transitions that are not in the
projected alphabet. Our compositional learning algorithm basically learns a black-box with respect
to its projection on the actions available in each purported component.

Definition 10. (L∗ with projected alphabet) Given an SUL M = (S, s0, I, O, δ, λ) and I ′ ⊂ I,
L∗(M, I ′) returns P (M, I ′) by running algorithm L∗ with projected alphabet I ′ on M .

4 Compositional Active Learning

In this section, we present an algorithm that learns the SUL in separate components and uses
the interleaving parallel composition of the learned components to reach the total behavior of the
system. Each component has an input alphabet Ii, which is disjoint from the alphabet of all the
other components. The set of the input alphabets of components IF = {I1, . . . , In} is a partition
of the total system’s input alphabet. The main idea is to find an independent partitioning IF .
To reach such a partitioning, we start with a partition with singleton sets and iteratively merge
those sets that are found to be dependent on each other. Then for Ii ∈ IF , we learn the SUL with
the projected alphabet Ii, and compute the product of the obtained components with interleaving
parallel composition. The result is equivalent to the SUL if IF is an independent partition.

Definition 11. (LearnInParts) The LearnInParts function gets M = (S, s0, I, O, δ, λ) and the
partition IF = {I1, . . . , In} of I and returns the interleaving parallel composition of the learned
components.

LearnInParts(M, IF) = L∗(M, I1) || . . . || L∗(M, In).

Definition 12. (Composition) Given a partition IF = {I1, . . . , In} and D ⊆ {1, . . . , n}, the
Composition of IF over D merges all the Ii (i ∈ D) in IF .

Composition(IF ,D) = (IF \ {Ii|i ∈ D}) ∪
{ ⋃

i∈D

Ii
}
.

Example. If IF = {{a}, {b}, {c}, {d}} andD = {1, 3, 4}, then Composition(IF ,D) = {{a, c, d}, {b}}.

Compositional Learning for Interleaving Parallel Automata 9

Algorithm 1: Compositional Learning Algorithm (CL∗)

Result: H
1 Input: IF = {I1, . . . , In}, M
2 H ← LearnInParts(M, IF)
3 eq← Equivalence-Query(H ,M)
4 while eq ̸= yes do
5 CE← eq

6 D ← InvolvedSets(CE, IF)

7 IF ← Composition(IF , D)

8 H ← LearnInParts(M, IF)
9 eq← Equivalence-Query(H ,M)

10 end

11 return H , IF

Definition 13. (InvolvedSets) The function InvolvedSets gets a counter-example CE and a partition
IF = {I1, . . . , In} and returns indices of the sets in IF that contains at least one character of CE:

InvolvedSets(CE, IF) = {j | Ij ∈ IF , ∃i CE[i] ∈ Ij},

where the ith character of CE is denoted by by CE[i].

The function InvolvedSets allows us to detect some dependent sets by using a minimal counter-
example since all actions in the counter-example are dependent, as we prove in Theorem 2.

Algorithm 1 shows the pseudo-code of the compositional learning algorithm. Initially the al-
gorithm is called with the singleton partitioning IF of the alphabet I and the SUL M , i.e.,
if the input alphabet is I = {a1, a2, . . . , an}, then the initial partition of the alphabet will be
IF = {{a1}, {a2}, . . . , {an}}. The LearnInParts method on line 2 learns each of the components
given the corresponding alphabet set using the algorithm L∗ and returns the interleaving parallel
composition of the learned components. If the oracle (MAT) returns yes for the equivalence query
regarding hypothesis H , the algorithm terminates and returns H . Otherwise an(other) iteration
of the loop is performed. The InvolvedSets method in line 6 extracts the dependent sets from the
counter-example returned by the oracle; subsequently, Composition merges those sets into one. The
LearnInParts method in line 8 is run again and the loop continues until the correct hypothesis is
learned. We assume that the oracle always returns a minimal counter-example; this assumption is
used in the proof of soundness (Theorem 2).

4.1 Termination Analysis

To prove the termination of our algorithm, we start with the following lemma which indicates how
the counter-example is used to merge the partitions.

Lemma 3. Let IF = {I1, . . . , Im} be a partition of the system’s input alphabet. If the teacher
responds with a counter-example CE, then there are at least two actions u ∈ Ii, v ∈ Ij in CE such
that Ii ̸= Ij ∧ Ii, Ij ∈ IF .

Proof. We prove this by contradiction. Suppose CE consists of actions that all belong to Ii. Let
Ci = L∗(M, Ii) with output function λCi . Since the output of L

∗ is always the correctly learned FSM

10 F. Labbaf et al.

of the SUL, λM (CE) = λCi(CE). Also, since Ci is a component of H produced by LearnInParts,
λH (CE) = λCi(CE) based on Definition 2. This means CE can not be a counter-example. ■

The next lemma uses Lemma 3 to show how counter-examples will ensure progress in the
algorithm, eventually guaranteeing termination.

Lemma 4. At each round of the algorithm CL∗, |IF | decreases by at least 1.

Proof. By Lemma 3, at each round of the algorithm, at least two dependent sets are found by
InvolvedSets, and the algorithm merges these dependent sets into a single set. Thus the size of the
partition decrements by at least one; hence, the lemma follows. ■

Now we have the necessary ingredients to prove termination below.

Theorem 1. The Compositional Learning Algorithm terminates.

Proof. Assume, towards contradiction, that the algorithm does not terminate. Let I be the alphabet,
an IFk be the partition of I after the kth round of the algorithm. By Lemma 4, after at least
k = |I|− 1 rounds, |IFk | = 1. Also by the assumption, the algorithm has not terminated at round k.
Since IFk = I, the algorithm reduces to algorithm L∗ which terminates. Hence, the contradiction. ■

We prove next that every time we merge two partitions, there is a sound reason (i.e., dependency
of actions) for it.

Theorem 2. Let CE be the minimal counter-example returned by the oracle at round k of the
algorithm and IF = {I1, . . . , In} the partition of the alphabet at the same round. Then, all actions
in CE are dependent.

Proof. Let CE = wa, w ∈ I∗ and a ∈ I, and d = {d1, . . . , dm} be an independent partition for
the SUL M . Assume some actions in w are independent from a (proof by contradiction). Let dk
be the set in d that includes a. The set I \ dk contains all the independent actions from a. For M ,
we define OM = Pdk

(λM (wa)); according to Lemma 2, OM = λP (M,dk)(Pdk
(wa)). The algorithm

makes the hypothesis H = P (M, I1)|| . . . ||P (M, In) at the current round k. Since dk is the union
of a subset of IF (algorithm has not terminated yet), OH = Pdk

(λH (wa)) = λP (H ,dk)(Pdk
(wa)).

If OH ̸= OM , then Pdk
(wa) is a smaller counter-example than wa, which is a contradiction.

Otherwise if OH = OM , given that wa is a counter-example, PI\dk
(λM (wa)) ̸= PI\dk

(λH (wa)); if
so, PI\dk

(wa) is a smaller counter-example, hence the contradiction. ■
By Theorems 2 and 1, we have shown that the algorithm detects the independent action sets

and eventually terminates. The next theorem is formulated to show that it terminates as soon as
all dependent action sets have been detected.

Theorem 3. Let IF = {I1, . . . , In} be an independent partition of the alphabet at round k. The
algorithm terminates in this round.

Proof. We prove this by contradiction. Assume that the algorithm does not terminate, and CE is
the minimal counter-example returned by the oracle. By theorem 2, InvolvedSets returns two or
more dependent sets from IF . Since all the elements in IF are pairwise independent, we confront
the contradiction. ■

4.2 Processing Counter-examples

As mentioned in Theorem 2, we require all the actions in a minimal counter-example returned by
the oracle to be dependent. However, most equivalence checking methods do not find the minimal

Compositional Learning for Interleaving Parallel Automata 11

Algorithm 2: CE distillation

Result: CEM
1 Input: IF = {I1, . . . , In}, CE, M, H
2 CE← CutCE(CE)

3 D ← InvolvedSets(CE, IF)
4 for k ∈ {2, . . . , size(D)} do
5 C ← all k combinations(D)
6 while C is not empty do
7 I ← C.pop
8 A←

⋃
i∈I Ii

9 CEA ← PA(CE)
10 if CEA is a counter-example then
11 Return CEA
12 end

13 end

14 end

counter-example. For a non-minimal counter-example, we define a process called “distillation”,
which asks a number of extra queries to find the dependent actions. It iteratively gets a subset of
InvolvedSets(CE, IF) in the order of their sizes and merges its members together, producing a set
M. The algorithm introduces PM (CE) as output if it is a counter-example.

Suppose CE is the counter-example returned by the oracle at round k of the algorithm, and IF

is the alphabet partition at that round. To distill two or more dependent sets from CE, we follow
Algorithm 2. The function CutCE on line 2 takes a counter-example CE and returns the smallest
prefix of CE, which is also a counter-example (i.e., the SUL and the hypothesis model produce
different outputs for it). Then, iteratively, it gets a subset of InvolvedSets(CE, IF) in the order of
their sizes and merges its members together, producing set M. The algorithm returns PM (CE) as
output if it is a counter-example.

The cost of CE-distillation algorithms is exponential in terms of the size of CE in the worst case.
However, in the results section, we show that in practice, the cost of this part is not very significant
compared to the total cost of learning.

Theorem 4. All actions in the output of the CE distillation algorithm are dependent.

The proof is omitted as it is similar to the proof of Theorem 2.

5 Empirical Evaluation

In this section, we present the design and the results of the experiments carried out to evaluate our
approach, in order to answer the following research questions:

RQ1 Does CL∗ require fewer resets, compared to L∗?
RQ2 Does CL∗ require fewer input symbols, compared to L∗?

As stated in Section 1, these two research questions measure the efficiency of a learning method in
a machine-independent manner: the number of input symbols summarises the total cost of a learning

12 F. Labbaf et al.

campaign, while the number of resets summarises one of its most costly parts. Note that although
active learning processes are structured in terms of queries, the queries used in the processes have
vastly different lengths and it has been observed earlier that the total number of input symbols is
a more accurate metric for comparison of learning algorithms than the number queries [36].

5.1 Subject Systems

A meaningful benchmark for our method should feature systems of various state sizes and various
numbers of parallel components and with a non-trivial structure that may require multiple learning
rounds. Also, we would like to have realistic systems, so that our comparisons have meaningful
practical implications.

To this end, we choose the Body Comfort System (BCS) [25], which is an automotive software
product line (SPL) of a Volkswagen Golf model. This SPL has 27 components, each representing
a feature that provides specific functionality. The transition system of each component is provided
in a detailed technical report [24]. We use the finite state machines of the components constructed
from the transition system representations in [35] and compose several random samples utilising
the interleaving parallel composition (Definition 2) to build the product FSMs. We automatically
constructed 100 FSMs consisting of a minimum of two and a maximum of nine components in this
case study. The maximum number is chosen due the performance limits of L∗; beyond this limit,
our learning campaign for L∗ could take more than four hours. All experiments were conducted on
a computer with an Intel® Core™ M-5Y10c CPU and and 8GB of physical memory running Ubuntu
version 20 and LearnLib version 0.16.0. Our subject systems have a minimum of 300 states and a
maximum of 3840 states, and their average number of states is 1278.2 with a standard deviation of
847. We started the calculation of the metrics for subject systems of at least 300 states, since for
small subject systems, the advantage of compositional learning is not significant.

5.2 Experiment Design

To answer the research questions, we implemented the compositional learning algorithm on top
of the LearnLib framework [30]. This implementation uses the equivalence oracle in two places;
to learn projections in the LearnInParts function and to check the hypothesis/SUL equivalence.
The performance of the algorithm significantly relies on the type of equivalence queries used by
the underlying L∗ algorithm. We experimented with a number of equivalence methods and settled
upon using random walks; when using deterministic algorithms such as the WP- and the WP-
method, for large systems, the cost of equivalence queries becomes prohibitively high and obscures
any gain obtained from compositionality. To ensure that our results are sound, we have carried
out similar experiments by using an additional deterministic equivalence query at the end of the
learning campaign, when the last random equivalence query does not return any counter-example.
This additional step verifies our comparisons when an assurance about the accuracy of the learning
process is required. More details about these additional experiments can be found in our public lab
package [23] (https://github.com/faezeh-lbf/CL-Star).

We enabled caching, since caching significantly reduces repetitive queries. We repeat each learn-
ing process three times, comparing the number of resets and input symbols for L∗ and CL∗.

In addition to reporting the median metrics, their standard deviations, and the relative percent-
age of improvements, we use the statistical T-test to answer the research questions with statistical
confidence and report the p-values. We analyse the distribution of the results and establish their

https://github.com/faezeh-lbf/CL-Star

Compositional Learning for Interleaving Parallel Automata 13

normality using K-tests. We use the SciPy [20] library of Python to perform statistical analysis and
Seaborn [38] for visualising the results.

5.3 Results

In this section, we first present the results of our experiments and use them to answer our research
questions. Then we show how the number of components in an FSM affects the efficiency of our
algorithm. Finally, we discuss threats to the validity of our empirical results.

Fig. 2: The total number of input symbols and resets in the CL∗ and L∗ methods

We cluster the benchmark into eight categories based on the FSM’s number of states and
illustrate the distribution of input symbols and resets for each cluster in Figure 2. In this figure,
the CL∗ and L∗ methods are compared based on the metrics mentioned. The scale of the x-axis
(the value of metrics) is logarithmic.

Tables 1 and 2 summarise the results of our experiments. For each category, we calculate the
median and standard deviation of our metrics (the number of input symbols and resets) both for L∗

Table 1: Comparing the total number of input symbols in the CL∗ and L∗ methods

#States
L* method CL* method Progress

percentage
p-value

(one-sided paired T-test)Median Standard deviation Median Standard deviation

(300, 600] 1443710 2834380.581 1329818 2382620.467 14.47 7.43e-3

(600, 900] 4013396 6262292.443 1716878.5 4408369.926 36.44 1.54e-8

(900, 1200] 6387472 6663334.645 1714934.5 3757307.024 52.37 8.36e-7

(1200, 1500] 6259466 9311767.302 1576494 4798094.639 57.28 6.49e-4

(1500, 1800] 9700935 10726103.24 4498072 5576873.639 54.58 4.30e-4

(1800, 2100] 11070428 5310108.013 1649557 13958718.62 37.51 2.96e-2

(2100, 2400] 15348181 6287714.182 1888226 4215184.514 70.80 1.80e-10

(2400, 3840] 24700222.5 14837416.08 4385086 13817389.06 68.42 2.66e-12

14 F. Labbaf et al.

Table 2: Comparing the total number of resets in the CL∗ and L∗ methods

#States
L* method CL* method Progress

percentage
p-value

(one-sided paired T-test)Median Standard deviation Median Standard deviation

(300, 600] 157971 65257.85738 10433 28259.60196 90.46 1.05e-33

(600, 900] 425260.5 77944.01883 16808 56274.51558 86.33 1.07e-43

(900, 1200] 501347.5 147915.8363 13109 50224.87222 90.87 3.80e-16

(1200, 1500] 712999 136904.04 12811 60125.8884 91.77 4.18e-13

(1500, 1800] 823482 275862.8299 48344 80507.59837 91.73 4.97e-13

(1800, 2100] 1262025 188390.1181 12412 369932.964 84.07 2.18e-06

(2100, 2400] 1412237 220211.8459 15042 53006.08784 95.83 2.44e-14

(2400, 3840] 1900234 427883.9888 46624.5 201052.8807 94.67 2.20e-23

and CL∗. The metric “progress percentage” is defined to measure the improvement brought about
by compositional learning (compared to L∗). For each metric, the progress percentage is calculated
as (1− p

q) ∗ 100, where p and q are the value of that metric in CL∗ and L∗, respectively. A positive
progress percentage in a metric shows that the CL∗ is more efficient in terms of that metric. To
measure the statistical significance, we used the one-sided paired sample T-test to check if there
was a significant difference (p < 0.05) between the metrics in the two algorithms.

Both Tables 1 and 2 indicate major improvements, particularly for large systems, in terms of the
total number of input symbols and resets, respectively. Compositional learning reduces the number
of symbols up to 70.80 percent and the number of resets up to 95.83 percent. The statistical tests
also confirm this observations and the p-values obtained from the tests are in all cases very low; in
case of the number of input symbols the p-values range from 10−2 to 10−12, while for resets they
range from 10−6 to 10−43, which are well-below the usual statistical p-values (0.05) and represent
a very high statistical significance.

Fig. 3: The diagrams of improvement brought about by compositional learning vs. size of the SUL
in terms of number states (left) and components (right).

Compositional Learning for Interleaving Parallel Automata 15

Fig. 4: The effect of FSM sizes in terms of the number of components and states on the total number
of input symbols.

The plots in Figure 3 visualise the improvements brought about by compositional learning.
This plot demonstrates that the saving due to compositional learning increases as the number of
components in SULs increases. We further analysed the trends of our measured metrics in terms of
the number of states and the number of parallel components. These trends are depicted for the total
number of input symbols in Figure 4 and for the number of resets in Figure 5, respectively. These
figures indicate that the increase of both metrics with the number of states is more moderate for the
compositional learning approach, i.e., compositional learning is more scalable. More importantly,
the right-hand-side of both figures signifies the effect of compositional learning when the number
of parallel components increases while the number of states remains fixed.

Figure 6 shows the effect of the number of components on the total number of input symbols
for a fixed state-space size for algorithms L∗ and CL∗. In this plot, as the number of components
increases, the corresponding dot will become darker and larger. According to this figure, the learning
cost is lower for SULs with more components in both L∗ and CL∗. Still, for CL∗ (the right side),
the cost of learning SULs with more components is significantly lower because we structurally learn
these components essentially independently.

As mentioned in Section 4.2, the cost of the CE distillation process can increase exponentially
in the size of the counter-example. However, in practice, it seems to be much more tractable. To
evaluate this, we count the number of input symbols required by the CE distillation process to learn
each SUL. The median value of this metric is 1961 input symbols, which is insignificant compared
the total cost of learning. In fact, the cost of CE distillation process for each group in Table 1 is
between 0.037 and 0.12 percent of the total learning cost; the reported total learning cost (total
number of input symbols) includes the cost of CE distillation.

5.4 Threats to Validity

In this section, we summarise the major threats to the validity of our empirical conclusions. First, we
analyse the threats to conclusion validity, i.e., whether the empirical conclusions necessarily follow
from the experiments carried out. Then, we discuss the threats to external validity concerning the
generalisation of our results to other systems.

16 F. Labbaf et al.

Fig. 5: The effect of the size of FSMs in terms of the number of components and states on the total
number of required input resets.

We mitigated conclusion validity threats by using statistical tests to ensure that our observa-
tions (both in terms of improvement percentages in Tables 1 and 2 and the visual observations in
Figures 2) do represent a statistically significant improvement. We opt for one-sided paired sample
T-tests in order to minimise the threats to conclusion validity. We only conclude that the CL∗ is
more efficient than the L∗ when there is a meaningful difference (p < 0.05) between the results of
L∗ and CL∗. To make sure that the chosen statistical test is applicable, we analysed the distribution
of the data first.

We mitigated the risk of conclusion validity by using subject systems that are based on prac-
tical systems rather than using randomly generated FSMs. However, further research is needed to
analyse the performance of our approach based on other benchmarks from other domains. We also
mitigated the effect of using random equivalence queries by repeating the experiments with a final
deterministic query.

6 Conclusions

In this paper, we presented a compositional learning method based on Angluin’s algorithm L∗ that
detects and independently learns interleaving parallel components of the system under learning.
We proved that our algorithm, called CL∗, is correct and we empirically showed that it causes
significant gains in the number of input symbols and the number of resets in a learning campaign.
The gain is significantly increased with the number of parallel components.

Our algorithm is naturally amenable to parallelisation and developing a parallel implementation
is a natural next step. A more thorough investigation of counter-example processing in order to
efficiently find a minimal counter-example is an area of further research, particularly, in the light
of the recent results in this area [13]. Finding a trade-off between using deterministic and random
(or mutation-based) equivalence queries is another area of future research. We would also like to
investigate the possibility of developing equivalence queries that take the structure of the systems
into account: we have observed that much of the effort in the final equivalence query (on the
composed system) is redundant and the final equivalence query can be made much more efficient by

Compositional Learning for Interleaving Parallel Automata 17

Fig. 6: The relation between the total number of symbols and the number of states and components
for the algorithms L∗ (left) and CL∗ (right).

only considering the dependencies among purportedly independent partitions. Finally, extending
our notion of parallel composition to allow for a possible synchronisation of components is another
direction of future work; we believe inspirations from concurrency theory and in particular, Milner
and Moller’s prime decomposition theorem [26] may prove effective in this regard. Independently
from our work, Neele and Sammartino [29] proposed an approach to learn synchronous parallel
composition, under the assumption of knowing the alphabets of the components. This is a promising
approach to incorporate synchronous parallel composition into our framework.

Acknowledgments

We would like to thank Rasta Tadayon and Amin Asadi Sarijalou for their contributions to the
early stages of this work. The work of Mohammad Reza Mousavi was supported by the UKRI
Trustworthy Autonomous Systems Node in Verifiability, Grant Award Reference EP/V026801/2.
We thank the reviewers of FOSSACS for their insightful and constructive comments, which, in
our view, led to improvements in our final paper. We thank the Artifact Evaluation committee at
ESOP/FOSSACS for their careful review of our lab package.

References

1. Aarts, F., de Ruiter, J., Poll, E.: Formal models of bank cards for free. In: Sixth IEEE Interna-
tional Conference on Software Testing, Verification and Validation, ICST 2013 Workshops Proceed-
ings, Luxembourg, Luxembourg, March 18-22, 2013. pp. 461–468. IEEE Computer Society (2013).
https://doi.org/10.1109/ICSTW.2013.60

2. Aarts, F., Schmaltz, J., Vaandrager, F.W.: Inference and abstraction of the biometric passport. In:
Margaria, T., Steffen, B. (eds.) Leveraging Applications of Formal Methods, Verification, and Validation
- 4th International Symposium on Leveraging Applications, ISoLA 2010, Heraklion, Crete, Greece,

https://doi.org/10.1109/ICSTW.2013.60

18 F. Labbaf et al.

October 18-21, 2010, Proceedings, Part I. Lecture Notes in Computer Science, vol. 6415, pp. 673–686.
Springer (2010). https://doi.org/10.1007/978-3-642-16558-0 54

3. Aichernig, B.K., Tappler, M.: Efficient active automata learning via mutation testing. Journal of Au-
tomated Reasoning 63(4), 1103–1134 (2019). https://doi.org/10.1007/s10817-018-9486-0

4. Aichernig, B.K., Tappler, M., Wallner, F.: Benchmarking combinations of learning and testing algo-
rithms for active automata learning. In: Ahrendt, W., Wehrheim, H. (eds.) Tests and Proofs - 14th In-
ternational Conference, TAP@STAF 2020, Bergen, Norway, June 22-23, 2020, Proceedings [postponed].
Lecture Notes in Computer Science, vol. 12165, pp. 3–22. Springer (2020). https://doi.org/10.1007/978-
3-030-50995-8 1

5. An, J., Chen, M., Zhan, B., Zhan, N., Zhang, M.: Learning one-clock timed automata. In: Biere, A.,
Parker, D. (eds.) Tools and Algorithms for the Construction and Analysis of Systems. pp. 444–462.
Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-45190-5 25

6. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput. 75(2), 87–106
(1987). https://doi.org/10.1016/0890-5401(87)90052-6

7. Broy, M., Jonsson, B., Katoen, J., Leucker, M., Pretschner, A. (eds.): Model-Based Testing of Reac-
tive Systems, Advanced Lectures [The volume is the outcome of a research seminar that was held in
Schloss Dagstuhl in January 2004], Lecture Notes in Computer Science, vol. 3472. Springer (2005).
https://doi.org/10.1007/b137241

8. Cifuentes, C., Simon, D.: Procedure abstraction recovery from binary code. In: Proceedings of the
Fourth European Conference on Software Maintenance and Reengineering. pp. 55–64. IEEE (2000).
https://doi.org/10.1109/CSMR.2000.827306

9. Damasceno, C.D.N., Mousavi, M.R., da Silva Simão, A.: Learning by sampling: learning be-
havioral family models from software product lines. Empir. Softw. Eng. 26(1), 4 (2021).
https://doi.org/10.1007/s10664-020-09912-w

10. al Duhaiby, O., Groote, J.F.: Active learning of decomposable systems. In: Bae, K., Bianculli, D.,
Gnesi, S., Plat, N. (eds.) FormaliSE@ICSE 2020: 8th International Conference on Formal Meth-
ods in Software Engineering, Seoul, Republic of Korea, July 13, 2020. pp. 1–10. ACM (2020).
https://doi.org/10.1145/3372020.3391560

11. Fiterau-Brostean, P., Lenaerts, T., Poll, E., de Ruiter, J., Vaandrager, F.W., Verleg, P.: Model learning
and model checking of SSH implementations. In: Erdogmus, H., Havelund, K. (eds.) Proceedings of the
24th ACM SIGSOFT International SPIN Symposium on Model Checking of Software, Santa Barbara,
CA, USA, July 10-14, 2017. pp. 142–151. ACM (2017). https://doi.org/10.1145/3092282.3092289

12. Frohme, M., Steffen, B.: Compositional learning of mutually recursive procedural systems. Int. J. Softw.
Tools Technol. Transf. 23(4), 521–543 (2021). https://doi.org/10.1007/s10009-021-00634-y

13. Frohme, M., Steffen, B.: From languages to behaviors and back. In: Jansen, N., Stoelinga, M., van den
Bos, P. (eds.) A Journey from Process Algebra via Timed Automata to Model Learning - Essays
Dedicated to Frits Vaandrager on the Occasion of His 60th Birthday. Lecture Notes in Computer
Science, vol. 13560, pp. 180–200. Springer (2022). https://doi.org/10.1007/978-3-031-15629-8 11

14. Garhewal, B., Vaandrager, F.W., Howar, F., Schrijvers, T., Lenaerts, T., Smits, R.: Grey-box learning
of register automata. In: Dongol, B., Troubitsyna, E. (eds.) Integrated Formal Methods - 16th Interna-
tional Conference, IFM 2020, Lugano, Switzerland, November 16-20, 2020, Proceedings. Lecture Notes
in Computer Science, vol. 12546, pp. 22–40. Springer (2020). https://doi.org/10.1007/978-3-030-63461-
2 2

15. Hooimeijer, B., Geilen, M., Groote, J.F., Hendriks, D., Schiffelers, R.R.H.: Constructive model
inference: Model learning for component-based software architectures. In: Fill, H., van Sinderen,
M., Maciaszek, L.A. (eds.) Proceedings of the 17th International Conference on Software Tech-
nologies, ICSOFT 2022, Lisbon, Portugal, July 11-13, 2022. pp. 146–158. SCITEPRESS (2022).
https://doi.org/10.5220/0011145700003266

16. Howar, F., Steffen, B.: Active automata learning in practice - an annotated bibliography of the years
2011 to 2016. In: Bennaceur, A., Hähnle, R., Meinke, K. (eds.) Machine Learning for Dynamic Software
Analysis: Potentials and Limits - International Dagstuhl Seminar 16172, Dagstuhl Castle, Germany,

https://doi.org/10.1007/978-3-642-16558-0_54
https://doi.org/10.1007/s10817-018-9486-0
https://doi.org/10.1007/978-3-030-50995-8_1
https://doi.org/10.1007/978-3-030-50995-8_1
https://doi.org/10.1007/978-3-030-45190-5_25
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1007/b137241
https://doi.org/10.1109/CSMR.2000.827306
https://doi.org/10.1007/s10664-020-09912-w
https://doi.org/10.1145/3372020.3391560
https://doi.org/10.1145/3092282.3092289
https://doi.org/10.1007/s10009-021-00634-y
https://doi.org/10.1007/978-3-031-15629-8_11
https://doi.org/10.1007/978-3-030-63461-2_2
https://doi.org/10.1007/978-3-030-63461-2_2
https://doi.org/10.5220/0011145700003266

Compositional Learning for Interleaving Parallel Automata 19

April 24-27, 2016, Revised Papers. Lecture Notes in Computer Science, vol. 11026, pp. 123–148. Springer
(2018). https://doi.org/10.1007/978-3-319-96562-8 5

17. Howar, F., Steffen, B.: Active automata learning as black-box search and lazy partition refinement. In:
Jansen, N., Stoelinga, M., van den Bos, P. (eds.) A Journey from Process Algebra via Timed Automata
to Model Learning : Essays Dedicated to Frits Vaandrager on the Occasion of His 60th Birthday, pp.
321–338. Springer Nature Switzerland, Cham (2022). https://doi.org/10.1007/978-3-031-15629-8 17

18. Isberner, M., Howar, F., Steffen, B.: Learning register automata: from languages to program structures.
Machine Learning 96(1), 65–98 (2014). https://doi.org/10.1007/s10994-013-5419-7

19. Isberner, M., Howar, F., Steffen, B.: The TTT algorithm: A redundancy-free approach to active au-
tomata learning. In: Bonakdarpour, B., Smolka, S.A. (eds.) Runtime Verification - 5th International
Conference, RV 2014, Toronto, ON, Canada, September 22-25, 2014. Proceedings. Lecture Notes in
Computer Science, vol. 8734, pp. 307–322. Springer (2014). https://doi.org/10.1007/978-3-319-11164-
3 26

20. Jones, E., Oliphant, T., Peterson, P.: Scipy: Open source scientific tools for python (01 2001).
https://doi.org/10.1038/s41592-019-0686-2

21. Kearns, M.J., Vazirani, U.: An Introduction to Computational Learning Theory. MIT Press (1994).
https://doi.org/10.7551/mitpress/3897.001.0001

22. Koschke, R.: Architecture Reconstruction, p. 140–173. Springer-Verlag, Berlin, Heidelberg (2009).
https://doi.org/10.1007/978-3-540-95888-8 6

23. Labbaf, F., Groot, J.F., Hojjat, H., Mousavi, M.R.: Compositional Learning for Interleaving Paral-
lel Automata (CL-Star) (Apr 2023). https://doi.org/10.5281/zenodo.7624699, https://doi.org/10.
5281/zenodo.7624699

24. Lachmann, R., Lity, S., Lischke, S., Beddig, S., Schulze, S., Schaefer, I.: Delta-oriented test case
prioritization for integration testing of software product lines. In: Proceedings of the 19th Interna-
tional Conference on Software Product Line. p. 81–90. SPLC ’15, ACM, New York, NY, USA (2015).
https://doi.org/10.1145/2791060.2791073

25. Lity, S., Lachmann, R., Lochau, M., Schaefer, I.: Delta-oriented software product line test models-the
body comfort system case study. Tech. Rep. 2012-07, TU Braunschweig (2012)

26. Milner, R., Moller, F.: Unique decomposition of processes. Theoretical Computer Science 107(2),
357–363 (1993). https://doi.org/10.1016/0304-3975(93)90176-T, https://www.sciencedirect.com/

science/article/pii/030439759390176T
27. Moerman, J.: Learning product automata. In: Unold, O., Dyrka, W., Wieczorek, W. (eds.) Proceedings

of The 14th International Conference on Grammatical Inference 2018. Proceedings of Machine Learning
Research, vol. 93, pp. 54–66. PMLR (feb 2019), https://proceedings.mlr.press/v93/moerman19a.
html

28. Naeem Irfan, M., Oriat, C., Groz, R.: Model inference and testing. Advances in Computers,
vol. 89, pp. 89–139. Elsevier (2013). https://doi.org/10.1016/B978-0-12-408094-2.00003-5, https://
www.sciencedirect.com/science/article/pii/B9780124080942000035

29. Neele, T., Sammartino, M.: Compositional Automata Learning of Synchronous Systems. In: Lambers,
L., Uchitel, S. (eds.) FASE 2023. Lecture Notes in Computer Science, Springer (2023)

30. Raffelt, H., Steffen, B.: Learnlib: A library for automata learning and experimentation. In: Baresi,
L., Heckel, R. (eds.) Fundamental Approaches to Software Engineering. pp. 377–380. Springer Berlin
Heidelberg, Berlin, Heidelberg (2006). https://doi.org/10.1145/1081180.1081189

31. Rivest, R., Schapire, R.: Inference of finite automata using homing sequences. Information and Com-
putation 103(2), 299–347 (1993). https://doi.org/10.1006/inco.1993.1021

32. Sanchez, L., Groote, J.F., Schiffelers, R.R.H.: Active learning of industrial software with data. In:
Hojjat, H., Massink, M. (eds.) Fundamentals of Software Engineering - 8th International Conference,
FSEN 2019, Tehran, Iran, May 1-3, 2019, Revised Selected Papers. Lecture Notes in Computer Science,
vol. 11761, pp. 95–110. Springer (2019). https://doi.org/10.1007/978-3-030-31517-7 7

33. Smeenk, W., Moerman, J., Vaandrager, F.W., Jansen, D.N.: Applying automata learning to embedded
control software. In: Butler, M.J., Conchon, S., Zäıdi, F. (eds.) Formal Methods and Software Engi-
neering - 17th International Conference on Formal Engineering Methods, ICFEM 2015, Paris, France,

https://doi.org/10.1007/978-3-319-96562-8_5
https://doi.org/10.1007/978-3-031-15629-8_17
https://doi.org/10.1007/s10994-013-5419-7
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.7551/mitpress/3897.001.0001
https://doi.org/10.1007/978-3-540-95888-8_6
https://doi.org/10.5281/zenodo.7624699
https://doi.org/10.5281/zenodo.7624699
https://doi.org/10.5281/zenodo.7624699
https://doi.org/10.1145/2791060.2791073
https://doi.org/10.1016/0304-3975(93)90176-T
https://www.sciencedirect.com/science/article/pii/030439759390176T
https://www.sciencedirect.com/science/article/pii/030439759390176T
https://proceedings.mlr.press/v93/moerman19a.html
https://proceedings.mlr.press/v93/moerman19a.html
https://doi.org/10.1016/B978-0-12-408094-2.00003-5
https://www.sciencedirect.com/science/article/pii/B9780124080942000035
https://www.sciencedirect.com/science/article/pii/B9780124080942000035
https://doi.org/10.1145/1081180.1081189
https://doi.org/10.1006/inco.1993.1021
https://doi.org/10.1007/978-3-030-31517-7_7

20 F. Labbaf et al.

November 3-5, 2015, Proceedings. Lecture Notes in Computer Science, vol. 9407, pp. 67–83. Springer
(2015). https://doi.org/10.1007/978-3-319-25423-4 5

34. Tappler, M., Aichernig, B.K., Larsen, K.G., Lorber, F.: Time to learn – learning timed automata from
tests. In: Formal Modeling and Analysis of Timed Systems: 17th International Conference, FORMATS
2019, Amsterdam, The Netherlands, August 27–29, 2019, Proceedings. p. 216–235. Springer-Verlag,
Berlin, Heidelberg (2019). https://doi.org/10.1007/978-3-030-29662-9 13

35. Tavassoli, S., Damasceno, C.D.N., Khosravi, R., Mousavi, M.R.: Adaptive behavioral model learn-
ing for software product lines. In: Felfernig, A., Fuentes, L., Cleland-Huang, J., Assunção, W.K.G.,
Falkner, A.A., Azanza, M., Luaces, M.Á.R., Bhushan, M., Semini, L., Devroey, X., Werner, C.M.L.,
Seidl, C., Le, V., Horcas, J.M. (eds.) SPLC ’22: 26th ACM International Systems and Software Prod-
uct Line Conference, Graz, Austria, September 12 - 16, 2022, Volume A. pp. 142–153. ACM (2022).
https://doi.org/10.1145/3546932.3546991

36. Vaandrager, F.: Model learning. Commun. ACM 60(2), 86–95 (jan 2017).
https://doi.org/10.1145/2967606

37. Vaandrager, F.W., Garhewal, B., Rot, J., Wißmann, T.: A new approach for active automata learning
based on apartness. In: Fisman, D., Rosu, G. (eds.) Proceedings of the 28th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems TACAS 2022. Lecture Notes in
Computer Science, vol. 13243, pp. 223–243. Springer (2022). https://doi.org/10.1007/978-3-030-99524-
9 12

38. Waskom, M.L.: seaborn: statistical data visualization. Journal of Open Source Software 6(60), 3021
(2021). https://doi.org/10.21105/joss.03021

https://doi.org/10.1007/978-3-319-25423-4_5
https://doi.org/10.1007/978-3-030-29662-9_13
https://doi.org/10.1145/3546932.3546991
https://doi.org/10.1145/2967606
https://doi.org/10.1007/978-3-030-99524-9_12
https://doi.org/10.1007/978-3-030-99524-9_12
https://doi.org/10.21105/joss.03021

	Compositional Learning for Interleaving Parallel Automata

