
Validated Test Models for Software Product

Lines: Featured Finite State Machines

Vanderson Hafemann Fragal1 ⋆, Adenilso Simao1, and
Mohammad Reza Mousavi2 ⋆⋆

1 Institute of Math. and Computer Sciences - ICMC, University of São Paulo, Brazil
2 Centre for Research on Embedded Systems - CERES, Halmstad University, Sweden

Abstract. Variants of the finite state machine (FSM) model have been
extensively used to describe the behaviour of reactive systems. In par-
ticular, several model-based testing techniques have been developed to
support test case generation and test case executions from FSMs. Most
such techniques require several validation properties to hold for the un-
derlying test models. In this paper, we propose an extension of the FSM
test model for software product lines (SPLs), named featured finite state
machine (FFSM). As the first step towards using FFSMs as test mod-
els, we define feature-oriented variants of basic test model validation
criteria. We show how the high-level validation properties coincide with
the necessary properties on the product FSMs. Moreover, we provide a
mechanised tool prototype for checking the feature-oriented properties
using satisfiability modulo theory (SMT) solver tools. We investigate the
applicability of our approach by applying it to both randomly generated
FFSMs as well as those from a realistic case study (the Body Comfort
System). The results of our study show that for random FFSMs over 16
independent non-mandatory features, our technique provides substantial
efficiency gains for the set of proposed validity checks.

Keywords: Formal Modelling, Model Validation, Software Product Line,
Finite State Machine.

1 Introduction

Motivation. Different forms of finite state machines (FSMs) have been extensively
used as the fundamental semantic model for various behavioural specification
languages and design trajectories. In particular, several test case generation
techniques have been developed for hardware and software testing based on
FSMs; an overview of these techniques can be found in [19, 8, 17]. All FSM-
based testing techniques require the underlying test models to satisfy some basic
validation criteria such as connectedness and minimality.

⋆ The work of V. Hafemann has been partially supported by the Science Without
Borders project number 201694/2015-8.

⋆⋆ The work of M. R. Mousavi has been partially supported by the Swedish Research
Council award number: 621-2014-5057 and the Swedish Knowledge Foundation project
number 20140312.

2

Software Product Lines (SPLs) [20] are used for systematic reuse of artefacts
and are effective in mass production and customisation of software. However,
testing large SPLs demand substantial effort, and effective reuse is a challenge.
Model-Based Testing (MBT) approaches need to be adapted to the SPL domain
(see [27] for a survey of existing approaches).

There are a few recent attempts [24, 34] to extend the FSM-based testing
techniques to SPLs, mostly using the delta-oriented approach to SPL modelling.
We are not aware of any prior work that addresses the basic test model validation
criteria for SPLs at the family-wide level. The present paper aims at bridging
this gap. To this end, we first propose a product-line extension of FSMs, named
Featured Finite State Machine (FFSM). An FFSM unifies the test models of the
valid product configurations in a family into a single model. Our aim is to extend
FSM-based test case generation techniques [28, 32] to generate test suites for
groups of SPL products. As the first step to this end, we define feature-oriented
family-based validation criteria that coincide with the necessary conditions of
such test case generation techniques at the product level.

Our family-based validation criteria are implemented in a tool using Java and
the Z3 [26] tool. A case study from the automotive domain concerning the Body
Comfort System [21] was performed to show the applicability of our criteria and
tool. Our research question is: How large does an FFSM have to be in order to
save time in the validation of the FFSM instead of its valid product FSMs? To
this end, we performed an empirical study on randomly generated FFSMs with
various parameters. The results indicate that for random FFSMs with over 10
independent non-mandatory features, we have substantial efficiency gains for the
set of proposed validity checks.

Contributions. The main contributions of this paper are summarised below:

1. Proposing family-based validation criteria for FSM-based test models and
proving them to coincide with their product-based counterparts, and

2. Implementing efficient family-based validation techniques and investigating
their applicability by applying them to a large set of examples.

Also as a carrier for these contributions, we propose a feature-oriented extension
of FSMs.

Organisation. The remainder of this paper is organised as follows. Section 2
presents some preliminary notions and concepts regarding SPL testing and FSMs.
Section 3 describes the FFSM formalism, the proposed validation properties,
and the associated theoretical results. Section 4 provides an overview of the
implementation used for property checking in Java and Z3. Section 5 illustrates
the experimental study and the analysis of results. Section 6 provides an overview
of the related works and a comparison among the relevant approaches in the
literature. Section 7 concludes the paper and presents the directions of our future
work.

3

2 Background

This section recapitulates the basic concepts and definitions of SPLs and FSMs
that we are going to use through the rest of the paper.

2.1 Software Product Lines

A feature is an atomic unit used to differentiate the products of an SPL. Let F
be the set of features. A product p is defined by a set of features p ⊆ F . The
feature structure can be represented by a feature diagram [30]. In a feature
diagram, some notational conventions are used to represent commonalities and
variabilities of an SPL (e.g., mandatory, optional, and alternative features).
To illustrate the concepts throughout the paper, we use the following SPL.

Example 1. The Arcade Game Maker (AGM) [31] can produce arcade games with
different game rules. The objective of the player in any game is to get more points.
Figure 1 shows the feature diagram of AGM. There are three alternative features
for the game rule (Brickles, Pong and Bowling) and one optional feature (Save)
to save the game.

Brickles[B]

Legend

 Mandatory Feature

 Optional Feature

 Alternative Feature

Collision[L]Movement[M]Bowling[W]Play[Y]

Services[V] Action[A]Rules[R]

Pong[N]Save[S]Pause[P]

Configuration[C]

Arcade Game Maker-AGM[G]

Fig. 1. AGM Feature Model (adapted from [31]).

In general, not all combinations of features are valid. Dependencies and constraints
on feature combinations reduce the power set P(F) of all potential feature
combinations to a subset of valid products P ⊆ P(F) [2, 13]. A feature

constraint is a propositional formula generated by interpreting the elements of
the set F as propositional variables. We denote by B(F) the set of all feature
constraints.

A product configuration ρ of a product p ∈ P is the feature constraint that
uses all features of F , where all features in p are true, i.e., ρ = (

∧

f∈p

f) ∧ (
∧

f /∈p

¬f).

We denote by Λ the set of all valid product configurations. Given a feature
constraint χ ∈ B(F), a product configuration ρ ∈ Λ satisfies χ (denoted by
ρ � χ), if the assertion ρ ∧ χ is not false.

Consider a feature model FM , let F be a set of features extracted from FM .
Given F = {Y, S}, we know from the FM that feature Play[Y] is mandatory

4

and Save[S] is optional; an example feature constraint involving both features is
(Y ∧ ¬S) ∈ B(F), which specifies the products in which Y is included and S is
excluded.

2.2 Finite State Machine

The classic Finite State Machine (FSM) formalism is often used due to its
simplicity and rigour for systems such as communication protocols and reactive
systems [8]. In this study, we use the following definition of FSM.

Definition 1. An FSM M is a 5-tuple (S, s0, I, O, T), where S is a finite set of
states with the initial state s0, I is a finite set of inputs, O is a finite set
of outputs, and T is a set of transitions t = (s, x, o, s′) ∈ T , where s ∈ S is
the source state, x ∈ I is the input label, o ∈ O is the output label, and s′ ∈ S is
the target state.

Given an input sequence α = (x1, ..., xk), xi ∈ I, 1 ≤ i ≤ k, a path from state
s1 to sk+1 exists when there are transitions ti = (si, xi, oi, si+1) ∈ T , for each
1 ≤ i ≤ k. A path υ is a 5-tuple (s1, α, τ, β, sk+1), where

1. s1 ∈ S is the source state where the path begins,
2. α ∈ I∗ is the defined input sequence,
3. τ ∈ T ∗ is the transition sequence, i.e., τ = (t1, ..., tk),
4. β ∈ O∗ is the output result, i.e., β = (o1, ..., ok)
5. sk+1 ∈ S is the target state where the path ends.
Notation Ω(s) is used to denote all paths that start on state s ∈ S. ΩM is

used to denote Ω(s0).

Test case generation methods such as the Harmonised State Identification (HSI)
[28] method, and the Fault Coverage-Driven Incremental (P) [32] method require
FSMs with some of the semantic properties defined below.

Definition 2. The following validation properties are defined for FSMs:
1. Deterministic: if two transitions leave a state with a common input, then

both transitions reach the same state, i.e., ∀(s,x,o,s′),(s,x,o′,s′′)∈T • s′ = s′′;
2. Complete (required only by some algorithms): every state has one transi-

tion for each input, i.e., ∀s∈S,x∈I • ∃o∈O,s′∈S • (s, x, o, s′) ∈ T ;
3. Initially Connected: there is a path to every state from the initial state,

i.e., ∀s∈S • ∃α∈I∗,τ∈T∗,β∈O∗ • (s0, α, τ, β, s) ∈ ΩM ;
4. Minimal: all pairs of states are distinguishable, i.e., ∀sa,sb∈S •

∃(sa,α,τa,βa,s′a)∈Ω(sa),(sb,α,τb,βb,s′b)∈Ω(sb) • βa 6= βb.

Example 2. There are six possible products that can be derived from the AGM
FM. The FSM M1 of the first configuration is presented in Figure 2. This test
model is an abstracted version of the design model where observable events
are represented by inputs and the correspondent outputs. The inputs are in-
game commands, while the outputs 0 and 1 are abstract captured responses.
We selected the Pong[N] rule and discarded the Save[S] option represented by
ρ1 = (G ∧ V ∧ R ∧ C ∧ A ∧ M ∧ L ∧ Y ∧ P ∧ N ∧ ¬B ∧ ¬W ∧ ¬S) ∈ Λ. It is
straightforward to check that M1 is a deterministic, complete, initially connected
and minimal FSM.

5

Pause GamePong GameStart Game

Start/1

Exit/1

Pause/1Start/1

Exit/1

Exit/0

Pause/0

Start/0

Pause/0

Fig. 2. FSM of the first product configuration of AGM.

3 Featured Finite State Machines

A Featured Finite State Machine (FFSM) is an extension of a Finite State
Machine (FSM) by annotating states and transitions with feature constraints.

This Section presents the basic definitions for FFSMs, followed by the notion
of product derivation, and the high-level validation properties required for test
case generators.

3.1 Basic Definitions

The simplified syntax (with conditions) of an FFSM is defined as follows.

Definition 3. An FFSM is a 7-tuple (F,Λ,C, c0, Y, O, Γ), where
1. F is a finite set of features,
2. Λ is the set of product configurations,
3. C ⊆ S × B(F) is a finite set of conditional states, where S is a finite

set of state labels, B(F) is the set of all feature constraints, and C satisfies the
following condition:

∀(s,ϕ)∈C • ∃ρ∈Λ • ρ � ϕ

4. c0 = (s0, true) ∈ C is the initial conditional state,
5. Y ⊆ I ×B(F) is a finite set of conditional inputs, where I is the set of

input labels,
6. O is a finite set of outputs,
7. Γ ⊆ C × Y × O × C is the set of conditional transitions satisfying the

following condition:

∀((s,ϕ),(x,ϕ′′),o,(s′,ϕ′))∈Γ • ∃ρ∈Λ • ρ � (ϕ ∧ ϕ′ ∧ ϕ′′)

The components of FFSM are self-explanatory; the above-given two conditions
ensure that every conditional state and every transition is present in at least one
valid product of the SPL. A conditional transition from conditional state c to c′

with conditional input y and output o is represented by quadruple t = (c, y, o, c′),

or alternatively by c
y
→
o
c′.

Example 3. Figure 3 shows the FFSM for the AGM SPL. The notation of a
conditional state in the model is s(ϕ) ≡ (s, ϕ) ∈ C, the transition line by

x(ϕ)/o ≡
(x,ϕ)
→
o

∈ Y ×O, and the operators of feature constraints are denoted by

6

Start/1

Start/1

Start/1
Start/1

Pause/1
Save(S)/1

Start/1

Pause/1
Save(S)/1

Save(S)/1

Pause/1

Pause(W)/1

Exit/1

Start/1

Start/1

Exit/0
Start/0

Save(B)/0

Pause/0

Save(N)/1

Exit/1

Start/0

Exit/0
Pause(!W)/1
Pause(W)/0

Save/0
Exit(!S)/0

Start/0
Save(S)/0

Exit(W&!S)/1
Exit(!W||S)/0

Start/1

Exit(S)/1

Pause(!W)/0

Start/1
Save Game(S)Pause Game

Pong(N)

Bowling(W)

Brickles(B)

Star t Game

Fig. 3. FFSM for the AGM SPL.

& (and), || (or), and ! (not). Omitted feature conditions mean that the condition

is true, i.e., for states s ≡ (s, true) ∈ C, and transitions
x
→
o
≡

(x,true)
→
o

.

Next, we define auxiliary definitions on FFSMs that are used to describe
transfer sequences; they are subsequently used in expressing the FFSM validation
properties.

Definition 4. Given a conditional input sequence δ = (y1, ..., yk), yi ∈ Y, 1 ≤
i ≤ k, a conditional path from conditional state c1 to ck+1 exists when there
are conditional transitions ti = (ci, yi, oi, ci+1) ∈ Γ , for each 1 ≤ i ≤ k. A
conditional path σ is a 6-tuple (c1, δ, ν, γ, ω, ck+1), where

1. c1 ∈ C is the conditional state where the path begins,
2. δ ∈ Y ∗ is the conditional input sequence,
3. ν ∈ Γ ∗ is the conditional transition sequence, i.e., ν = (t1, ..., tk),
4. γ ∈ O∗ is the output result, i.e., γ = (o1, ..., ok)
5. ω ∈ B(F) is the resulting path condition, i.e., ω = (ϕ1, ...ϕk+1) ∧

(θ1, ..., θk), yi = (xi, θi), ci = (si, ϕi)
6. ck+1 ∈ C is the conditional state where the path ends.
Notation Θ(c) is used to denote the set of all conditional paths that start at

conditional state c ∈ C. ΘFF is used to denote Θ(c0).

We also define a valid transfer sequence that is used to transfer the machine from
one conditional state to another.

Definition 5. Given two conditional states c, c′ ∈ C, a conditional input se-
quence δ ∈ Y ∗ is a valid transfer sequence if there are at least one path
(c, δ, ν, γ, ω, c′) ∈ Θ(c) and one product that satisfies the path condition, i.e.,
∃ρ∈Λ • ρ � ω.

Example 4. Consider the FFSM of Figure 3. Note that a transfer sequence

δ = (Start, Pause) of a conditional path (StartGame, δ, (StartGame
Start
→
1

7

Brickles(B), Brickles(B)
Pause
→
1

PauseGame), (1, 1), (B), PauseGame) ∈ ΘFF

has a transfer condition ω = (B) and only two products can satisfy ω, namely,
ρ5 = (G ∧ V ∧ R ∧ C ∧ A ∧ M ∧ L ∧ Y ∧ P ∧ B ∧ ¬N ∧ ¬W ∧ ¬S) ∈ Λ and
ρ6 = (G∧V ∧R∧C∧A∧M∧L∧Y ∧P ∧B∧S∧¬N∧¬W) ∈ Λ. Thus, ω is not sat-
isfied by valid product ρ1 = (G∧V ∧R∧C∧A∧M∧L∧Y ∧P∧N∧¬B∧¬W∧¬S).

3.2 Product Derivation

We define a product derivation operator, reminiscent of the operator in [4, 6], that
is parameterised by feature constraints. Given a feature constraint, the product
derivation operator reduces an FFSM into an FSM representing the selection of
products.

Definition 6. Given a feature constraint φ ∈ B(F) and an FFSM FF =
(F,Λ,C, c0, Y, O, Γ), if exactly one product ρ ∈ Λ satisfies φ, i.e.,∃!ρ∈Λ•ρ � φ, then
the product derivation operator ∆φ induces an FSM ∆φ(FF) = (S, s0, I, O, T),
where:

1. S = {s|(s, ϕ) ∈ C ∧ ρ � (ϕ ∧ φ)} is the set of states;
2. s0 = s, c0 = (s, ϕ) ∈ C is the initial state;

3. T = {(s, x, o, s′)|(s, ϕ)
(x,ϕ′′)
→
o

(s′, ϕ′) ∈ Γ ∧ ρ � (ϕ ∧ ϕ′ ∧ ϕ′′ ∧ φ)} is the set

of transitions.

The set of all valid products of FF is the set of all induced FSMs. Figure 3 shows
the FFSM generated for the AGM SPL that can induce six products. Using the
feature constraint φ = N ∧¬S the FFSM is projected into the FSM presented in
Figure 2.

3.3 Validation Properties

To adopt FFSMs as test models, first, we need to validate the product-line-
based specification with properties used for FSMs. Next, we define the high-level
counterparts of the four basic properties, namely, determinism, completeness,
initially connected-ness, and minimality, and show that they coincide with the
aforementioned properties for their valid FSM products.1

Definition 7. An FFSM FF is deterministic if for all conditional
states when exists two enabled conditional transitions with the same in-
put for a product ρ, then both transitions lead to the same state, i.e.,
∀
(s,ϕ)

(x,ϕ′)
→
o

(s′,ϕa),(s,ϕ)
(x,ϕ′′)
→
o

(s′′,ϕb)∈Γ
• ∀ρ∈Λ • ρ 2 (ϕ ∧ ϕ′ ∧ ϕ′′ ∧ ϕa ∧ ϕb) ∨ s′ = s′′.

Next, we state and prove that an FFSM is deterministic when all its valid product
FSMs are deterministic.

1 Due to space limitation proof sketches are provided below; detailed proofs of correct-
ness for these properties is available at http://ceres.hh.se/mediawiki/Vanderson_
Hafemann

8

Theorem 1. An FFSM FF is deterministic if and only if all derived product
FSMs ∆φ(FF) are deterministic.

Proof. We break the bi-implication in the thesis into two implications and
prove each by contradiction. For the implication from left to right, assume
that FFSM FF is deterministic, but there is a derived FSM ∆φ(FF) for a
product ρ which is non-deterministic; we obtain a contradiction. Let FFSM
FF = (F,Λ,C, c0, Y, O, Γ) be deterministic and a derived FSM ∆φ(FF) =
(S, s0, I, O, T) be non-deterministic for a product ρ ∈ Λ on state s ∈ S. As
∆φ(FF) is non-deterministic, then by the negation of Definition 2 item 1 there
is an input x ∈ I such that two transitions (s, x, o, s′), (s, x, o, s′′) ∈ T reach
different states s′ 6= s′′. By Definition 6 item 3 if ∆φ(FF) has two transitions
(s, x, o, s′) and (s, x, o, s′′), then both were induced from conditional transitions

(s, ϕ)
(x,ϕ′)
→
o

(s′, ϕa), (s, ϕ)
(x,ϕ′′)
→
o

(s′′, ϕb) ∈ Γ of FF and ρ � (ϕ ∧ ϕ′ ∧ ϕa ∧ ϕb).

However, FF is deterministic and by Definition 7 the condition ρ 2 (ϕ′∧ϕ′′∧ϕa∧
ϕb)∨s′ = s′′ holds for all pairs of conditional transitions, which is a contradiction
as there is a pair of conditional transitions that the negation of the condition
ρ � (ϕ ∧ ϕ′ ∧ ϕa ∧ ϕb) ∧ (s′ 6= s′′) also holds.

Likewise, for the implication right to left, assume that ∆φ(FF) is deter-
ministic for ρ, but FF is non-deterministic; we obtain a contradiction. Let
FF = (F,Λ,C, c0, Y, O, Γ) be non-deterministic on conditional state (s, ϕ) ∈ C,
ρ |= ϕ, and ∆φ(FF) = (S, s0, I, O, T) is deterministic for ρ. As FF is non-
deterministic, then by the negation of Definition 7 there is an input x ∈ I such

that two conditional transitions (s, ϕ)
(x,ϕ′)
→
o

(s′, ϕa), (s, ϕ)
(x,ϕ′′)
→
o

(s′′, ϕb) ∈ Γ are

satisfied by ρ � (ϕ ∧ ϕ′ ∧ ϕa ∧ ϕb) and reach different states s′ 6= s′′. As ρ � φ
and by Definition 6 item 3 each transition of FF that satisfies φ is induced
to ∆φ(FF), thus (s, x, o, s′), (s, x, o, s′′) ∈ T . However, ∆φ(FF) is deterministic
and by Definition 2 item 1 the condition s′ = s′′ is true for all pairs of transi-
tions (s, x, o, s′), (s, x, o, s′′) ∈ T , which is a contradiction as there is a pair of
transitions (s, x, o, s′), (s, x, o, s′′) ∈ T such (s′ 6= s′′). �

Definition 8. An FFSM FF is complete if for all conditional states in a
product there is an outgoing valid transition for each and every input, i.e.,
∀(s,ϕ)∈C • ∀ρ∈Λ • ∀x∈I• ρ 2 ϕ ∨ ∃

(s,ϕ)
(x,ϕ′′)
→
o

(s′,ϕ′)∈Γ
• ρ |= ϕ′ ∧ ϕ′′.

Next, we state and prove that an FFSM is complete when all its valid product
FSMs are complete.

Theorem 2. An FFSM is complete if and only if all derived product FSMs are
complete.

Proof. We break the bi-implication in the thesis into two implications and prove
each by contradiction. For the implication left to right, assume that FFSM
FF is complete, but there is a derived FSM ∆φ(FF) for a product ρ which is
non-complete; we obtain a contradiction. Let FFSM FF = (F,Λ,C, c0, Y, O, Γ)
be complete and a derived FSM ∆φ(FF) = (S, s0, I, O, T) be non-complete for a

9

product ρ ∈ Λ on state s ∈ S for input x ∈ I. As ∆φ(FF) is non-complete, then,
by the negation of Definition 2 item 2 there is no transition (s, x, o, s′) ∈ T on s
with input x. By Definition 8 if FF is complete, then for all products ρ ∈ Λ that
satisfies a conditional state (s, ϕ) ∈ C ∧ ρ |= ϕ and for all inputs x ∈ I there are

conditional transitions (s, ϕ)
(x,ϕ′′)
→
o

(s′, ϕ′) ∈ Γ such ρ |= ϕ′ ∧ ϕ′′. However, by

Definition 6 item 3 every conditional transition (s, ϕ)
(x,ϕ′′)
→
o

(s′, ϕ′) ∈ Γ in FF

that satisfies ρ � φ induces a transition (s, x, o, s′) ∈ T in ∆φ(FF), which is a
contradiction as ∆φ(FF) does not have a transition (s, x, o, s′) ∈ T on state s
for input x.

Likewise, for the implication right to left, assume that ∆φ(FF) is com-
plete for ρ, but FF is non-complete; we obtain a contradiction. Let FF =
(F,Λ,C, c0, Y, O, Γ) be non-complete on conditional state (s, ϕ) ∈ C for input
x ∈ I, ρ |= ϕ, and ∆φ(FF) = (S, s0, I, O, T) is complete for ρ. As FF is non-
complete, then by the negation of Definition 8 on conditional state (s, ϕ) ∈ C

there is no conditional transition (s, ϕ)
(x,ϕ′′)
→
o

(s′, ϕ′) ∈ Γ with input x ∈ I for

FF , or it exists but is not satisfied ρ 2 ϕ′ ∧ ϕ′′. By Definition 6 item 3 if a

conditional transition (s, ϕ)
(x,ϕ′′)
→
o

(s′, ϕ′) does not exist in FF , or it exists but

ρ 2 ϕ′ ∧ ϕ′′, then there is no transition (s, x, o, s′) ∈ T induced in ∆φ(FF).
However, ∆φ(FF) is complete and by Definition 2 item 2 for all states s ∈ S and
for all inputs x ∈ I there are transitions (s, x, o, s′) ∈ T , which is a contradiction
as there is no transition (s, x, o, s′) ∈ T in ∆φ(FF) for state s and input x. �

Definition 9. An FFSM FF is initially connected if there exist transfer
sequences from the initial conditional state to every conditional state for every
satisfiable product, i.e., ∀c=(s,ϕ)∈C • ∀ρ∈Λ • ρ |= ϕ =⇒ ∃(c0,δ,ν,γ,ω,c)∈ΘFF

• ρ � ω.

Next, we state and prove that an FFSM is initially connected when all its valid
product FSMs are initially connected.

Theorem 3. An FFSM is initially connected if and only if all derived product
FSMs are initially connected.

Proof. We break the bi-implication in the thesis into two implications and
prove each by contradiction. For the implication left to right, assume that
FFSM FF is initially connected, but there is a derived FSM ∆φ(FF) for a
product ρ which is non-initially connected; we obtain a contradiction. Let FFSM
FF = (F,Λ,C, c0, Y, O, Γ) be initially connected and a derived FSM ∆φ(FF) =
(S, s0, I, O, T) be non-initially connected for a product ρ ∈ Λ on state sk ∈
S. As ∆φ(FF) is non-initially connected, then, by the negation of Definition
2 item 3 there is no path υ ∈ Ω∆φ(FF) to sk from the initial state s0. By
Definition 9 if FF is initially connected, then there is a path σk ∈ ΘFF to every
conditional state (sk, ϕk) ∈ C from the initial conditional state c0, and ρ satisfies
the path condition ω. However, by Definition 5 every conditional transition

(si, ϕi)
(xi,ϕ

′

i)→
o

(si+1, ϕi+1) ∈ Γ , 0 ≤ i ≤ k forms a path to reach (sk, ϕk) which is

satisfied by ρ. As ρ � φ, and by Definition 6 item 3 every conditional transition

10

(si, ϕi)
(xi,ϕ

′

i)→
o

(si+1, ϕi+1) ∈ Γ is induced to (si, xi, o, si+1) ∈ T that forms a path

to reach sk, which is a contradiction as there is no path for υ ∈ Ω∆φ(FF) to reach
state sk.

Likewise, for the implication right to left, assume that ∆φ(FF) is initially
connected for ρ, but FF is non-initially connected; we obtain a contradiction.
Let FF = (F,Λ,C, c0, Y, O, Γ) be non-initially connected on conditional state
(s, ϕ) ∈ C, ρ |= ϕ, and ∆φ(FF) = (S, s0, I, O, T) is initially connected for ρ. As
FF is non-initially connected, then by the negation of Definition 9 there is no
path σ ∈ ΘFF to reach (sk, ϕk) from the initial conditional state c0. By Definition
2 item 3 if ∆φ(FF) is initially connected, then there is a path υ ∈ Ω∆φ(FF) to
reach every state s ∈ S from the initial state s0. As ρ � φ, and by Definition
6 item 3 every transition (si, xi, o, si+1) ∈ T was induced from a conditional

transition (si, ϕi)
(xi,ϕ

′

i)→
o

(si+1, ϕi+1) ∈ Γ and ρ � ϕi ∧ ϕ′

i ∧ ϕi+1 that forms a

path to reach (sk, ϕk), which is a contradiction as there is no path σ ∈ ΘFF to
reach (sk, ϕk). �

Definition 10. An FFSM FF is minimal if for all pairs of conditional states of
all satisfiable products there are common valid transfer sequences that distinguish
both conditional states, i.e., ∀ca=(sa,ϕa),cb=(sb,ϕb)∈C • ∀ρ∈Λ • ρ � ϕa ∧ ϕb ⇒
∃(ca,δ,νa,γa,ωa,c′a)∈Θ(ca),(cb,δ,νb,γb,ωb,c′b)∈Θ(cb) • γa 6= γb ∧ ρ � (ωa ∧ ωb).

Next, we state and prove that an FFSM is minimal when all its valid product
FSMs are minimal.

Theorem 4. An FFSM is minimal if and only if all derived product FSMs are
minimal.

Proof. We break the bi-implication in the thesis into two implications and prove
each by contradiction. For the implication left to right, assume that FFSM
FF is minimal, but there is a derived FSM ∆φ(FF) for a product ρ which is
non-minimal; we obtain a contradiction. Let FFSM FF = (F,Λ,C, c0, Y, O, Γ)
be minimal and a derived FSM ∆φ(FF) = (S, s0, I, O, T) be non-minimal for
a product ρ ∈ Λ on states sa, sb ∈ S. As ∆φ(FF) is non-minimal, then, by the
negation of Definition 2 item 4 there is no common input sequence α ∈ I∗ of two
paths υa ∈ Ω(sa), υb ∈ Ω(sb) that distinguish states sa and sb. By Definition 10
if FF is minimal, then for every pair of conditional states ca = (sa0

, ϕa0
), cb =

(sb0 , ϕb0) ∈ C and for all products ρ ∈ Λ that satisfy the condition ϕa0 ∧ ϕb0

there are two paths with a common a distinguishing sequence δ ∈ Y ∗ and
ρ also satisfies both path conditions ωa ∧ ωb. However, by Definition 5 every

pair of conditional transitions (sai
, ϕai

)
(xi,ϕ

′

i)→
o

(sai+1
, ϕai+1

), (sbi , ϕbi)
(xi,ϕ

′′

i)→
o′

(sbi+1 , ϕbi+1) ∈ Γ , 0 ≤ i ≤ k of the distinguishing sequence δ is satisfied by
ρ. As ρ � φ, and by Definition 6 item 3 every pair of conditional transitions

(sai
, ϕai

)
(xi,ϕ

′

i)→
o

(sai+1
, ϕai+1

), (sbi , ϕbi)
(xi,ϕ

′′

i)→
o′

(sbi+1
, ϕbi+1

) ∈ Γ is induced to

(sai
, xi, o, sai+1), (sbi , xi, o

′, sbi+1) ∈ T in ∆φ(FF) that distinguishes sa and sb,
which is a contradiction as there is no distinguishing sequence α ∈ I∗ for states
sa and sb.

11

Likewise, for the implication right to left, assume that∆φ(FF) is minimal for ρ,
but FF is non-minimal; we obtain a contradiction. Let FF = (F,Λ,C, c0, Y, O, Γ)
be non-minimal on conditional state ca = (sa0 , ϕa0), cb = (sb0 , ϕb0) ∈ C, ρ |= ϕ,
and ∆φ(FF) = (S, s0, I, O, T) is minimal for ρ. As FF is non-minimal, then by
the negation of Definition 10 there is no common input sequence δ ∈ Y ∗ that
distinguish conditional states ca and cb. By Definition 2 item 4 if ∆φ(FF) is
minimal, then there are two paths with a common a distinguishing sequence
α ∈ I∗ for every pair of states sa and sb. As ρ � φ, and by Definition 6 item 3
every pair of transitions (sai

, xi, o, sai+1
), (sbi , xi, o

′, sbi+1
) ∈ T were induced from

(sai
, ϕai

)
(xi,ϕ

′

i)→
o

(sai+1
, ϕai+1

), (sbi , ϕbi)
(xi,ϕ

′′

i)→
o′

(sbi+1
, ϕbi+1

) ∈ Γ and ρ satisfies

both conditional paths that distinguishes ca and cb, which is a contradiction as
there is no distinguishing sequence δ ∈ Y ∗ for ca and cb. �

4 Implementation

It is well-known that feature models can be translated into propositional formulas;
see, e.g., [2, 11]. This translation enables mechanising the analysis of feature-
based specifications using existing logic-based tools, such as SAT solvers. In our
approach the Z3 tool [26] was used to check propositional formulas for FFSM
properties.

We implemented a tool in Java to parse and process FFSMs in an adapted
version of KISS format [15] and subsequently generate assertions in the SMT
format that correspond to the initial syntactical checks on the FFSM definition
(Definition 3) and the semantic FFSM validation properties in Section 3.3.

To check the initial FFSM conditions on the FFSM of Figure 3, we: (i)
transform the feature model of Figure 1 into a propositional formula; and (ii) gen-
erate assertions to check feature constraints of conditional states and transitions.
Subsequently, we check the validity conditions on the generated propositional for-
mulae. The validation process is progressive, starting with validating conditional
states and transitions, and proceeding with checking determinism, completeness,
initially connected and then minimality.

Example 5. Figure 4 presents parts of the generated SMT files to check validity of
conditional states and completeness, where: (a) all features are declared as Boolean
variables: (b) the root mandatory and also the feature model propositional formula
are asserted; (c) conditional states Brickles(B) and Save(S) are verified; and
(d) a completeness check on the conditional state Save(S) for input Pause is
verified (see Figure 3). To check conditional states we combine and execute parts
(a), (b), and (c), while to check completeness (a), (b), and (d) are combined and
executed. In the end, for every (check − sat) command we have an answer that
we connect back to Java.

In Z3, push and pop commands are used to temporarily set the context (e.g.,
with assertions), and once a verification goal is discharged the context can be
reset. The (check−sat) command is used to evaluate the assertions which returns
(sat or unsat). If a conditional state check yields unsat, then there is no product
that will ever have this state and hence, the FFSM is invalid.

12

(d)

(push)
(assert S)
(assert (and
 (not (and W S))
 (not (and (not W) S))
))
(check-sat)
(pop)
.
.
.

(c)(b)(a)

(assert G)
(assert (and
 (= A G)
 (= M A)
 (= L A)
 (= C G)
 (= R G)
 (= (or B N W) R)
 (not (and B N))
 (not (and B W))
 (not (and N W))
 (= V G)
 (= Y V)
 (= P V)
 (=> S V)
))

(define-sort Feature () Bool)
(declare-const G Feature)
(declare-const A Feature)
(declare-const M Feature)
(declare-const L Feature)
(declare-const C Feature)
(declare-const R Feature)
(declare-const B Feature)
(declare-const N Feature)
(declare-const W Feature)
(declare-const V Feature)
(declare-const Y Feature)
(declare-const P Feature)
(declare-const S Feature)

(push)
(assert B)
(check-sat)
(pop)
(push)
(assert S)
(check-sat)
(pop)
.
.
.

Fig. 4. SMT file generated to check some conditional states and part of the completeness
property.

5 Experimental Study

To evaluate the applicability and the efficiency of our approach, we conducted
an experiment to evaluate and compare the time required to check properties of
FFSMs with the Product by Product (PbP) approach. Our research question is:
How large does an FFSM have to be in order to save time in validation of the
FFSM instead of its valid product FSMs? In the future, we plan to use the same
setup (extended with more case studies), to evaluate the test case generation
methods on FFSMs.

5.1 Experimental Setup

The setup of our experiment consists of generating random FFSMs varying the
number of conditional states from 8 to 70. Every FFSM uses different types
of feature models and the arrangement of the features (structure) defines the
number of configurations. Initially, we manually inspected a large sample of
generated FFSMs, their underlying FSMs and their validation times.

We also modeled the Body Comfort System (BCS) that is used on the VW
Golf SPL [21] to reduce the threats to validity and contrast the results from
randomly generated (F)FSMs with their real-world counterparts. The original
BCS system has 19 non-mandatory features and can have 11616 configurations. In
order to manage its complexity, we picked a subset of the feature model (without
unresolved dependencies) with 13 non-mandatory features and 8 independent
features at the leafs of the feature model. (We plan to introduce hierarchy into
our models and treat the complete example in the future.)

Figure 5 shows the feature model of a selected part of features for the BCS.
Figure 6 shows the FFSM for a small part of this specification featuring the
Alarm System (AS) with an optional Interior Monitoring (IM) function; and
(ii) the Central Locking System (CLS) with an optional Automatic Locking

13

LED Power Window[LEDPW]

LED Central Locking System[LEDCLS]

LED Finger Protection[LEDFP]

Status LED[LED]Human Machine
Interface[HMI]

Legend

 Mandatory Feature

 Optional Feature

 Or Feature

Finger Protection[FP]Power Window[PW]Door System[DS]

Control Automatic Power Window[CAP]

Safety Function[SF]

Control Alarm System[CAS]

Remote Control Key[RCK]

Central Locking System[CLS]Security[SEC]

Alarm System[AS]

Automatic Locking[AL]

Interior Monitoring[IM]

Body Comfort System[BCS]

requires

requires

requires

Fig. 5. Reduced feature model of BCS.

OUTPUTS
out0 = nothing out1 = cls_locked=true out2 = cls_locked=false out3 = as_active=true out4 = as_active=false
out5 = as_alarm=true out6 = as_im_alarm=true; out7 = as_alarm_was_detected=true;as_alarm=false;
out8 = as_alarm_was_detected=true;as_alarm=false;as_im_alarm=false out9 = as_active=false;as_alarm=false
out10= as_active=false;as_alarm=false;as_im_alarm=false

INPUTS
in1 = car_drives
in2 = key_pos_lock
in3 = key_pos_unlock
in4 = as_activated
in5 = as_deactivated
in6 = as_alarm_detected
in7 = im_alarm_detected
in8 = tm(20000)

in8(AS)/out0

in7(AS)/out0

in6(AS)/out0

in5(AS)/out0

in2/out0

in1/out0

in8/out0

in4/out0

in2/out0

in1/out0

in7/out0

in6/out0

in4/out0

in1/out0

in7/out0

in6/out0

in2/out0

in4/out0

in3(CLS)/out0

in8/out0

in4/out0

in3(CLS)/out0

in5(AS)/out0

in8(AS)/out0

in7(AS)/out0

in6(AS)/out0
in8(IM)/out8

in8(!IM)/out7

in8(IM)/out8

in8(!IM)/out7

in7(IM)/out6

in6/out5

in7(IM)/out6

in6/out5

in5(IM)/out10

in5(!IM)/out9

in5(!IM)/out9

in5(IM)/out10

in3(CLS)/out0

in3/out2 in3/out2

in5/out4

in4/out3

in5/out4

in4/out3

in1(AL)/out1

in2/out1in2/out1

in1(AL)/out1

in2/out1

in3/out2

in1(AL)/out1

s6(CLS&AS)
{cls_lock, AS_Alarm}

s4(AS)
{cls_unlock, AS_Alarm}

s5(CLS&AS)
{cls_lock, AS_on}

s3(AS)
{cls_unlock, AS_on}

s2(CLS)
{cls_lock, AS_off}

s 1
{cls_unlock, AS_off}

Fig. 6. FFSM for AS and CLS.

(AL) function. This FFSM turns out to be deterministic, complete, initially
connected and minimal.

The implementation of our experiments is explained in Section 4. We also
implemented a random generator for feature models and (F)FSMs. We designed
the random generator to map features to conditional states of the FFSMs. The
number of conditional states is hence designed to be proportional to the number
of features. We used FeatureIDE [33] to visualise and inspect the feature models
and gain insight into the complexity with respect to their structure. The running
environment used Windows 7 (64 bit) on an Intel processor i5-5300U at 2.30GHz.
2

2 The experiment package for Eclipse IDE can be found in http://ceres.hh.se/

mediawiki/Vanderson_Hafemann

14

5.2 Analysis and Threats to Validity

The collected data after running our experiments is visualised in Figure 7. The
total validation time is calculated in milliseconds, and we stopped our experiments
around 2 million milliseconds (approximately 30 minutes) for 68 non-mandatory
features when checking FFSMs.

As an immediate observation, we noticed that the number of non-mandatory
features is the dominant factor in the complexity of validation time in both
approaches. This was an early observation that was verified by inspecting several
data points and resulted in the way we visualised the data in Figure 7.

Additionally, the FSM-based analysis (the product-by-product approach) is
very sensitive to the structure of the feature model: the number of independent
optional features (optional features appearing in different branches of the feature
model) play a significant role in the number of products and hence, the validation
time. Thus, we classified the FSM-based data regarding the relative number of
independent non-mandatory features in Figure 7; the worst-case time is where
all the non-mandatory features are independent; the average case is where half
of the non-mandatory features are independent, and the best case is where all
non-mandatory features are dependent (form a line in the feature model).

Check properties FFSM vs FSM(Product by Product)

FFSM
FSM worst
FSM average
FSM best

8 10 12 14 16 20 25 30 35 40 45 50 55 60 65 70

0

500000

1000000

1500000

2000000

Number of non−mandatory features

E
xe

c
u
ti
o
n
 c

h
e
c
k
in

g
 t
im

e
(m

s
)

Fig. 7. Execution time for each case per number of non-mandatory features.

To summarise, we conclude that for random SPLs with more than 16 in-
dependent non-mandatory features, the FSM-based approach fails to perform
within a reasonable amount of time (e.g., ca. 30 minutes), while the FFSM-based
approach scales well (regardless of the feature model structure) for up to 70
non-mandatory features.

Regarding our BCS case study, we have obtained similar results regarding the
difference between the FFSM and the FSM-based approaches. Namely, for the
resulting FFSM with 13 non-mandatory features (of which 8 are independent) and
50 conditional states, the validation takes approx. 500 seconds (˜8 minutes) while

15

for its 384 configurations (FSMs) we have approx. 700 seconds (˜11 minutes). We
expect the scalability of the FFSM-based approach to improve if more structural
aspects, e.g., hierarchy, are taken into account. We plan to investigate this further
in the near future.

Our experiment has been limited mostly to random feature models and
(F)FSMs with a given mapping from feature models to FFSMs. We have only
included one realistic case-study for comparison. Both of these issues (the actual
structure of feature models and of FFSMs) are threats to the validity of our
results for real-world cases. We plan to mitigate this threat by analyzing a number
of realistic case studies as a benchmark for our future research. Regarding
feature models, as our current results suggest, the FFSM-based approach is
not very sensitive to the structure of the feature model and hence, our results
are not likely to change much for realistic feature models. Regarding realistic
FFSMs, it is common that the flat (i.e., non-hierarchical) FFSMs are the result
of the composition of parallel features and hence, their number of states grows
exponentially with the number of independent non-mandatory features. Hence,
for realistic FFSMs, using the hierarchical structure in the validation process is
necessary for sustaining scalability.

6 Related Work

There have been several proposals for the behavioural modelling of SPLs in
the literature; we refer to [7, 12, 29] for recent surveys and Thüm et al.’s recent
survey [33] for a classification of different SPL analysis techniques. A number of
behavioural models proposed in the literature, e.g., these in [22, 1, 10] are based
on Finite State Machines or Labeled Transition Systems. They are mainly used
to provide the formal specification of SPLs and their formal verification using
model checking.

In Feature-Annotated State Machines, some approaches [11, 16] (e.g. the
150% test model) propose a pruning-based approach to UML modelling of SPLs,
separating variability from the base models using mapping models. Similar
approaches [22, 25] use Statecharts to model reusable components and in their
approaches, the instances can also be derived syntactically by pruning. Recent
approaches [18, 9] encode feature annotations into transition guards to project
model elements. In [18], the authors use model slicing to generate tests for
parts of the model to reduce complexity. In Featured Transition Systems [9],
model fragments are annotated with presence conditions, i.e., Boolean expressions
that define to which products a fragment belongs. However, in none of these
approaches, the authors deal with semantic issues in FSMs/LTSs, such as the
validation properties considered in our approach, and only verify the syntactical
correctness of possible valid products. Moreover, there is a sizable literature
focusing on product-based analysis techniques such as syntactic consistency, type
checking and model-checking of SPLs [1, 3, 33].

Our proposed test model and validation criteria can be classified as a family-
based and feature-oriented specification and analysis method. To our knowledge,
however, there only a few pieces of research that extend test models, test case

16

generation and test case execution to the family-based level; examples of such
work include earlier delta-oriented techniques such as [24, 23, 34] and feature-
oriented approaches [4, 5, 14]. However, the approach proposed in [4, 6] exploits a
non-deterministic test case generation algorithm (with no fault model or finite test
suite) and hence, validation of test models is not an issue in their approach. Thus,
we are not aware of any prior study one extending the FSM-based test-model
validation techniques to the family-based setting.

7 Conclusion

In this paper, we presented the Featured Finite State Machine (FFSM) model as
a behavioural test model for software product lines (SPLs). Validation properties
were specified for adopting FFSMs as input models for test case generation
algorithms and we showed that they coincide with their corresponding properties
for the product FSM models. Moreover, a framework for validation of test models
using Java and Z3 was implemented.

We conducted an experimental study comparing the validation time of FFSM
properties with the accumulated time of validating all FSM product models (both
using randomly generated models and a case study for the Body Comfort System).
We found that checking collective FFSM models can save significant amount of
time for SPLs that have 16 or more independent non-mandatory features.

As future work, we plan to use FFSMs to extend FSM-based test case
generation methods to SPLs. Moreover, we plan to extend the FFSM model to
Hierarchical FFSMs (using concepts from Statecharts and UML State Machines)
to handle the state explosion problem identified in the case study and apply
validation (and test case generation) on hierarchical models. Also, in addition to
the validation issues, other aspects of the FFSM model can be explored such as
applicability, maintainability and the relation between semantic properties such
as determinism and minimality.

References

1. Asirelli, P., ter Beek, M.H., Gnesi, S., Fantechi, A.: Formal Description of Variability
in Product Families. In: Proceedings of the 15th International Software Product
Line Conference (SPLC). pp. 130–139. IEEE (2011)

2. Batory, D.: Feature Models, Grammars, and Propositional Formulas. In: Proceedings
of the 9th International Software Product Line Conference (SPLC). pp. 7–20. IEEE
(2005)

3. Benduhn, F., Thüm, T., Lochau, M., Leich, T., Saake, G.: A survey on modeling tech-
niques for formal behavioral verification of software product lines. In: Proceedings
of the 9th International Workshop on Variability Modelling of Software-intensive
Systems (VaMoS 2015). p. 80. ACM (2015), http://dl.acm.org/citation.cfm?
id=2701319

4. Beohar, H., Mousavi, M.R.: Input-output conformance testing based on featured
transition systems. In: Proceedings of the Symposium on Applied Computing
(SAC 2014). pp. 1272–1278. ACM (2014), http://dl.acm.org/citation.cfm?id=
2554850

17

5. Beohar, H., Mousavi, M.R.: Spinal test suites for software product lines. In: Pro-
ceedings of the 9th Workshop on Model-Based Testing (MBT 2014). EPTCS, vol.
141, pp. 44–55 (2014), http://dx.doi.org/10.4204/EPTCS.141

6. Beohar, H., Mousavi, M.: Spinal Test Suites for Software Product Lines. In: Proc.
of MBT 2014. EPTCS, vol. 141, pp. 44–55 (2014)

7. Beohar, H., Varshosaz, M., Mousavi, M.R.: Basic behavioral models for software
product lines: Expressiveness and testing pre-orders. Science of Computer Program-
ming 123, 42–60 (2016), http://dx.doi.org/10.1016/j.scico.2015.06.005

8. Broy, M., Jonsson, B., Katoen, J.P., Leucker, M., Pretschner, A.: Model-Based
Testing of Reactive Systems, Advanced Lectures, Lecture Notes in Computer
Science, vol. 3472. Springer-Verlag (2005)

9. Classen, A., Cordy, M., Schobbens, P.Y., Heymans, P., Legay, A., Raskin, J.F.: Fea-
tured Transition Systems: Foundations for Verifying Variability-Intensive Systems
and Their Application to LTL Model Checking. IEEE Transactions on Software
Engineering 39(8), 1069–1089 (2013)

10. Classen, A., Heymans, P., Schobbens, P.Y., Legay, A.: Symbolic model checking
of software product lines. In: Proceeding of the 33rd international conference on
Software engineering (ICSE). p. 321. ACM Press (2011)

11. Czarnecki, K., Antkiewicz, M.: Mapping Features to Models: A Template Approach
Based on Superimposed Variants. In: Proceedings of the 4th international conference
on Generative Programming and Component Engineering (GPCE). pp. 422–437.
Springer (2005)

12. Czarnecki, K., Grünbacher, P., Rabiser, R., Schmid, K., Wasowski, A.: Cool features
and tough decisions. In: Proceedings of the Sixth International Workshop on
Variability Modeling of Software-Intensive Systems (VaMoS). pp. 173–182. ACM
Press (2012)

13. Czarnecki, K., Wasowski, A.: Feature diagrams and logics: There and back again.
In: Proc. of SPLC 2007. pp. 23–34. IEEE (2007)

14. Devroey, X., Perrouin, G., Papadakis, M., Legay, A., Schobbens, P., Heymans, P.:
Featured model-based mutation analysis. In: Proceedings of the 38th International
Conference on Software Engineering (ICSE 2016). pp. 655–666. ACM (2016),
http://doi.acm.org/10.1145/2884781

15. Edwards, S.A.: Languages for Digital Embedded Systems. Springer (2000)
16. Grönninger, H., Krahn, H., Pinkernell, C., Rumpe, B.: Modeling Variants of Auto-

motive Systems using Views. In: Tagungsband Modellierungs-Workshop MBEFF:
Modellbasierte Entwicklung von eingebetteten Fahrzeugfunktionen. p. 14. TU
Braunschweig (2008)

17. Hierons, R.M., Bogdanov, K., Bowen, J.P., Cleaveland, R., Derrick, J., Dick, J., Ghe-
orghe, M., Harman, M., Kapoor, K., Krause, P., et al.: Using formal specifications
to support testing. ACM Computing Surveys (CSUR) 41(2), 9 (2009)

18. Kamischke, J., Lochau, M., Baller, H.: Conditioned model slicing of feature-
annotated state machines. In: Proceedings of the 4th International Workshop
on Feature-Oriented Software Development (FODS). pp. 9–16. ACM (2012)

19. Lee, D., Yannakakis, M.: Principles and Methods of Testing Finite State Machines
- A Survey. Proceedings of the IEEE 84(8), 1090–1123 (aug 1996)

20. Linden, F., Schmif, K., Rommes, E.: Software Product Lines in Action. Springer
(2007)

21. Lity, S., Lachmann, R., Lochau, M., Schaefer, I.: Delta-oriented Software Product
Line Test Models - The Body Comfort System Case Study. Tech. rep. (2013)

22. Liu, J., Dehlinger, J., Lutz, R.: Safety analysis of software product lines using
state-based modeling. Journal of Systems and Software 80(11), 1879–1892 (2007)

18

23. Lochau, M., Lity, S., Lachmann, R., Schaefer, I., Goltz, U.: Delta-oriented model-
based integration testing of large-scale systems. Journal of Systems and Software
91, 63–84 (2014), http://dx.doi.org/10.1016/j.jss.2013.11.1096

24. Lochau, M., Schaefer, I., Kamischke, J., Lity, S.: Incremental model-based testing
of delta-oriented software product lines. In: Proceedings of the 6th International
Conference on Tests and Proofs (TAP 2012). Lecture Notes in Computer Science,
vol. 7305, pp. 67–82. Springer (2012), http://dx.doi.org/10.1007/978-3-642-
30473-6

25. Luna, C., Gonzalez, A.: Behavior Specification of Product Lines via Feature Models
and UML Statecharts with Variabilities. In: Chilean Computer Science Society
(SCCC). pp. 9–16. IEEE (2008)

26. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Proceedings of the
14th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS). pp. 337–340. Springer (2008)

27. Oster, S., Wubbeke, A., Engels, G., Schurr, A.: A Survey of Model-Based Software
Product Lines Testing. In: Model-Based Testing for Embedded Systems, pp. 338–381.
CRC Press (2012)

28. Petrenko, A., Bochmann, G.v., Luo, G.: Selecting test sequences for partially-
specified nondeterministic finite state machines. In: International workshop on
Protocol test systems (IWPTS). pp. 95–110. Chapman & Hall (1995)

29. Schaefer, I., Rabiser, R., Clarke, D., Bettini, L., Benavides, D., Botterweck, G.,
Pathak, A., Trujillo, S., Villela, K.: Software diversity: state of the art and per-
spectives. International Journal on Software Tools for Technology Transfer 14(5),
477–495 (2012)

30. Schobbens, P.Y., Heymans, P., Trigaux, J.C.: Feature Diagrams: A Survey and a
Formal Semantics. In: Proceedings of the 14th IEEE International Requirements
Engineering Conference (RE). pp. 139–148. IEEE (2006)

31. SEI: A framework for software product line practice (2011), http://www.sei.cmu.
edu/productlines/tools/framework/

32. Simao, A., Petrenko, A.: Fault Coverage-Driven Incremental Test Generation. The
Computer Journal 53(9), 1508–1522 (2010)

33. Thüm, T., Kästner, C., Benduhn, F., Meinicke, J., Saake, G., Leich, T.: Featureide:
An extensible framework for feature-oriented software development. Science of
Computer Programming 79, 70–85 (2014)

34. Varshosaz, M., Beohar, H., Mousavi, M.R.: Delta-oriented FSM-based testing. In:
Proceedings of the 17th International Conference on Formal Engineering Methods
(ICFEM 2015). Lecture Notes in Computer Science, vol. 9407, pp. 366–381. Springer
(2015), http://dx.doi.org/10.1007/978-3-319-25423-4

