
Notions of Conformance Testing for
Cyber-Physical Systems: Overview and Roadmap∗

Narges Khakpour1 and Mohammad Reza Mousavi2

1 Department of Computer Science,
Linnaeus University, Sweden
narges.khakpour@lnu.se

2 Centre for Research on Embedded Systems (CERES)
School of Information Technology,
Halmstad University, Sweden
m.r.mousavi@hh.se

Abstract
We review and compare three notions of conformance testing for cyber-physical systems. We
begin with a review of their underlying semantic models and present conformance-preserving
translations between them. We identify the differences in the underlying semantic models and
the various design decisions that lead to these substantially different notions of conformance
testing. Learning from this exercise, we reflect upon the challenges in designing an “ideal” notion
of conformance for cyber-physical systems and sketch a roadmap of future research in this domain.

1998 ACM Subject Classification D.2.4 Software/Program Verification

Keywords and phrases Cyber-physical systems, hybrid systems, conformance testing, model-
based testing, behavioral pre-orders, hybrid input-output conformance testing, (τ, ε) conformance,
approximate simulation.

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

Cyber-physical systems (CPSs) are the result of the massive and tight interaction of computer
systems with physical components and with each other. CPSs have gained importance due
to the opportunities that they provide and the criticality of the applications in which they
are used. Concerning this importance, model-based approaches are being studied and
extended for cyber-physical systems, in order to lay a rigorous foundation for their design and
engineering. One typical feature of models used for cyber-physical systems is the integration
of discrete behavioral descriptions (often stemming from the “cyber” side), with continuous
behavioral descriptions (often stemming from the “physical” side). This combination is
well-known in the formal modeling literature and is often referred to as hybrid-systems
modeling.1

∗ The work of M.R. Mousavi has been partially supported by the Swedish Research Council (Vetenskap-
srådet) with award number 621-2014-5057 (Effective Model-Based Testing of Parallel Systems) and the
Swedish Knowledge Foundation (Stiftelsen för Kunskaps- och Kompetensutveckling) in the context of
the AUTO-CAAS project.

1 Note that in addition to the interaction between the computer systems and the physical world, cyber-
physical systems also feature complex patterns of communication and interaction among networked
computer systems. This aspect is only mentioned in passing in the present paper.

© Licensed under Creative Commons License CC-BY version 3.0;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 1–24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Notions of Conformance for CPSs

Hybrid Labeled Transition Systems

Metric Transition Systems Hybrid-Timed State Sequence Systems

Hybrid Input-Output Conformance

(τ ,ε)-ConformanceApproximate Simulation

Figure 1 An overview of the semantic models and their mutual translations.

Myriad pieces of research work have been devoted to formal verification of cyber-physical
systems and their hybrid-systems models; we refer to [8] for an overview. Model-based
conformance testing is a lightweight verification technique, which aims at detecting faults
or establishing a level of quality by generating test-cases from a model and applying it to
the system under test [16, 38]. Conformance testing based on hybrid-systems models is a
relatively recent subject matter [3, 4, 6, 7, 11, 14, 22, 23, 27, 32, 33, 34, 41, 59, 63, 64] and
as we demonstrate in the remainder of this paper, still calls for more mature foundations
and practical implementations.

A typical feature of hybrid systems research is the reliance on different approaches to
system modeling and analysis that stem from different disciplines such as computer science
(e.g., finite automata, process algebra, and Petri nets) and control theory (e.g., switching
systems and bond graphs). Subsequently, existing approaches to conformance testing are
based on different semantic models and assume different semantic properties of the model and
the system under test. In this paper, we review the notions proposed in [3, 4, 22, 23, 33, 41, 59],
which are, to our knowledge, the main existing proposals for a formal notion of conformance
based on behavioral models. We compare these notions and reflect upon the results of this
comparison. A summary of the semantic models studied in this paper, their corresponding
notions of conformance and the devised translation relations are depicted in Figure 1. The
three corners of the triangle denote the semantic models. The self-loops on the corners
denote the notions of conformance. The solid lines on the sides of the triangle represent the
translations that are presented in this paper. The dashed line is a missing translation; we
refer to [46] for a related attempt in this context. We conclude the paper by describing some
theoretical and practical challenges in model-based testing of cyber-physical systems.

Structure of the Paper.

In Section 2, we give an overview of the three studied semantic models. In Section 3, we
present mutual translations between the semantic models as outlined in Figure 1. In Section
4, we present the notions of conformance defined for these semantic models in the literature.
Using these notions, in Section 5, we present full abstraction results regarding our translations;
namely, we show that conforming models in the source semantic domain are projected into
and reflected from conforming models in the target semantic domain. In Section 6, we reflect
upon the results of our translations and comparisons and present several challenges for future
research.

N. Khakpour and and M.R. Mousavi 3

2 Semantic Models

Several behavioral semantic models exist for hybrid systems of which [18, Chapter2] and
[19, 36] provide an overview. In this section, we review the following three of such fundamental
semantic models:

Hybrid labeled transition systems,
Metric transition systems, and
Hybrid-timed state sequence systems.

The choice of these models is motivated by the fact that they have been used in the context
of the notions of conformance that are presented in Section 4.

2.1 Basic Definitions
The continuous behavior of a hybrid system is captured by the valuation of a set V of
continuous variables. We assume that V is partitioned into disjoint sets of input variables,
denoted by VI , and output variables, denoted by VO. A valuation of V is a function that
assigns a value to each variable v ∈ V ; here, only variables of type R (the set of real numbers)
are considered. The set of all valuations of V is denoted by Val(V) and is defined as the
set of all functions V → R. To describe the piece-wise evolution of the system, we use the
following notion of trajectory [43] (called activity in [9]).

I Definition 1 (Trajectory). Let D be the set {(0, t] | t ∈ R>0} of all left-open right-closed
intervals.2 A trajectory φ is a function of type D → Val(V), which maps each element in an
interval in D to a valuation. The set of all trajectories for V is denoted by Trajs(V).

Furthermore, we define the restriction operator on valuations and trajectories as follows.

I Definition 2 (Valuation and Trajectory Restriction). Consider a valuation val ∈ Val(V) and
a set V ′ ⊆ V of variables; the restriction of val to V ′, denoted by val ↓ V ′, is a valuation in
Val(V ′) such that for all v′ ∈ V ′, (val ↓ V ′)(v′) = val(v′) .

Consider a trajectory φ : D → Val(V); the restriction of φ to V ′ ⊆ V , denoted by
(reusing the notation) φ ↓ V ′, is the function of type D → Val(V ′), such that for each d ∈ D,
(φ ↓ V ′)(d) = φ(d) ↓ V ′.

2.2 Hybrid Labeled Transition System
A hybrid labeled transition system [19, 59] consists of a set of states with discrete (action)
and continuous (trajectory) transitions between them. It is formally defined as follows:

I Definition 3 (Hybrid Labeled Transition System (HLTS)). Let A be the union of disjoint
sets of input actions AI and output actions AO. Assume that V is the union of disjoint sets
of input variables VI and output variables VO. A hybrid labeled transition system T is a
5-tuple (S, s0, V, L,→), where

S is a (possibly infinite) set of states;
s0 ∈ S is the initial state;
V is a set of continuous variables;
L = A] Trajs(V) is a set of (resp. action or trajectory) labels;

2 The choice of “left-open right-closed” is arbitrary; we could just as well have chosen “left-closed
right-open” intervals. The developments to come will be only slightly different in that case.

4 Notions of Conformance for CPSs

→ ⊆ S × (L ∪ {ξ}) × S specifies the transition relation, where ξ denotes the internal
action.3

We may write s l→ s′ to mean (s, l, s′) ∈ →. We also write s a→ (respectively, s φ
) to mean

that there exists an s′ ∈ S such that s a→ s′ (and φ ∈ Trajs(V)).

I Definition 4 (Concrete HLTS). An HLTS is concrete if it does not have any ξ-labeled
transition emanating from its reachable states.

Next, we define the notion of generalized transition relation for an HLTS, which allows us
to “jump over” internal actions and to concatenate actions and trajectories to form traces.

I Definition 5 (Generalized Transition Relation). Consider an HLTS T = (S, s0, V, L,→).
The generalized transition relation for T is defined as the smallest relation ⇒⊆ S × L∗ × S
where

s
ε⇒ s, where ε denotes the empty sequence of labels;

if s ξ→ s′, then s ε⇒ s′,
∀l ∈ L, if s l→ s′, then s l⇒ s′;
∀α, β ∈ L∗, if s α⇒ s′′ and s′′ β⇒ s′, then s αβ⇒ s′;

We write s α⇒ to denote that there exists an s′ ∈ S such that s α⇒ s′. The behavior of a
system is specified by its set of traces, which are finite sequences of actions and trajectories.

I Definition 6 (Trace). For HLTS T , a trace is a finite sequence α ∈ L∗ such that s0
α⇒,

where s0 is the initial state of T .

The length of a trace α is defined as the number of elements of the sequence and is represented
by |α|. We denote the set of all traces of T by Traces(T). The restriction of a trace σ to
a set V ′ ⊆ V of variables, denoted by α ↓ V ′, is defined by point-wise restriction of the
trajectories in α while keeping the actions intact.

Let δ ∈ AO be a special symbol to denote that a state has at least one emanating
trajectory. We assume that HLTSs are normalized, i.e., for s ∈ S, if there exists a ∈ Trajs(V)
such that s a

 , then s δ−→ s. This assumption is motivated by the notion of conformance on
HLTSs.4

I Definition 7 (Active Trajectory of a Trace). Consider an HLTS T = (S, s0, V, L,→), a
trace α ∈ Traces(T), and a point t ∈ R>0 denoting time; the active trajectory of α at t,
denoted by active(α, t) is defined to be a trajectory φi ∈ Trajs(V) when for each j ≤ i

there exist φj ∈ Trajs(V), αj ∈ A∗, and α′ ∈ L∗ such that the domain of each φj is (0, tj],
α = α1φ1...αiφiα

′ and
∑i−1
j=1 tj < t ≤

∑i
j=1 tj . In that case the elapsed time of the active

trajectory at t, denoted by elapsed(α, t), is defined as t−
∑i−1
j=1 tj .

Moreover, we assume that HLTSs have the following three properties A1-A3 [59]; we
refer to [20] for some consequences of these assumptions:

A1 if s φ
 s′ and s φ

 s′′, then s′ = s′′.

3 In the literature of concurrency theory, internal (unobservable) transitions are labeled by τ ; in our
context, however, τ denotes the conformance time bound and hence, we use ξ instead.

4 We deviate from the notation commonly used in the literature in order to avoid clashing with the other
notations used for conformance. In the literature, δ is used for lack of discrete output actions and ξ for
lack of trajectories.

N. Khakpour and and M.R. Mousavi 5

A2 if s φ′_φ′′

 s′, then there exists s′′ such that s φ′

 s′′ and s′′
φ′′

 s′, where φ′ _ φ′′

denotes concatenation of trajectories after shifting the domain of φ′′.
A3 if s φ′

 s′′ and s′′ φ
′′

 s′, then s φ
′_φ′′

 s′.

Input-enabledness, defined below, is another constraint, which we in general do not require
for all HLTSs. However, our full abstraction result does depend on input-enabledness, as we
demonstrate in Section 5.1.

I Definition 8 (Input-enabled HLTS). An HLTS T = (S, s0, V, L,→) is input-enabled if
∀s ∈ S, ∀a ∈ AI : s a⇒ and ∀φ ∈ Trajs(VI) : ∃φ′ ∈ Trajs(V) such that φ′ ↓ VI = φ ∧ s φ′

⇒.

Finally, we define the notion of determinism, which again plays a role in our full abstraction
results.

IDefinition 9 (Determinism). An HLTS T = (S, s0, V, L,→) is deterministic when ∀s, s′, s′′ ∈
S,

∀a ∈ A : if s a→ s′ and s a→ s′′, then s′ = s′′, and
∀φ′, φ′′ ∈ Trajs(VI) such that φ′ ↓ VI = φ′′ ↓ VI , if s

φ′

→ s′ and s φ′

→ s′′, then φ′ = φ′′ and
s′ = s′′.

2.3 Metric Transition System
A metric is a function that defines the distance between different elements of a set:

I Definition 10 (Metric). A metric on a set E is a function d : E × E → R≥0 ∪ {∞} such
that for all e1, e2, e3 ∈ E the following properties hold:

d(e1, e3) ≤ d(e1, e2) + d(e2, e3),
e1 = e2 ⇔ d(e1, e2) = 0, and
d(e1, e2) = d(e2, e1).

Metric transition systems [31, 33, 56] are transition systems that are equipped with an
observation function and one or more metrics. They are a generic formalism that can be
used for specifying different sorts of dynamic behavior, such as discrete, continuous, and
hybrid systems. In this paper, we use the metric transition systems whose metric is defined
over observations on states [33], as quoted below.

I Definition 11 (Metric Transition System (MTS)). A metric transition systemM is a 7-tuple
(Q,Q0, I,→, O,B, d), where:

Q is a set of states,
Q0 ⊆ Q is a set of initial states,
I is the set of inputs,
→⊆ Q× I ×Q is the transition relation,
O is a set of outputs,
B : Q→ O is an observation function, and
d = (d1, d2) is a pair of metrics where d1 is defined over O and d2 is defined over I.

Intuitively, the inputs in an MTS capture both continuous (system dynamics) and discrete
behavior of the system.

6 Notions of Conformance for CPSs

2.4 Hybrid-Timed State Sequence System
Hybrid-timed state sequence systems (HSSs) [3, 4, 58] are another semantic model that
assumes a discrete sampling of input and output variables.5 The formal definition of HSS is
quoted below.

I Definition 12 (Hybrid-Timed State Sequence (TSS)). Consider N ∈ N, T = R≥0 × N, and
a set of variables V . A hybrid-timed state sequence (TSS) is defined as a pair (x,σ), where
x ∈ (Val(V))N and σ ∈ TN . The i’th element of a TSS (x,σ) is denoted by (xi,σi), where
σi=(ti, ji) ∈ T.

We denote the set of all TSSs defined over the set of variables V , considering a specific
sample size N ∈ N, by TSS(V,N). The set of all TSSs over V regardless of sample size,
denoted by TSS(V), is defined as

⋃
N∈∈N TSS(V,N).

The time domain T = R≥0 × N is often called the “super-dense” time domain in the
literature [44]. The ordering < on the super-dense time domain is the lexicographical ordering
by lifting the ordering on real and natural numbers.

Consider x ∈ (Val(V))N and σx ∈ TN ; we refer to the i’th element of x and σx,
respectively, by xi and σx,i. Moreover for t ∈ T, we write t1 for the first (the real-valued)
component of t and t2 for the second (the natural-number-valued) component of t.

We assume for all (x,σ) ∈ TSS(V,N), σ : N → T is a strictly monotonic function with
respect to the lexicographic ordering on T. In other words, for each two consecutive points
in σ, the real-valued component does not decrease and if the real-valued component remains
the same, the natural-number-valued component increases.

I Definition 13 (Hybrid-Timed State Sequence System (HSS)). A hybrid-timed state sequence
system (HSS) H is a function H : H×TSS(VI , N)→ TSS(VO, N), where H ⊆ Val(VI ∪VO).

HSSs are assumed to be input enabled; this constraint is captured by the following formal
definition:

I Definition 14 (Input-enabled HSS). An HSS H : H × TSS(VI , N) → TSS(VO, N) is
input-enabled, if it satisfies the following constraint:
∀h0 ∈ H,∀(x, σx) ∈ TSS(VI , N) : ∃(y, σy) ∈ TSS(VO, N) such that (y, σy) = H(h0, (x, σx)).

2.5 Informal Comparison of Semantic Models
The following list summarizes some of the fundamental differences among the three semantic
models reviewed in this section.

(Non-)Determinism: HLTSs and MTSs offer natural support for non-determinism. HSSs,
to the contrary, are defined as a function and hence, do not provide support for non-
determinism. Non-determinism is often useful in modeling abstraction from details that
are either unavailable or irrelevant at the time of modeling.
Dense-time or sampled trajectories: HLTSs explicitly assume dense-timed trajectories
while HSSs assume a fixed sample size. MTSs are oblivious to this choice and can be
used to model both dense- and sampled-time trajectories.

5 In [3, 4], Hybrid-Timed State Sequence Systems (HSSs) are simply called “hybrid systems”; we use the
former term to be more specific and differentiate between different semantic models for hybrid systems.

N. Khakpour and and M.R. Mousavi 7

Explicit discrete interactions: HLTSs provide an explicit means for modeling discrete
observable actions that can be further used for synchronization between models and with
the environment; these represent message passing synchronization among concurrent
processes [10]. HSSs inherently lack this means; they could be exploited though to code
discrete actions as changes in auxiliary variables’ valuations. MTSs stay at a very abstract
level and can be used to naturally model discrete actions as inputs.
Input-enabledness: HLTSs and MTSs are not required to be input-enabled. HSSs as
a semantic model may not be input-enabled, but the authors seem to have put it as a
requirement on the semantic domain.
Observations on states or transitions: HLTSs suggest that the observations should be
placed on transitions and states do not carry any observable information. For HSSs the
notions of states and transitions are a bit blurred; if one takes states to be valuations of
variables and transitions to be labeled by the difference of super-dense time points, then
HSSs carry observable information both on states and transitions [50]. Likewise, MTSs
carry observable information both in states and transitions.
Partial valuations: HLTSs assume that the valuation of all variables are defined by
trajectories; HSSs, however, do not make such an assumption and allow for different
sampling of input and output variable valuations. Similar to the previous cases MTSs
are oblivious to this choice and can be used to model either of the two types of systems.

3 Translations among Semantic Models

In this section, we present translations between the semantic models introduced in Section 2,
as illustrated in Figure 1.

3.1 From HLTS to MTS

The translation from HLTS to MTS defines as the states of the target MTS: the triples
comprising (discrete) states, input trajectories leading to the state (or ⊥ if none), and
valuations of variables in the source HLTS. The transitions are then the union of discrete
transitions and time transitions. Discrete transitions only update the discrete part of the
state. In the case of trajectories, we update both the discrete state and the valuation with
the state and the valuation at the upper bound of their domain.

I Definition 15 (Translation from HLTS to MTS). Consider an HLTS T = (S, s0, V, L,→);
an MTS M = (Q,Q0, I,→, O,B, d) is a translation of T when it satisfies the following
constraints:

Q = S × (Trajs(VI) ∪ {⊥})×Val(V),
Q0 = {〈s0, φ, x〉 | φ ∈ Trajs(VI) ∪ {⊥}, x ∈ Val(V)},
I = A ∪ R≥0,
for each generalized transition s α⇒ s′ of T , and for all x ∈ Val(V),

if α ∈ A, then 〈s, φ, x〉 α−→ 〈s′,⊥, x〉,
if α ∈ Trajs(V), then 〈s, φ⊥, x〉

t−→ 〈s′, α ↓ VI , α(t)〉, where dom(α) = (0, t] and
φ⊥ ∈ Trajs(VI) ∪ {⊥},

O ⊆ Trajs(VI)×Val(V),
B(〈s, φ, x〉) = (φ, x), for all 〈s, φ, x〉 ∈ Q,

8 Notions of Conformance for CPSs

d = (d1, d2), where

d1((φ⊥, x), (φ′⊥, y)) =

||x− y|| if φ⊥ = φ′⊥ = ⊥ or

∀t ∈ dom(φ⊥) ∩ dom(φ′⊥) :
φ⊥(t) ↓ VI = φ′⊥(t) ↓ VI

∞ otherwise

d2(t, t′) = |t− t′|

3.2 From HSS to MTS

In the translation from HSS to MTS, we define as the state of the target MTS: the initial
condition, the input TSS, the output TSS and the current moment of time (in the super-dense
time domain). (The initial state is an exception; it is denoted by ⊥ and does not assume any
initial condition, input- or output TSS.) We define two types of transitions:

initial transitions that define an initial condition and an input TSS for a state, and
timed transitions that are labeled by relative time (a real number) denoting the amount
of time need to reach a different output valuation in the past or in the future.

The metric on states compares the current valuations of output TSSs and the metric on
transitions takes the difference in the amount of time passed.

IDefinition 16 (Translation from HSS to MTS). Consider HSSH : H0×TSS(VI , N) → TSS(VO, N);
MTSM = (Q,Q0, I,→, O,B, d) is a translation of H with respect to initial condition h ∈ H0,
if it satisfies the following constraints:

Q = {⊥}∪
{〈h0, (x, σx), (y, σy), σy,i〉 |

h0 ∈ H0,

(x, σx) ∈ TSS(VI , N),
(y, σy) ∈ TSS(VO, N),
(y, σy) = H(h0, (x, σx)),
i ∈ [1, N]}

,

Q0 = {⊥},
I = R,
⊥ 0−→〈h0, (x, σx), (y, σy), σy,1〉, for each 〈h0, (x, σx), (y, σy), σy,1〉 ∈ Q, and

〈h0, (x, σx), (y, σy), σy,i〉
σ1

y,j−σ
1
y,i−→ 〈h0, (x, σx), (y, σy), σy,j〉.

Moreover, the transition relation −→ is closed under the following deduction rule:

q0
t0−→ q1 q1

t1−→ q2

q0
t0+t1−→ q2

O = {⊥} ∪H × TSS(VI , N)×Val(VO),
B(⊥) = ⊥,
B(〈h0, (x, σx), (y, σy), σy,i〉) = (h0, (x, σx), valO) if and only if σy,i = valO,
d = (d1, d2), where

N. Khakpour and and M.R. Mousavi 9

d1(a, b) =

0 if a = b = ⊥

||valO − val ′O|| if a = (h0, (x, σx), valO) and
b = (h0, (x, σx), val ′O)

∞ otherwise

d2(t, t′) = |t− t′|

Next, we informally explain the definition of the metrics and the transition relation in
the above-given translation.

Concerning metric d1, the first case is self-explanatory. The second case compares the
current valuations of output variables only in cases where the initial conditions and input
TSSs are identical. The last case covers both comparing the initial state with the rest and
also comparing those states that have different initial conditions or input TSSs. Metric d2 is
also straightforward and only concerns the difference in relative time to reach a state.

Regarding the transition relation, the initial state is connected by a 0-labeled transition to
all states in which a valid initial condition and an output produces an output TSS; moreover,
in the target state the current time is set to the time of the first element in the output
TSS. The time transitions are straightforward, once the initial condition and input and
output TSSs are fixed, a time transition moves back and forth between the points of time
(in the super-dense time domain) when outputs are produced. The last deduction rule in
the definition of t−→ is only needed to connect the initial state by a single transition to all
reachable states. This is a technical requirement that pops up in the forthcoming proof of
full abstraction.

4 Notions of Conformance

In this section, we review the different notions of conformance testing defined for the semantic
models presented in Section 2.

4.1 Hybrid Input-Output Conformance (HIOCO)
We start with reviewing the notion of hybrid input-output conformance (HIOCO) [59, 60].
To this end, we first give some preliminary definitions. To avoid repetition, we assume in the
remainder of this section that HLTS T is a 5-tuple (S, s0, V, L,→).

I Definition 17 (after Operator). For HLTS T and trace α ∈ Traces(T), we define T after
α =

{
s
∣∣∣s0

α⇒ s
}

I Definition 18 (Trajectories of a State). Consider HLTS T and state s ∈ S, then trj(s)
is defined as trj(s) =

{
σ ∈ Trajs(V) | s σ⇒

}
. This definition is extended to a set of states

S′ ⊆ S as trj(S′) =
⋃
s∈S′ trj(s).

I Definition 19 (Trajectory Infiltration). Consider ΣI ,ΣS ⊆ Trajs(V) and VI ⊆ V as the
input partition of V ;

infilter(ΣI ,ΣS) = {σ ∈ ΣI | ∃σ′ ∈ ΣS . σ ↓ VI = σ′ ↓ VI}

Informally, infilter(ΣI ,ΣS) is the set of all trajectories σ ∈ ΣI such that they find a
counterpart in ΣS that agrees with σ on input variables. In this definition I and S typically
denote the implementation and the specification, respectively.

10 Notions of Conformance for CPSs

I Definition 20 (State Output). Consider s ∈ S; the output of s, denoted by out(s) ⊆ AO,
is defined as out(s) = {a ∈ AO|s

a−→}, where AO is assumed to contain δ. This definition is
extended to a set of states C ⊆ S as out(C) =

⋃
s∈C out(s).

Using the above-given definitions, we are now ready to define the notion of HIOCO.

I Definition 21 (Hybrid I/O Conformance). Consider an HLTS S; an input-enabled HLTS I
is hybrid input-output conforming to S, denoted by I hioco S, if and only if for all traces
α ∈ Traces(S):

out (I after α) ⊆ out (S after α)∧
infilter (trj(I after α), trj (S after α)) ⊆ trj (S after α)

Informally, this notion states that for all traces α of specification S, the discrete outputs
of the implementation I after α must be a subset of that of the specification. Moreover
after each trace α of specification S, the set of trajectories in the implementation, with a
corresponding trajectory in the specification (with equal input valuations), must be a subset
of the trajectories of the specification.

4.2 Approximate Simulation
Approximate simulation [33, 32, 34, 52] is a notion of conformance that describes how well a
system is approximated by another system in terms of its observable behavior. We assume
below that MTSsMi are defined as (Q,Q0i, I,→, O,B, d), i.e., they have all components in
common apart from the initial state.

I Definition 22 (Approximate Simulation). Consider two MTSs M1 and M2; a relation
Rε,τ ⊆ Q×Q is an approximate simulation relation with precision (ε, τ), for ε ≥ 0, τ ≥ 0,
when for all (q1, q2) ∈ Rε,τ ,

d1(B(q1),B(q2)) ≤ ε,
if q1

i1−→ q′1, then there exists a transition q2
i2−→ q′2 such that d2(i1, i2) ≤ τ and (q′1, q′2) ∈

Rε,τ .

M2 approximately simulates M1 with precision (ε, τ), denoted byM1 �ε,τ M2, when
there exists a relation Rε,τ , such that for all q1 ∈ Q01, there exists q2 ∈ Q02 such that
(q1, q2) ∈ Rε,τ .
M1 andM2 are approximately bisimilar with precision (ε, τ), denoted byM1 ≡ε,τ M2,

when there exists a symmetric simulation relation relating their sets of initial states.

4.3 (τ, ε)−Conformance
The notion of (τ, ε)−conformance relates two HSSs when for each sampled input, the sampled
output of related pairs differ in time with the maximum value of τ and differ in valuations
with the maximum value of ε.

I Definition 23 ((τ, ε)−Conformance). Consider a test duration T ∈ T and τ, ε > 0 and TSSs
(y, σy) ∈ TSS(V,N) and (y′, σy′) ∈ TSS(V,N ′); then (τ, ε)-conforms to (y′, σy′), denoted by
(y, σy) ≈τ,ε (y′, σy′), if and only if
1. for all i ∈ [1, N] such that ti ≤ T there exists k ∈ [1, N ′] such that tk ≤ T , |t1i − t′1k | ≤ τ

and ||yi − y′k|| ≤ ε, and
2. for all i ∈ [1, N ′] such that t′i ≤ T , there exists k ∈ [1, N] such that tk ≤ T , |t′1i − t1k| ≤ τ

and ||y′i − yk|| ≤ ε.

N. Khakpour and and M.R. Mousavi 11

HSS H (τ, ε)-conforms to HSS H′ (both with the same sets of input and output variables),
denoted by H ≈τ,ε H′, when for each initial condition h0 and each TSS (x, σx) on the
common input variables VI , H(h0, (x, σx)) ≈τ,ε,VO

H′(h0, (x, σx)).

We have made two slight modifications with respect to the original definition of (τ, ε)−conformance
in [3, 4]: firstly, the original notion requires the number of discrete jumps (the natural-
number-valued part of time) for related states to be identical. The main purpose for this
choice is to be sensitive to Zeno behavior, but we consider this a too strong constraint for the
purpose and hence, we removed this it. (We expect our results to hold in the original setting,
as well.) Secondly, the original definition requires the difference of the timing and valuations
to be strictly less than the conformance bounds τ and ε, respectively. We have changed this
to less than or equal to be consistent with the earlier definition of approximate simulation.

5 Full Abstraction for Translations

In this section, we show that the translations introduced in Section 3 preserve the notions
of conformance for a designated subset of the source semantic domain. We also give some
suggestions as to how to generalize these results to an extended set of semantic models.

5.1 Full Abstraction for the HLTS-MTS Translation
We start with proving that our translation from HLTS to MTS projects and reflects HIOCO-
conforming pairs of models to approximately similar models with approximation bounds set
to 0. To obtain this result, we need to focus on a very restricted subset of HLTSs, namely
concrete input-enabled deterministic ones. After we present the proof, we sketch some initial
ideas as to how to relax these restrictive assumptions. To avoid repetition, we assume that
the HLTSs in the remainder of this section are of the form (ST , s0T , V, L,→), where T is
the HLTS at hand. Note that we do not subscript the transition relation because it is always
clear from the context and we do not subscript the set of variables and labels, because they
are assumed to be the same throughout this section.

I Theorem 24. Consider two concrete input-enabled HLTSs I and S, where S is determinis-
tic; assume that trans(I) and trans(S) denote the MTS translations of I and S, respectively.
Then, the following statement holds:

I hioco S ⇒ trans(I) �0,0 trans(S).

Proof. We start with proving the following lemma. This lemma makes sure that the
simulation relation between the states of trans(I) and trans(S) (given in the remainder of
the proof) is well-defined.

I Lemma 25. Consider concrete input-enabled and deterministic HLTSs I and S and an
arbitrary trace α ∈ Traces(S); I hioco S implies that for all s1 ∈ I after α, there exists
s2 ∈ S after α such that Is1 hioco Ss2 , where for an HLTS T and state s, Ts denotes the
same HLTS with the initial state s.

Proof. We prove the lemma by induction on the length of α.
Since both I and S are concrete (i.e., s0I after ε = s0I and s0S after ε = s0S) and

Is0I = I and Ss0S = S, the base case follows immediately.
Assume that for all αn ∈ Traces(S) with |αn| ≤ n and all s1 ∈ I after αn, there exists

s2 ∈ S after αn, such that Is1 hioco Ss2 .

12 Notions of Conformance for CPSs

Consider a trace αn+1 ∈ Traces(S); if I after αn+1 = ∅, then the thesis follows vacuously.
For the case that I after αn+1 6= ∅, let l be the last element of αn+1. Hence, there is an

l-labeled transition s1
l−→ s′1, where s1 ∈ I after αn and s′1 ∈ I after αn+1. It follows from

the induction hypothesis that there exists a state s2 ∈ S after αn such that Is1 hioco Ss2 .
If l is an input, since S is input-enabled, there exists a transition s2

l−→ s′2. If l is an output,
it follows from the first condition of Definition 21 that s2

l−→ s′2. If l is a trajectory, it follows
from input-enabledness of S that I affords an l′ trajectory such that l ↓ VI = l′ ↓ VI . Then,
it follows from the second condition of Definition 21 that that s2

l−→ s′2.
Hence, it remains only to prove that Is′

1
hioco Ss′

2
; we proceed with a proof by contradic-

tion. Suppose there exists α′ ∈ Traces(Ss′
2
) such that one of the two conditions of Definition 21

does not hold for Is′
1
and Ss′

2
. It follows from α′ ∈ Traces(Ss′

2
) that αn+1α

′ ∈ Traces(S) and
hence, the same condition is violated for I and S, which contradicts the assumption of the
lemma. Hence, we conclude that Is′

1
hioco Ss′

2
. J

We define the following relation R and then prove that R is a witnessing approximate
simulation relation for trans(I) �0,0 trans(S):

R = {(〈s1, φ, x〉, 〈s2, φ, x〉) | Is1 hioco Ss2 , φ ∈ Trajs(VI) ∪ {⊥}, x ∈ Val(V)}

It follows from Definitions 10 and 15 (particularly, the definition of B in the latter) that
for each two related states in R, d1(B(〈s1, φ, x〉),B(〈s2, φ, x〉)) = d1((φ, x), (φ, x)) = 0.

From I hioco S, it follows that (〈s0,I ,⊥, x〉, 〈s0,S ,⊥, x〉) ∈ R.
Hence, it only remains to show that if 〈s1, φ, x〉

α→ 〈s′1, φ′, x′〉, for some α ∈ L, then there
exists s′2 such that 〈s2, φ, x〉

α→ 〈s′2, φ′, x′〉 and (〈s′1, φ′, x′〉, 〈s′2, φ′, x′〉) ∈ R.
We distinguish the following cases based on whether α is an input action, output action,

or a trajectory:
α ∈ AI : Since S is input-enabled, α ∈ Traces(Ss1). Hence, s2 affords an α-labeled transi-
tion to some state s′2. Since S is deterministic, this is the only α-labeled transition afforded
by s1. Hence, it follows from Is1 hioco Ss2 and Lemma 25 that Is′

1
hioco Ss′

2
. Finally, it

follows from the latter statement and the construction of R that (〈s′1,⊥, x′〉, 〈s′2,⊥, x′〉) ∈
R, which was to be shown.
α ∈ AO: It follows from Is1 hioco Ss2 and Definition 21. Hence, s2 affords an α-labeled
transition to some state s′2. With a similar reasoning as in the above item, we obtain
that (〈s′1,⊥, x′〉, 〈s′2,⊥, x′〉) ∈ R.
α ∈ Trajs(V): Then, Since S is input-enabled, there exists some φ′ ∈ Traces(Ss1) such
that φ′ ↓ VI = α ↓ VI . It follows from Is1 hioco Ss2 that s2 affords an α′ labeled
trajectory to some state s′2. With a similar reasoning as in the first item, we obtain that
(〈s′1, φ′ ↓ VI , x′〉, 〈s′2, φ′ ↓ VI , x′〉) ∈ R.

J

The assumptions that both HLTSs are concrete and input-enabled and that the specifica-
tion is deterministic are very restrictive. We envisage that concreteness and determinism
assumptions can be relaxed. A possible proof technique could require a slightly modified
translation that is reminiscent of the subset construction for transforming non-deterministic
finite automata to determinstic ones; a similar transformation has been proposed in the
setting of IOCO, see, e.g., [49, Definition 8]. For non-input-enabled HLTSs, we believe that
a slightly different notion than approximate bisimulation needs to be employed; this notion
should be similar to XY-bisimulation [2].

N. Khakpour and and M.R. Mousavi 13

I Theorem 26. Consider two concrete deterministic HLTSs I and S, where S is also input-
enabled, and assume that trans(I) and trans(S) denote their MTS translations, respectively.
Then, the following statement holds:

trans(I) �0,0 trans(S)⇒ I hioco S

Proof. Consider the approximate bisimilarity relation �0,0 (i.e., the largest approximate
bisimulation relation). We proceed with proving the following lemma.

I Lemma 27. Consider two states 〈s1, φ1, x1〉 and 〈s2, φ2, x2〉, respectively, of trans(I) and
trans(S) such that 〈s1, φ1, x2〉 �0,0 〈s2, φ2, x2〉 ; the following statements hold:

out (s1) ⊆ out (s2) (1)

and

trj(s1) ⊆ trj (s2) (2)

Proof. We next proceed with the proofs of the two statements in the thesis:
In order to prove that out (s1) ⊆ out (s2), consider an arbitrary action a ∈ out (s1).
This can only be due to a transition s1

a−→ s′1 in I. It follows from Definition 15 that
〈s1, φ1, x1〉

a−→ 〈s′1,⊥, x2〉. Due to 〈s1, φ1, x2〉 �0,0 〈s2, φ2, x2〉, we obtain 〈s2, φ2, x2〉
a−→ 〈s′2, φ2, x2〉 for some 〈s′2, φ2, x2〉 such that 〈s′1,⊥, x2〉 �0,0 〈s′2, φ2, x2〉. It then follows

from Definition 15 that φ2 = ⊥ and x1 = x2. It also follows from Definition 15 that the
transition of 〈s2, φ2, x2〉 is due to a transition s2

a−→ s′2 in S. Hence, a ∈ out (s2), which
was to be shown.
In order to prove that trj(s1) ⊆ trj (s2) consider an arbitrary trajectory φ ∈ trj(s1).
This statement can only be due to a transition s1

φ−→ s′1 in I. It follows from Definition
15 that 〈s1, φ1, x1〉

t−→ 〈s′1, φ ↓ VI , φ(t)〉. Due to 〈s1, φ1, x1〉 �0,0 〈s2, φ2, x2〉, we obtain
〈s2, φ2, x2〉

t−→ 〈s′2, φ ↓ VI , φ(t)〉 for some s′2 such that 〈s′1, φ ↓ VI , φ(t)〉 �0,0 〈s′2, φ ↓
VI , φ(t)〉. Hence, it follows from Definition 15 that s2 affords a trajectory φ′ such that
s2

φ′

−→ s′2, dom(φ′) = (0, t], φ′(t) = φ(t), and φ′ ↓ VI = φ ↓ VI . We claim that for each
t′ ∈ (0, t] it holds that φ′(t′) = φ(t′).
Take an arbitrary t′ ∈ (0, t], it follows from assumption A2 that 〈s1, φ1, x1〉

t′−→ 〈s′′1 , φ3 ↓
VI , φ(t′)〉 and 〈s′′1 , φ3 ↓ VI , φ(t′)〉 t−t′−→ 〈s′′′1 , φ4 ↓ VI , φ(t)〉 for some φ3, φ4 ∈ Traj(V) such
that φ = φ3 _ φ4. Since φ = φ3 _ φ4, it follows from Definition 9 and assumption A1
that s′′′1 = s′1.
It follows from 〈s1, φ1, x1〉 �0,0 〈s2, φ2, x2〉 that 〈s2, φ2, x2〉

t′−→ 〈s′′2 , φ′3 ↓ VI , φ′3(t′)〉 for
some 〈s′′2 , φ′3 ↓ VI , φ′3(t′)〉 such that 〈s′′1 , φ3 ↓ VI , φ(t′)〉 �0,0 〈s′′2 , φ′3 ↓ VI , φ′3(t′)〉 and
φ3 ↓ VI = φ′3 ↓ VI . Also, from 〈s′′1 , φ3 ↓ VI , φ(t′)〉 �0,0 〈s′′2 , φ′3 ↓ VI , φ′3(t′)〉, we obtain
that φ(t′) = φ′3(t′). Likewise, we obtain from 〈s′′1 , φ3 ↓ VI , φ(t′)〉 �0,0 〈s′′2 , φ′3 ↓ VI , φ(t′)〉
that 〈s′′2 , φ′3 ↓ VI , φ(t′)〉 t−t′−→ 〈s′′′2 , φ

′
4 ↓ VI , φ(t)〉 for some 〈s′′′2 , φ

′
4 ↓ VI , φ(t)〉 such that

〈s′′′1 , φ4 ↓ VI , φ(t)〉 �0,0 〈s′′′2 , φ
′
4 ↓ VI , φ(t)〉 and φ4 ↓ VI = φ′4 ↓ VI . We have that

φ = φ3 _ φ4, φ3 ↓ VI = φ′3 ↓ VI , φ4 ↓ VI = φ′4 ↓ VI and φ ↓ VI = φ′ ↓ VI ; hence, due
to A1, we obtain that φ′ = φ′3 _ φ′4. We already had that φ(t′) = φ′3(t′) and from
φ′ = φ′3 _ φ′4, we obtain that φ(t′) = φ′(t′), which was to be shown.

J

14 Notions of Conformance for CPSs

In order to prove the theorem, we prove the following claim:
Consider a trace αn ∈ Traces(S) with length n; for all s1 ∈ I after αn, there exists

s2 ∈ S after αn such that 〈s1, φ, x〉 �0,0 〈s2, φ, x〉 for all φ ∈ TrajV , x ∈ V al(V).
Once we prove the claim, by considering Lemma 27 the theorem follows.
We prove the claim by induction on n. For the base case, we have that s0Iafterε = s0I

and s0Safterε = s0S and it follows from Definition 15 and 〈s0I , φ, x〉 �0,0 〈s0S ,⊥, x〉 and s2
is s0S .

Assume that for all k ≤ n, αk ∈ Traces(S) and all s1 ∈ I after αk, there exists
s2 ∈ S after αk such that 〈s1, φ, x〉 �0,0 〈s2, φ, x〉.

Consider a trace αn+1 ∈ Traces(S); if I after αn+1 = ∅, then the claim follows. For the
case that I after αn+1 6= ∅, consider l ∈ L to be the last element of αn+1 and assume that
s1 ∈ I after αn. According to the induction hypothesis, there exists s2 ∈ S after αn such
that 〈s1, φ, x〉 �0,0 〈s2, φ, x〉. We distinguish the following cases based on the type of the last
element l in αn+1:

l ∈ A: Since s1
a−→ s′1, then 〈s1, φ, x〉

a−→ 〈s′1,⊥, x〉 based on Definition 15. Considering
〈s1,⊥, x〉 �0,0 〈s2,⊥, x〉, 〈s1, φ, x〉

a−→ 〈s′1,⊥, x〉 and Definition 22, it follows that there
exists a state s′2 such that 〈s2, φ, x〉

a−→ 〈s′2,⊥, x〉 and 〈s′1,⊥, x〉 �0,0 〈s′2,⊥, x〉.
In order to show that 〈s′1, φ, x〉 �0,0 〈s′2, φ, x〉, we prove the following more general claim:
I Lemma 28. If 〈s′1, φ, x〉 �0,0 〈s′2, φ, x〉, then 〈s′1, φ′, x′〉 �0,0 〈s′2, φ′, x′〉 for any φ′ ∈
Trajs(V) and x′ ∈ Val(V).

Proof. Consider the witnessing approximate simulation relation R such that (〈s′1, φ, x〉 ,
〈s′2, φ, x〉) ∈ R; consider the extension R′ of R with all pairs (〈s, φ′, x′〉, 〈s′, φ′, x′〉) such
that for some φ′ and x′, (〈s, φ′′, x′′〉, 〈s′, φ′′, x′′〉) ∈ R. It is straightforward to check that
R′ is an approximate simulation relation. J

Therefore, due to Lemma 28, 〈s′2,⊥, x〉 is the state that is approximately bisimilar to
〈s′1,⊥, x〉 where s′2 ∈ S after αn+1, which was to be shown.
l ∈ Trajs(V): since l ∈ trj(s1) and 〈s1, φ, x〉 �0,0 〈s2, φ, x〉, due to Lemma 27, we obtain
that l ∈ trj(s2). It follows from Definition 15 that 〈s1, φ, x〉

t−→ 〈s′1, l ↓ VI , l(t)〉, where
dom(l) = (0, t]. Since S is deterministic and l ∈ trj(s2), the only possibility for 〈s2, φ, x〉
to mimic this transition is the transition: 〈s2, φ, x〉

t−→ 〈s′2, l ↓ VI , l(t)〉, for some s′2 such
that 〈s′1, l ↓ VI , l(t)〉 �0,0 〈s′2, l ↓ VI , l(t)〉. It follows from Lemma 28 that 〈s′1, φ′, x′〉 �0,0
〈s′2, φ′, x′〉, for each φ′ ∈ Trajs(V) and x′ ∈ Val(V), which concludes the proof of this
item and the theorem.

J

Similar to Theorem 24, we conjecture that Theorem 26 also holds for non-deterministic
HLTSs.

5.2 Full Abstraction for HSS-MTS Translation
In this section, we prove full abstraction results for the translation from HSS to MTS. In
both the projection and the reflection theorems, we need to double the original conformance
time bound τ . We need to stretch the conformance time bound, because the notion of
(τ, ε)-conformance allows for matching valuations within τ time bounds both in the past and
in the future, which is a neighborhood of width 2τ . T

N. Khakpour and and M.R. Mousavi 15

I Theorem 29. Consider two HSSs I and S and ε > 0; assume that MTSs MTS(I) and
MTS(S) are translations of I and S, respectively. Then, the following statement holds:

I ≈τ,ε S⇒MTS(I) ≡ε,2τ MTS(S).

Proof. Consider the following relation between the states of MTS(I) and MTS(S):

Rε,2τ = {(⊥,⊥),
(〈h0, (x, σx), (y, σy), σy,i〉, 〈h0, (x, σx), (y′, σy′), σy′,j〉 |

(y, σy) ≈τ,ε (y′, σy′)∧
|σ1
y,i − σ1

y′,j | ≤ τ
||yi − y′j || ≤ ε}

The relation is symmetric and hence, once we prove that this relation is an approximate
bisimulation relation, the theorem follows, because the initial states of MTS(I) and MTS(S)
are related by Rε,2τ .

The fact that for each (q0, q1) ∈ Rε,2τ , d1(B(q0),B(q1)) ≤ ε follows from the construction
of Rε,2τ and Definition 16.

It remains to prove the transfer conditions of Definition 22.
Regarding the transfer condition for ⊥, assume that in MTS(I), ⊥ t−→ 〈h0, (x, σx),

(y, σy), σy,i〉; we immediately have that t = σy,i − σy,1. It follows from I ≈τ,ε S that there
exists (y′, σy′) = S(h0, (x, σx)) such that (y, σy) ≈τ,ε (y′, σy′). In particular, it holds that
there exists a σy′,j such that |σ1

y,i − σ1
y′,j | ≤ τ and ||yi − y′j || ≤ ε. It hence, follows from

Definition 16 that in MTS(S), ⊥ t′−→〈h0, (x, σx), (y′, σy′), σy′,j〉, where t′ = σy′,j − σy′,1.
We note that |σy,1 − σy′,1| ≤ τ , because otherwise, one of the two points does not find
a counter part (within the time range of τ) in the other sequence. Hence, we obtain
that and we have that d2(t, t′) = |(σy,i − σy′,j) − (σy,1 − σy′,1)| ≤ 2τ . We also have that
(〈h0, (x, σx), (y, σy), σy,i〉, 〈h0, (x, σx), (y′, σy′), σy′,j〉) ∈ Rε,2τ and this concludes the transfer
condition for ⊥.

Take arbitrary states (〈h0, (x, σx), (y, σy), σy,i〉, 〈h0, (x, σx), (y′, σy′), σy′,j〉) ∈ Rε,2τ . Con-
sider a transition 〈h0, (x, σx), (y, σy), σy,i〉

t−→ 〈h0, (x, σx), (y, σy), σy,k〉; we have that t =
σy,k − σy,i. It follows from (y, σy) ≈τ,ε (y′, σy′) that there exists m ∈ N such that |σ1

y,k −
σ1
y′,m| ≤ τ and ||yk− y′m|| ≤ ε. Due to Definition 16, we have that 〈h0, (x, σx), (y′, σy′), σy′,j〉
t′−→ 〈h0, (x, σx), (y′, σy′), σy′,m〉 and t′ = σ1

y′,j − σ1
y′,m. It also follows from |σ1

y,i − σ1
y′,j | ≤ τ

and |σ1
y,k − σ1

y′,m| ≤ τ that d2(t, t′) = |(σy,i − σy′,j) − (σy,1 − σy′,1)| ≤ 2τ . We also have
that (〈h0, (x, σx), (y, σy), σy,k〉, 〈h0, (x, σx), (y′, σy′), σy′,m〉) ∈ Rε,2τ and this concludes the
only remaining part of the transfer condition and the proof. J

I Theorem 30. Consider two HSSs I and S, and two approximation bounds τ ≥ 0 and
ε ≥ 0; assume that MTSs MTS(I) and MTS(S) are translations of I and S, respectively.
Then, the following statement holds:

MTS(I) ≡τ,ε MTS(S)⇒ I ≈ε,2τ S.

Proof. In the proof to follow, we assume that I and S are of the form I : H × TSS(VI , N)
→ TSS(VO, NI) and S : H × TSS(VI , N) → TSS(VO, NS), respectively.

Consider h0 ∈ H0, (x, σx) ∈ TSS(VI , N), and (y, σy) ∈ TSS(VO, N) such that (y, σy) =
I(h0, (x, σx)); in order to prove the theorem, we need to find a TSS (y′, σy′) ∈ TSS(VO, NI)
such that (y′, σy′) = I(h0, (x, σx)) and (y, σy) ≈ε,2τ (y′, σy′).

16 Notions of Conformance for CPSs

It follows from Definition 16 that in MTS(I), we have ⊥ t−→ 〈h0, (x, σx), (y, σy), σy,i〉,
for each i < NI. It also follows from MTS(I) ≡τ,ε MTS(S) that there exists an approximate
bisimulation relation Rε,τ such that ({⊥}, {⊥}) ∈ Rε,τ . Due to the latter statement and the t-
labeled transition of ⊥ in MTS(I), we obtain in MTS(S) that for some (y′, σy′) ∈ TSS(VO, NS)
and j ≤ NS, ⊥

t′−→ 〈h0, (x, σx), (y′, σ′y), σy′,j〉 such that |σ1
y,i − σ1

y′,j | ≤ τ , ||yi − y′j || ≤ ε,
and (〈h0, (x, σx), (y, σy), σy,i〉, 〈h0, (x, σx), (y′, σy′), σy′,j〉) ∈ Rε,τ . In the remainder of the
proof, without loss of generality, we assume that σ1

y,i − σ1
y′,j is non-negative; the proof for

the case where σ1
y,i − σ1

y′,j is negative is symmetric and is hence, dispensed with. We claim
that for any such (y′, σ′y), it holds that (y, σy) ≈ε,τ (y′, σy′).

To see why this claim holds, take an arbitrary point σy′,k for k < NS. We have in

MTS(S) that 〈h0, (x, σx), (y′, σ′y), σy′,j〉
σ1

y′,k
−σ1

y′,j−→ 〈h0, (x, σx), (y′, σ′y), σy′,k〉. We have
that (〈h0, (x, σx), (y, σy), σy,i〉, 〈h0, (x, σx), (y′, σy′), σy′,j〉) ∈ Rε,τ and hence, we obtain in

MTS(I) that for some m ≤ NI, 〈h0, (x, σx), (y, σy), σy,i〉
σ1

y,m−σ
1
y,i−→ 〈h0, (x, σx), (y, σy),

σy,m〉 such that |(σ1
y,m − σ1

y,i) − (σ1
y′,k − σ1

y′,j)| ≤ τ and ||yk − y′m|| ≤ ε. We only need to
show that |σ1

y,k − σ1
y′,m| ≤ 2τ . We distinguish the following two cases based on whether

σ1
y,m − σ1

y,i is negative or not.

(σ1
y,m − σ1

y,i)− (σ1
y′,k − σ1

y′,j) ≤ 0, then we have:

(σ1
y,m − σ1

y′,k) + τ ≤
(σ1
y,m − σ1

y′,k) + (σ1
y′,j − σ1

y,i) =
(σ1
y,m − σ1

y,i)− (σ1
y′,k − σ1

y′,j) ≤
0

To conclude (σ1
y,m − σ1

y′,k) + τ < 0, that is |σ1
y,m − σ1

y′,k| < τ < 2τ , which was to be
shown.
(σ1
y,m − σ1

y,i)− (σ1
y′,k − σ1

y′,j) > 0, then we have:

(σ1
y,m − σ1

y′,k) =
(σ1
y,m − σ1

y′,k)− (σ1
y′,j − σ1

y,i) + (σ1
y′,j − σ1

y,i) =
((σ1

y,m − σ1
y,i)− (σ1

y′,k − σ1
y′,j)) + (σ1

y′,j − σ1
y,i) ≤

τ + τ =
2τ

To summarize, (σ1
y,m − σ1

y′,k) ≤ 2τ , and this concludes the proof.
J

6 Challenges

6.1 Notions of Conformance
Partial models.

Practical models are typically incomplete: firstly, they do not specify what the consequence of
applying each and every intput at each and every state is (i.e., they may not be input-enabled).
Secondly, they may not specify / allow to inspect the values of all variables at every state.
Also, another aspects of partiality that may come in handy is to allow for different sets of
variables in the specification and implementation: implementations tend to be defined in

N. Khakpour and and M.R. Mousavi 17

terms of far more variables than the specification and an abstraction mechanism should
relate the implementation variables to the abstract variables in the specification.

HIOCO supports partiality in terms of non-input-enabled specifications, but other aspects
of partiality are still missing in the theory. The notion of (τ, ε)-conformance does not support
partial models and hence, its extension in this direction can be useful. Establishing a model
of partiality for MTSs requires a generic framework for defining observations and metrics.

Partial models pose a further theoretical challenge for defining a notion of conformance
that is a pre-order and pre-congruence; these aspects are discussed in the remainder of this
section.

Non-determinism.

At a high level of abstraction, many choices cannot be made or are irrelevant. Hence, non-
deterministic models are natural phenomena at high levels of abstraction. It turns out that
testing based on non-deterministic models is significantly more complex and computationally
more demanding than testing based on deterministic models. There are several proposals to
allow for a restricted form of non-determinism [47, 62], which could be employed to reconcile
non-determinism, e.g., with (τ, ε)-conformance.

It should also be noted that abstraction from internal actions is not supported by the
current definitions of (τ, ε)-conformance and approximate simulation, which is useful when
abstraction into internal actions is introduced in modeling and the design trajectory.

Pre-order (or Equivalence)

The notions of HIOCO and (τ, ε)-conformance are known not to be transitive for different
reasons. Namely, HIOCO allows for partial models and hence, the set of traces tested in
two pairs of conforming models may be different. (This is a straightforward extension of the
original counter-example of transitivity for ioco [53].) For (τ, ε)-conformance the “conformance
bounds” (τ and ε) add up when comparing two pairs of related models and hence, transitivity
breaks. Finding reasonable conditions for establishing a pre-order conformance relation for
partial models may help in exploiting such a notion in top-down design trajectory. Also
regarding conformance bounds, calculating new bounds on the compositions of conformance
relations is an interesting research direction.

Pre-congruence (compositionality)

Coming up with a notion of conformance testing that supports partial models and / or
approximate comparison of behaviors and is also compositional is another non-trivial challenge.
In addition to [57], there seems to be renewed interest in addressing this challenge in the
context of IOCO [12, 21]. Also the authors of [13] suggest that it may be possible to achieve
new results through the meta-theory of structural operational semantics.

Logical characterization.

The notions of testing developed in concurrency theory are often motivated by a notion
observer that can perform certain interactions with the system [5, 26]. This type of theoretical
connection between the extensional and intensional notions seems to be open for the notion
of conformance studied in this paper. Along the same lines, it is unclear what the logical
characterization of these notions are, i.e., what class of properties (e.g., in extensions of modal

18 Notions of Conformance for CPSs

µ-calculus or temporal logic [24, 25, 29]) are preserved under these notion of conformance.
We refer to [4, 28] for some related results in this direction.

Distributed systems / testers

Conformance testing of asynchronous and distributed systems has been extensively studied;
examples of recent work in adapting different notions of conformance to asynchronous
and distributed settings are [37, 48, 51, 55, 61]. Distributed testing introduces several
issues regarding nondeterminism and controllability in test-case generation, as well as re-
constructing observation from partial distributed observations when checking conformance.
This combination is known to be notoriously difficult and becomes even more challenging in
the setting of cyber-physical systems.

Quiescence, agility, and Zeno behavior.

Observing quiescence, i.e., lack of outputs and internal actions, has been a key aspect of the
original IOCO theory [53], but it has been left out of HIOCO. In HIOCO, quiescence has
been replaced with the agility observation which serves a different purpose, namely to note
when time may or may not pass. A careful analysis of these two observations (i.e., quiescence
and agility) and the different possible combinations of choices concerning them remains to
be done.

Zeno behavior and chattering [42, 65] are modeling phenomenon, which bear resemblance
to the divergence issue in the traditional notions of conformance testing. An ideal notion
of conformance should be sensitive to these issues and distinguish systems featuring and
lacking Zeno behavior. The notion of (τ, ε)-conformance counts the number of discrete steps
in order to distinguish Zeno- and non-Zeno behavior, which is in our view somewhat ad-hoc.
It is also contrary to the intuition that discrete jumps should be visible only through their
observable effects. We believe, hence, that a more thorough treatment of Zeno behavior in
the notions of conformance for cyber-physical systems is due.

6.2 Test-Case Generation

Robustness

In [35], a notion of robustness in test-case generation has been introduced for (τ, ε)-
conformance. Robustness ensures the generated test-cases remain within the (τ, ε) boundaries
of guard conditions (for transitions) and invariants of state space. This ensures that off-line
test case can always be applied to the implementation without forcing it into an unintended
state or violating the invariant. However, this turns out to be very challenging for generic
hybrid systems, which requires solutions to Ordinary Differential Equations (ODEs) or
Differential Algebraic Equations (DAEs). Finding a practical subset of hybrid system models
for which robustness can be decided efficiently and building a test-case generation algorithm
around it is a practical challenge.

Currently the notion of (τ, ε)-conformance assumes a single conformance bound for
all variables; this needs to be further detailed, perhaps into a vector-valued conformance
bound. Moreover, the useful notion of “conformance degree” [4], which determines the least
conformance bounds can be adapted to this vector-valued setting, allowing for a Pareto
analysis of conformance.

N. Khakpour and and M.R. Mousavi 19

Coverage

Defining a model-based notion of coverage is still a relevant research question. In [15, 17, 40],
some recent attempts have been made in consolidating traditional notions of coverage such
as regularity and uniformity [30]; these notions are formalizations of category-partition
techniques. Regarding continuous dynamics, various notions of coverage have been studied in
[22, 23, 27, 41]. A combination of these ideas need to be considered for defining a satisfactory
notion of coverage for hybrid systems.

Sampling

The choice of sampling in [4] is left unspecified and is mentioned as future work. This is a
non-trivial problem and an appropriate choice of sampling requires knowing the solutions to
the systems dynamics equations. Coverage-based choice of sampling is a possible solution to
this issue [22, 23, 27, 41], which requires further investigation in the case of (τ, ε)-conformance.

6.3 Practical challenges

Tooling

We are aware of only few academic tools for conformance testing of cyber-physical systems,
namely, HTG [22] and S-TaLiRo [39]. Also in [35] a prototype Matlab-based tool is reported
which implements a test-case generation and conformance checking algorithm based on the
notion of (τ, ε)-conformance. Developing tools and benchmarks for conformance testing of
cyber-physical systems is certainly a challenge for the years to come.

Rigorous Models

Formal models are the starting point of model-based testing and yet, they often do not exist
for industrial systems. This makes bars wide application of model-based testing in industrial
practice. We see two possible solutions to this problem. In some domains, (domain-specific)
languages are common in the design trajectory. For example, Matlab Simulink models are
common, among others, in the automotive domain. Hence, building model-based testing
tools that use such domain-specific models as their input language can be very beneficial.
(Reactis and S-TaLiRo, respectively, are examples of commercial and academic model-based
testing tools with such an input language.)

Model-learning techniques (see, e.g., [1, 2]) (also called learning-based testing [45] and
test-based modeling [54]) may provide an alternative path to building or updating models
for model-based testing.

Online testing

Applying on-line testing techniques to cyber-physical systems requires predictable real-time
performance of test-case generation, test-case execution and conformance checking algorithms,
none of which is trivial. Moreover, in the presence of non-determinism, conformance checking
requires calculating the set of current states in a huge state-space, which becomes intractable in
concurrent systems; employing on-the-fly reduction techniques in such a setting is inevitable.

20 Notions of Conformance for CPSs

Acknowledgments

We thank Pieter Cuijpers, Eugenio Moggi, Wojciech Mostowski, Michel A. Reniers, and
Walid Taha for providing insightful comments on earlier drafts of this paper.

References
1 Fides Aarts, Bengt Jonsson, Johan Uijen, and Frits W. Vaandrager. Generating models

of infinite-state communication protocols using regular inference with abstraction. Formal
Methods in System Design, 46(1):1–41, 2015.

2 Fides Aarts and Frits W. Vaandrager. Learning I/O automata. In Proceedings of the
21th International Conference on Concurrency Theory (CONCUR 2010), volume 6269 of
Lecture Notes in Computer Science, pages 71–85. Springer, 2010.

3 Houssam Abbas, Bardh Hoxha, Georgios E. Fainekos, J. V. Deshmukh, James Kapin-
ski, and Koichi Ueda. WiP abstract: Conformance testing as falsification for cyber-
physical systems. In Proceedings of the ACM/IEEE 5th International Conference on
Cyber-Physical Systems (ICCPS 2014), page 211. IEEE CS, 2014. Available online:
http://arxiv.org/abs/1401.5200.

4 Houssam Abbas, Hans Mittelmann, and Georgios E. Fainekos. Formal property verification
in a conformance testing framework. In 12th ACM-IEEE International Conference on
Formal Methods and Models for System Design (MEMOCODE 2014), pages 155–164. IEEE,
2014.

5 Samson Abramsky. Observation equivalence as a testing equivalence. Theoretical Computer
Science, 53(2-3):225–241, 1987.

6 Bernhard K. Aichernig, Harald Brandl, Elisabeth Jöbstl, andWillibald Krenn. Model-based
mutation testing of hybrid systems. In Revised Selected Papers from the 8th International
Symposium on Formal Methods for Components and Objects (FMCO 2009), volume 6286
of Lecture Notes in Computer Science, pages 228–249. Springer, 2010.

7 Bernhard K. Aichernig, Harald Brandl, and Franz Wotawa. Conformance testing of hybrid
systems with qualitative reasoning models. Electronic Notes in Theoretical Computer Sci-
ence, 253(2):53–69, 2009. Proceedings of Fifth Workshop on Model Based Testing (MBT
2009).

8 Rajeev Alur. Formal verification of hybrid systems. In Proceedings of the 11th International
Conference on Embedded Software (EMSOFT 2011), pages 273–278. ACM, 2011.

9 Rajeev Alur, Costas Courcoubetis, Nicolas Halbwachs, Thomas A. Henzinger, Pei-Hsin
Ho, Xavier Nicollin, Alfredo Olivero, Joseph Sifakis, and Sergio Yovine. The algorithmic
analysis of hybrid systems. Theoretical Computer Science, 138(1):3–34, 1995.

10 Jos C. M. Baeten. A brief history of process algebra. Theoretical Computer Science, 335(2-
3):131–146, 2005.

11 Klaus Bender, Manfred Broy, István Péter, Alexander Pretschner, and Thomas Stauner.
Model based development of hybrid systems: Specification, simulation, test case generation.
In Modelling, Analysis, and Design of Hybrid Systems, volume 279 of Lecture Notes in
Control and Information Sciences, pages 37–51. Springer, 2002.

12 Nikola Benes, Przemyslaw Daca, Thomas A. Henzinger, Jan Kretínský, and Dejan Nickovic.
Complete composition operators for IOCO-testing theory. In Proceedings of the 18th Inter-
national ACM SIGSOFT Symposium on Component-Based Software Engineering (CBSE
2015), pages 101–110. ACM, 2015.

13 Harsh Beohar and Mohammad Reza Mousavi. A pre-congruence format for XY-simulation.
In Proceedings of the 6th International Conference on Fundamentals of Software Engineer-
ing (FSEN 2015), Lecture Notes in Computer Science, 2015.

N. Khakpour and and M.R. Mousavi 21

14 Harald Brandl, Martin Weiglhofer, and Bernhard K. Aichernig. Automated conformance
verification of hybrid systems. In Proceedings of the 10th International Conference on
Quality Software (QSIC 2010), pages 3–12. IEEE CS, 2010.

15 Cécile Braunstein, Anne Elisabeth Haxthausen, Wen-ling Huang, Felix Hübner, Jan Pe-
leska, Uwe Schulze, and Linh Vu Hong. Complete model-based equivalence class testing for
the ETCS ceiling speed monitor. In Proceedings of the 16th International Conference on
Formal Engineering Methods on Formal Methods and Software Engineering (ICFEM 2014),
volume 8829 of Lecture Notes in Computer Science, pages 380–395. Springer, 2014.

16 Manfred Broy, Bengt Jonsson, Joost-Pieter Katoen, Martin Leucker, and Alexander
Pretschner. Model-Based Testing of Reactive Systems: Advanced Lectures, volume 3472
of Lecture Notes in Computer Science. Springer, 2005.

17 Ana Cavalcanti and Marie-Claude Gaudel. Data flow coverage for circus-based testing.
In Proceedings 17th International Conference of the Fundamental Approaches to Software
Engineering (FASE 2014), volume 8411 of Lecture Notes in Computer Science, pages 415–
429. Springer, 2014.

18 Pieter Cuijpers. Hybrid Process Algebra. PhD thesis, Department of Computer Science,
Eindhoven University of Technology, 2004.

19 Pieter Cuijpers, Michel Reniers, and Maurice Heemels. Hybrid transition systems. Tech-
nical Report CSR-02-12, Department of Computer Science, Eindhoven University of Tech-
nology, 2002.

20 Pieter J. L. Cuijpers and Michel A. Reniers. Lost in translation: Hybrid-time flows vs. real-
time transitions. In Proceedings of the 11th International Workshop on Hybrid Systems:
Computation and Control (HSCC 2008), volume 4981 of Lecture Notes in Computer Science,
pages 116–129. Springer, 2008.

21 Przemyslaw Daca, Thomas A. Henzinger, Willibald Krenn, and Dejan Nickovic. Com-
positional specifications for ioco testing. In Proceedings of the 7th IEEE International
Conference on Software Testing, Verification and Validation (ICST 2014), pages 373–382.
IEEE CS, 2014.

22 Thao Dang. Model-based testing of hybrid systems. In Justyna Zander, Ina Schieferdecker,
and Pieter J. Mosterman, editors, Model-based Testing for Embedded Systems, pages 383–
424. CRC Press, 2011.

23 Thao Dang and Tarik Nahhal. Coverage-guided test generation for continuous and hybrid
systems. Formal Methods in System Design, 34(2):183–213, 2009.

24 Jennifer M. Davoren. On hybrid systems and the modal µ-calculus. In Hybrid Systems V,
volume 1567 of Lecture Notes in Computer Science, pages 38–69. Springer, 1999.

25 Jennifer M. Davoren, Vaughan Coulthard, Nicolas Markey, and Thomas Moor. Non-
deterministic temporal logics for general flow systems. In Proceedings of the 7th Inter-
national Workshop on Hybrid Systems: Computation and Control (HSCC 2004), volume
2993 of Lecture Notes in Computer Science, pages 280–295. Springer, 2004.

26 Rocco De Nicola and Matthew Hennessy. Testing equivalences for processes. Theoretical
Computer Science, 34:83–133, 1984.

27 Tommaso Dreossi, Thao Dang, Alexandre Donzé, James Kapinski, Xiaoqing Jin, and Jy-
otirmoy V. Deshmukh. Efficient guiding strategies for testing of temporal properties of
hybrid systems. In Proceedings of the 7th International NASA Formal Methods Symposium
(NFM 2015), volume 9058 of Lecture Notes in Computer Science, pages 127–142. Springer,
2015.

28 Georgios E. Fainekos and George J. Pappas. Robustness of temporal logic specifications
for continuous-time signals. Theoretical Computer Science, 410(42):4262–4291, 2009.

29 Carlo A. Furia and Matteo Rossi. On the expressiveness of MTL variants over dense time.
In Proceedings of the 5th International Conference on Formal Modeling and Analysis of

22 Notions of Conformance for CPSs

Timed Systems (FORMATS 2007), volume 4763 of Lecture Notes in Computer Science,
pages 163–178. Springer, 2007.

30 Marie-Claude Gaudel. Testing can be formal, too. In Proceedings of the 6th International
Joint Conference on Theory and Practice of Software Development (TAPSOFT 1995), vol-
ume 915 of Lecture Notes in Computer Science, pages 82–96. Springer, 1995.

31 Alessandro Giacalone, Chi-Chang Jou, and Scott A Smolka. Algebraic reasoning for prob-
abilistic concurrent systems. In Proceedings of the IFIP TC2 Working Conference on
Programming Concepts and Methods (PROCOMET 1990), pages 443–458. North-Holland,
1990.

32 Antoine Girard, A. Agung Julius, and George J. Pappas. Approximate simulation relations
for hybrid systems. Discrete Event Dynamic Systems, 18(2):163–179, 2008.

33 Antoine Girard and George J. Pappas. Approximation metrics for discrete and continuous
systems. Technical Report MS-CIS-05-10, Dept. of CIS, University of Pennsylvania, 2005.

34 Antoine Girard and George J. Pappas. Approximate bisimulation: A bridge between com-
puter science and control theory. European Journal of Control, 17(5-6):568–578, 2011.

35 Antoine Girard and George J. Pappas. A tool prototype for model-based testing of cyber-
physical systems. Technical Report CST 2015.090, Contol Systems Group, Dept. of Me-
chanical Engineering, Eindhoven University of Technology, 2015.

36 Rafal Goebel, Ricardo G. Sanfelice, and Andrew R. Teel. Hybrid dynamical systems. IEEE
Control Systems, 29(2):28–93, 2009.

37 Robert M. Hierons. Generating complete controllable test suites for distributed testing.
IEEE Trans. Software Eng., 41(3):279–293, 2015.

38 Robert M. Hierons, Kirill Bogdanov, Jonathan P. Bowen, Rance Cleaveland, John Derrick,
Jeremy Dick, Marian Gheorghe, Mark Harman, Kalpesh Kapoor, Paul J. Krause, Gerald
Lüttgen, Anthony J. H. Simons, Sergiy A. Vilkomir, Martin R. Woodward, and Hussein
Zedan. Using formal specifications to support testing. ACM Computing Surveys, 41(2):9:1–
9:76, 2009.

39 Bardh Hoxha, Houssam Abbas, and Georgios E. Fainekos. Using S-TaLiRo on industrial
size automotive models. In Proceedings of the Applied Verification for Continuous and
Hybrid Systems (ARCH 2014), 2014.

40 Wen-ling Huang and Jan Peleska. Exhaustive model-based equivalence class testing. In
Proceedings of the 25th IFIP WG 6.1 International Conference of Testing Software and
Systems (ICTSS 2013), volume 8254 of Lecture Notes in Computer Science, pages 49–64.
Springer, 2013.

41 A. Agung Julius, Georgios E. Fainekos, Madhukar Anand, Insup Lee, and George J. Pappas.
Robust test generation and coverage for hybrid systems. In Proceedings of the 10th Inter-
national Workshop on Hybrid Systems: Computation and Control (HSCC 2007), volume
4416 of Lecture Notes in Computer Science, pages 329–342. Springer, 2007.

42 Daniel Liberzon. Switching in Systems and Control. Systems & Control: Foundations and
Application. Birkhäuser, 2003.

43 Nancy Lynch, Roberto Segala, and Frits Vaandrager. Hybrid I/O automata. Information
and Computation, 185(1):105–157, 2003.

44 Oded Maler, Zohar Manna, and Amir Pnueli. From timed to hybrid systems. In Proceedings
of the REX Workshop on Real-Time: Theory in Practice, volume 600 of Lecture Notes in
Computer Science, pages 447–484. Springer, 1992.

45 Karl Meinke, Fei Niu, and Muddassar A. Sindhu. Learning-based software testing: A
tutorial. In International Workshops on Leveraging Applications of Formal Methods, Ver-
ification, and Validation, volume 336 of Communications in Computer and Information
Science, pages 200–219. Springer, 2012.

N. Khakpour and and M.R. Mousavi 23

46 Morteza Mohaqeqi, Mohammad Reza Mousavi, and Walid Taha. Conformance testing of
cyber-physical systems: A comparative study. In Proceedings of the 14th International
Workshop on Automated Verification of Critical Systems (AVOCS 2014), volume 70 of
Electronic Communications of the EASST, 2014.

47 Neda Noroozi. Improving Theories of Input Output Conformance Testing. PhD thesis,
Eindhoven University of Technology, The Netherlands, 2015.

48 Neda Noroozi, Ramtin Khosravi, Mohammad Reza Mousavi, and Tim A. C. Willemse. Syn-
chrony and asynchrony in conformance testing. Software and System Modeling, 14(1):149–
172, 2015.

49 Neda Noroozi, Mohammad Reza Mousavi, and Tim A. C. Willemse. Decomposability
in input output conformance testing. In Proceedings of the 8th Workshop on Model-Based
Testing (MBT 2013), volume 111 of Electronic Proceedings in Theoretical Computer Science,
pages 51–66, 2013.

50 Jan Willem Polderman and Jan C. Willems. Introduction to Mathematical Systems Theory:
A Behavioral Approach, volume 26 of Texts in Applied Mathematics. Springer, 1998.

51 Adenilso Simao and Alexandre Petrenko. From test purposes to asynchronous test cases.
In Third International Conference on Software Testing, Verification, and Validation Work-
shops (ICSTW 2010), pages 1–10. IEEE CS, 2010.

52 Paulo Tabuada. Approximate simulation relations and finite abstractions of quantized
control systems. In Proceedings of the 10th International Workshop on Hybrid Systems:
Computation and Control (HSCC 2007), volume 4416 of Lecture Notes in Computer Science,
pages 529–542. Springer, 2007.

53 Jan Tretmans. A formal Approach to conformance testing. PhD thesis, University of
Twente, The Netherlands, 1992.

54 Jan Tretmans. Model-based testing and some steps towards test-based modelling. In
Advanced Lectures of the 11th International School on Formal Methods for the Design of
Computer, Communication and Software Systems (SFM 2011), volume 6659 of Lecture
Notes in Computer Science, pages 297–326. Springer, 2011.

55 Jan Tretmans and Louis Verhaard. A queue model relating synchronous and asynchronous
communication. In Proceedings of the IFIP Symposium on Protocol Specification, Testing
and Verification XII, pages 131–145, Amsterdam, The Netherlands, The Netherlands, 1992.
North-Holland Publishing Co.

56 Franck van Breugel, Claudio Hermida, Michael Makkai, and James Worrell. An accessible
approach to behavioural pseudometrics. In Proceedings of the 32nd International Collo-
quium on Automata, Languages and Programming (ICALP 2005), volume 3580 of Lecture
Notes in Computer Science, pages 1018–1030. Springer, 2005.

57 Machiel van der Bijl, Arend Rensink, and Jan Tretmans. Compositional testing with
IOCO. In Proceedings of the 3rd International Workshop on Formal Approaches to Testing
of Software (FATES 2003), volume 2931 of Lecture Notes in Computer Science, pages
86–100. Springer, 2004.

58 Arjan van der Schaft and Hans Schumacher. An Introduction to Hybrid Dynamical Systems,
volume 251 of Lecture Notes in Control and Information Sciences. Springer, 2000.

59 Michiel van Osch. Hybrid input-output conformance and test generation. In Formal Ap-
proaches to Software Testing and Runtime Verification, volume 4262 of Lecture Notes in
Computer Science, pages 70–84. Springer, 2006.

60 Michiel van Osch. Automated Model-based Testing of Hybrid Systems. PhD thesis, Eind-
hoven University of Technology, The Netherlands, 2009.

61 Louis Verhaard, Jan Tretmans, Pim Pars, and Ed Brinksma. On asynchronous testign. In
Protocol Test Systems, volume C-11 of IFIP Transaction, pages 55–66, 1992.

24 Notions of Conformance for CPSs

62 Martin Weiglhofer. Automated Software Conformance Testing. PhD thesis, Graz University
of Technology, Austria, 2009.

63 Matthias Woehrle, Kai Lampka, and Lothar Thiele. Segmented state space traversal for
conformance testing of cyber-physical systems. In Proceedings of the 9th International
Conference on Formal Modeling and Analysis of Timed Systems (FORMATS 2011), volume
6919 of Lecture Notes in Computer Science, pages 193–208. Springer, 2011.

64 Matthias Woehrle, Kai Lampka, and Lothar Thiele. Conformance testing for cyber-physical
systems. ACM Transactions on Embedded Computing Systems, 11(4):84:1–84:23, 2013.

65 Jun Zhang, Karl Henrik Johansson, John Lygeros, and Shankar Sastry. Zeno hybrid sys-
tems. International Journal of Robust and Nonlinear Control, 11(5):435–451, 2001.

	Introduction
	Semantic Models
	Basic Definitions
	Hybrid Labeled Transition System
	Metric Transition System
	Hybrid-Timed State Sequence System
	Informal Comparison of Semantic Models

	Translations among Semantic Models
	From HLTS to MTS
	From HSS to MTS

	Notions of Conformance
	Hybrid Input-Output Conformance (HIOCO)
	Approximate Simulation
	(,)-Conformance

	Full Abstraction for Translations
	Full Abstraction for the HLTS-MTS Translation
	Full Abstraction for HSS-MTS Translation

	Challenges
	Notions of Conformance
	Test-Case Generation
	Practical challenges

